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Abstract Let 1 � p, q � ∞, s ∈ R and let X be a Banach space. We show that the analogue of
