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Abstract

Objective: Surveillance of surgical site infections (SSIs) is important for infection control and is usually performed through retrospective
manual chart review. The aim of this study was to develop an algorithm for the surveillance of deep SSIs based on clinical variables to enhance
efficiency of surveillance.

Design: Retrospective cohort study (2012–2015).

Setting: A Dutch teaching hospital.

Participants:We included all consecutive patients who underwent colorectal surgery excluding those with contaminated wounds at the time of
surgery. All patients were evaluated for deep SSIs through manual chart review, using the Centers for Disease Control and Prevention (CDC)
criteria as the reference standard.

Analysis: We used logistic regression modeling to identify predictors that contributed to the estimation of diagnostic probability.
Bootstrapping was applied to increase generalizability, followed by assessment of statistical performance and clinical implications.

Results: In total, 1,606 patients were included, of whom 129 (8.0%) acquired a deep SSI. The final model included postoperative length of stay,
wound class, readmission, reoperation, and 30-day mortality. The model achieved 68.7% specificity and 98.5% sensitivity and an area under
the receiver operator characteristic (ROC) curve (AUC) of 0.950 (95% CI, 0.932–0.969). Positive and negative predictive values were 21.5%
and 99.8%, respectively. Applying the algorithm resulted in a 63.4% reduction in the number of records requiring full manual review (from
1,606 to 590).

Conclusions: This 5-parameter model identified 98.5% of patients with a deep SSI. The model can be used to develop semiautomatic
surveillance of deep SSIs after colorectal surgery, which may further improve efficiency and quality of SSI surveillance.

(Received 19 December 2018; accepted 5 February 2019)

Surgical site infections (SSIs) are among the most common
healthcare-associated infections (HAIs) in surgical patients.1

SSIs are associated with a substantial clinical and financial burden
due to their negative impact on patient health and the increased
costs associated with treatment and extended hospitalization.2,3

On average, these infections occur in 2%–4% of surgical patients,
but the infection rates and severity vary across surgical proce-
dures.4,5 Colorectal surgery is associated with the highest risk of
infection, which ranges from 15% to 30% of these patients.6

The incidence of SSIs and other HAIs are monitored in infec-
tion surveillance programs. These programs routinely collect data
on HAI rates, which are used as reference data for hospitals and

healthcare providers.7 Data can be applied to evaluate the quality
of care, to identify where improvements are needed, and to sup-
port and facilitate implementation of new preventive measures.
As a result, infection surveillance can be used to reduce SSI-
related morbidity and costs. To ensure adequate and reliable sur-
veillance, uniform ascertainment of infection is crucial.
International definitions were therefore developed to provide a
standardized approach to diagnosing and reporting SSIs.8 SSI
surveillance is traditionally performed by extensive manual
review of medical records. Consequently, surveillance is labor
intensive and time-consuming. As the number of surgical proce-
dures continues to rise, the total time spent on surveillance likely
will increase as well.9

The objective of this study was to develop an algorithm for the
surveillance of deep SSIs after colorectal surgery to reduce the
number of medical records that require full manual review.
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Methods

Study design

This retrospective cohort study was conducted in the Amphia
Hospital (Breda, The Netherlands), a teaching hospital that partic-
ipates in the national HAI surveillance program. Medical records
of all patients who undergo colorectal surgery are manually
reviewed by trained infection control practitioners for the identi-
fication of deep SSI. Deep SSIs are defined according to the Centers
for Disease Control and Prevention (CDC) criteria and comprise
deep incisional and organ/space infections that manifest within 30
days after surgery.8 Postoperative complications that developed
after discharged were either reported when the patient was referred
back to the hospital or during a postoperative outpatient clinic visit
~30 days after surgery. For the present analysis, we used surveil-
lance data from January 2012 through December 2015. Infection
surveillance was performed by the same infection control practi-
tioners throughout the entire study period. A multidisciplinary
group of infection control practitioners, surgeons, and clinical
microbiologists discussed cases to reach consensus on the diagno-
sis when necessary.

Patients who were categorized as having a contaminated wound
at the time of the surgical procedure (ie, wound class 4) were
excluded because these wounds were already infected at the time
of the surgical procedure. Demographic and clinical patient data
and data on the surgical procedure were collected by manual chart
review, except for data on postoperative use of antibiotics and diag-
nostic radiological procedures, which were automatically extracted.

We designed the analysis by following the TRIPOD statement
for prediction modeling.10 Candidate model predictors were
selected based on literature and included known risk factors or out-
comes for deep SSI.3,11,12,13 One predictor was selected for every 10
events. The administration of preoperative oral and perioperative
intravenous antibiotic prophylaxis, American Society of
Anesthesiologists (ASA) score classification, wound class, level
of emergency, blood loss during the procedure, surgical technique
were selected as preoperative and operative candidate predictors.
Preoperative oral antibiotic prophylaxis comprised a 3-day course
of colistin and tobramycin. Perioperative intravenous prophylaxis
was administered according to the national guideline.14 Surgical
technique was categorized into open, laparoscopic, and robotic
laparoscopic procedures. Laparoscopic procedures that were con-
verted to open were categorized as open procedures. The postop-
erative predictors length of stay, hospital readmission, reoperation,
mortality, and in-hospital antibiotic use and abdominal radiologic
procedures were assessed 30 days after the primary surgical pro-
cedure. Data on 30-day mortality were collected from the hospital
database.

Statistical analysis

Univariable associations between baseline characteristics and can-
didate predictors and deep SSI were estimated using the Student t
test or the Mann-Whitney U test for continuous variables, and the
Fisher exact or χ2 test for categorical variables. We analyzed miss-
ing data by comparing patients with complete data with patients
who had 1 or more missing values in the outcome or in the model
predictors. Missing data were subsequently imputed usingmultiple
imputation by chained equations (MICE), and 10 datasets were
created.15 Predictive mean matching and logistic regression were
used as imputation techniques for continuous and binary variables,
respectively. Rubin’s rule was applied to calculate pooled results.16

We built the model using multivariable logistic regression analysis
with backward selection. The Akaike information criterion (AIC)
was used to determine whether the model fit could be improved by
deleting predictors. Predictors were deleted until the AIC could not
be further reduced. The final model was validated internally with
bootstrapping to correct for optimism (500 samples).17

We determined discriminatory power and calibration to evalu-
ate the statistical performance of the model.18,19 Discrimination
was defined as the area under the receiver operating characteristic
(ROC) curve (AUC). Calibration of the model was tested by plot-
ting the predicted probabilities against the observed outcomes in
the cohort. The final step was to evaluate the clinical applicability
of the model. A predicted probability threshold was selected cor-
responding to an excellent sensitivity and an acceptable specificity
to ensure that the vast majority of cases would be detected. When
the individual predicted probabilities exceeded the predefined
threshold, the model identified the medical record as having had
a high probability for deep SSI, and the medical record was kept
for full manual review. Not exceeding the threshold led to imme-
diate classification of the record as ‘no deep SSI.’ At the threshold,
the associated sensitivity, specificity, positive predictive value, and
negative predictive value were calculated. As an exploratory analy-
sis, we also assessed the diagnostic performance of the strongest
predictor. P < .05 (2-sided) was considered statistically significant.
All statistical analyses were performed using R version 1.0.143.20

Results

In total, 1,717 patients underwent colorectal surgery in the study
period, of whom 111 (6.5%) with a contaminated wound (wound
class 4) were excluded. Of the 1,606 remaining patients, 129
patients acquired a deep SSI (8.0%). Baseline characteristics are
presented in Table 1. The median age was 68 years and 55.7%
of patients were male. Compared with patients without SSI,
patients who acquired an SSI less frequently received prophylactic
oral antibiotics before surgery (44.2% vs 60.3%); more frequently
had ASA scores of ≥2 (43.1% vs 28.7%); and had increased risks of
reoperation (79.1% vs 6.1%), readmission (24.8% vs 8.9%), and
death (8.5% vs 2.3%). Baseline characteristics for patients with
complete data and for patients with 1 or more missing values
are shown in Supplementary Table 1 online. Moreover, 109
(6.8%) were missing data for at least 1 of the covariables (6.8%)
Patients with complete data differed significantly from those with
missing data, which supported the use of multiple imputation to
reduce the risk of bias due to missing data.

The final diagnostic model, including bias-corrected estimates,
is shown in Table 2. The predictors retained in the model after
backward selection were wound class, reoperation, readmission,
length of stay, and death. The prediction rule is illustrated in
Supplementary Fig. 1 online. The discriminatory power of the final
model was 0.950 (95% CI, 0.932–0.969) (Fig. 1A), with good cal-
ibration (Fig. 1B). The calibration slope that was used to shrink the
estimates was 0.978, indicating slight overprediction of the model
before bootstrapping. To assess the clinical applicability of the
model (Fig. 2), we compared complete chart review with the results
produced by the final model when we used 3 different predicted
probability thresholds.

At the predicted probability threshold of 0.015, the model had
a 98.5% sensitivity, 68.7% specificity, 21.5% positive predictive
value, and 99.8% negative predictive value for predicting deep
SSI (Table 3). The number of medical records that required
manual review was reduced from 100% to 36.7% (from 1,606
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to 590 records). Finally, the diagnostic performance of the strong-
est predictor (reoperation) was evaluated. Reoperation was
strongly associated with deep SSI and had good discriminatory
power (AUC, 0.865; 95% CI, 0.829–0.901), with 79.1% sensitivity,
93.7% specificity, 53.1% positive predictive value, and 98.1% neg-
ative predictive value. With this single predictor, the number of
charts to review manually was reduced to 11.9% (from 1,606 to
192 records).

Discussion

We developed a 5-parameter diagnostic model that was able to
identify 98.5% of all deep SSIs with a 99.8% negative predictive
value. Use of the model could reduce the number of medical
records that required full manual review from 1,606 (100%) to
590 (36.7%), at the cost of 2 missed deep SSIs (1.6%). Increasing
the predicted probability threshold would allow for further reduc-
tion of workload but would also increase the likelihood of missed
SSIs. Using only reoperation to detect deep SSI, the number of
medical records for complete manual review was substantially
reduced, although this method is associated with a higher false-
negative rate and lower discriminatory power compared to the full
model. Nevertheless, we suggest that reoperation should be
included as amodel parameter when new algorithms are developed
for colorectal SSI surveillance. We set the model threshold at an
excellent sensitivity so that it could detect a high percentage of
patients with SSI. The trade-off for this high sensitivity was a rel-
atively high rate of false positives due to a moderate specificity,
which we accepted because the model would be used to identify
the patients with a high probability of SSI whose records would
then be reviewed. Thus, the lower specificity would not affect case
finding. Themoderate false-positive rate decreases the efficiency of
the model. However, SSI surveillance that uses the model to iden-
tify patients whose records need to be reviewed will be more effi-
cient than reviewing every patient’s record. Because this model
has a high sensitivity, it could be used for quality improvement
purposes and for benchmarking.

Previous studies of drain-related meningitis,22 bloodstream
infections,23 and SSI after orthopedic procedures24 found that algo-
rithms performed well compared withmanual surveillance. For the

Table 1. Baseline Characteristics (Before Imputation)

Variable
No SSI (n=1,477),

No. (%)a
SSI (n=129),
No. (%)a

P
Valueb

Patient characteristics

Age, y (IQR) 68 (60–76) 67 (60–75) .583

Male 823 (55.7) 72 (55.8) .912

BMI, kg/m3 (IQR)c 25 (23–28) 25 (23–28) .076

Preoperative oral antibiotic
prophylaxis

891 (60.3) 57 (44.2) <.001

ASA classification >2c 400 (28.7) 53 (43.1) <.001

Wound class

Clean contaminated
(class 2)

1,355 (91.7) 112 (86.8) .082

Contaminated (class 3) 122 (8.3) 17 (13.2)

Blood loss (mL) 3 (1–56) 24 (1–60) .175

Normothermia 1,049 (91.9) 95 (91.3) .981

Implant of nonhuman
tissue

4 (0.3) 1 (0.8) .871

Perioperative antibiotic
prophylaxisc

1,402 (95.7) 119 (93.7) .411

Colorectal malignancy 1,112 (75.3) 90 (69.8) .201

Surgery in preceding year 169 (11.4) 13 (10.1) .746

Experienced surgeond 1,150 (77.9) 88 (68.2) .017

Multiple surgical
procedurese

282 (19.1) 29 (22.5) .414

Surgical approachc

Open 729 (49.6) 80 (62.0) .022

Conventional laparoscopic 530 (36.1) 33 (25.6)

Robotic laparoscopic 211 (14.4) 16 (12.4)

Duration of surgery >75th
percentilef

358 (24.2) 35 (27.1) .531

Level of emergency

Acute 52 (3.5) 8 (6.2) .194

Elective 1,425 (96.5) 121 (93.8)

Postoperative course, 30 d after the procedureg

Reoperation 90 (6.1) 102 (79.1) <.001

Readmission 132 (8.9) 32 (24.8) <.001

ICU admission 127 (8.6) 67 (51.9) <.001

Death 34 (2.3) 11 (8.5) <.001

Length of stay,d 7 (5-11) 24 (13-38) <.001

Abdominal radiological
examinationh

122 (8.3) 45 (34.9) <.001

Antibiotic used 241 (16.3) 70 (54.3) <.001

Note. ICU, intensive care unit; IQR, interquartile range; SSI, surgical site infection; BMI, body
mass index.
aData are presented as no. (%) or median (IQR).
bP values are the estimated univariable associations between the variable and deep SSI.
c% missing data: ASA classification, 5.5%; perioperative antibiotic prophylaxis, 0.85%;
surgical approach, 0.44%; BMI, 1.75%.
dPerformed at least 25 colorectal surgical procedures in 1 year.
eMultiple surgical incisions during the same surgical procedure, excludes creation of ostomy.
f75th percentiles of duration of surgery accounting for the n type of resection and for the
surgical approach, according to PREZIES reference values.21
gEvaluation of the postoperative outcomes occurred 30 d after the index procedure.
hStarting 48 h after the primary procedure.

Table 2. Final Model for the Prediction of Deep SSIa

Predictor

Model Estimates

OR 95% CI

Wound class

Clean-contaminated
(class 2)

Reference Reference

Contaminated (class 3) 2.25 0.95–4.88

Hospital readmission 3.97 1.92–7.72

Reoperation 26.20 13.95–14.43

Postoperative length of stay, d 1.07 1.05–1.09

Death 3.09 1.23–7.57

Note. CI, confidence interval; OR, odds ratio; SSI, surgical site infection.
aFinal logistic regression model after backward selection on Akaike information criterion
Intercept:−5.234. ORs and CIs were corrected for optimismby bootstrapping (2,000 samples).
The following predictors were not retained in the model: ASA classification, level of
emergency, preoperative oral antibiotic prophylaxis, blood loss during surgery, surgical
approach, administration of antibiotics and the requests for radiology of the abdomen. All
patients (n= 1,616) had complete data for all 5 parameters.
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surveillance of SSIs after gastrointestinal surgery, algorithms have
been developed using several approaches, such as Bayesian net-
work modelling (AUC, 0.89),25 logistic regression modeling
(AUC, 0.89),26 or machine learning (AUC, 0.82).27

We made several efforts to secure generalizability and validity of
our findings.We aimed to take an objective approach inmodel devel-
opment by selecting predictors on theoretical grounds exclusively
and by performing backward selection using the statistical model
fit. Subsequently, the model was internally validated and, as such,
we attempted to reduce the risk of overprediction.We obtained com-
plete data on the outcome with the reference standard, and we did
not change the definition of SSI the during the study period, which
prevents selection bias due to partial verification.

Several limitations should be addressed. The use of routine care
data as well as retrospective data collection is inevitably associated
withmissing information. Proper handling of missing data reduces
the risk of bias and improves precision. We applied multiple

imputation (MICE) to handle the missing data, which has been
demonstrated previously to improve the performance of auto-
mated detection of SSI.27 When this model is used in clinical prac-
tice, missing data cannot be dealt with using the same method,
which is an issue with applying prediction models in general. In
the case of missing values, the model cannot calculate a predicted
probability. Using backward selection in algorithm development,
the number of parameters is reduced which also limits the amount
of information needed for adequate diagnostic performance. As
such, the clinical applicability will be enhanced because the risk
of missing values is reduced. We had no missing data in any of
the model covariables; thus, we expect that missing data will not
be an important issue when the algorithm is applied in clinical
practice.

Another limitation is that the model was developed on data
derived from a single hospital. The parameters in the final model
should be available in most medical records. Hospitals wishing to

Fig. 1. Statistical model performance. A. ROC curve with discriminatory power expressed as AUC (AUC, 0.950; 95% CI, 0.932–0.969). B. Calibration plot of the model.
Calibration refers to the correspondence between the probability of SSI predicted by the model and the actual probability of infection. The diagonal line represents
perfect (ideal) calibration; the dotted line represents the actual calibration; and the black line represents calibration after bootstrapping. The slope of the linear
predictor was 0.978, indicating slight overprediction before bootstrapping. Note. ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence
interval; SSI, surgical site infection.

Fig. 2. Clinical applicability of the prediction
model. Manual screening of all files is compared
with screening a subset of files that are prese-
lected by the prediction model. Three scenarios
with different cutoffs in predicted probability for
SSI are presented. When the predicted probabil-
ity for a patient exceeds the cutoff value, the
patient file will be identified as a possible SSI
and will be retained for manual review. If the
threshold is not exceeded, the patient file will
be discarded immediately. The solid bars
represent the files that are manually screened;
the striped bars represent the files that are dis-
carded. When the predicted probability cut off
increases, the number of files that need to be
reviewed manually decreases. The number of
missed SSI cases (ie, false negatives) will
increase. Note. P(SSI), predicted probability for
surgical site infection.
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validate the algorithm in their colorectal surgical population
should therefore ensure that all of the parameters are available elec-
tronically. Also, external validation is essential before the model
can be applied in practice. Ideally, data derived from multiple hos-
pitals are used to confirmmodel performance in other settings and
future studies may also investigate less data-driven methods of
model development for semiautomated surveillance.

In conclusion, we developed a 5-parameter diagnostic model
that identified 98.5% of the patients who acquired a deep SSI
and reduced the number of medical records requiring complete
manual screening by 63.4%. These results can be used to develop
semiautomatic surveillance of deep SSIs after colorectal surgery.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/ice.2019.36
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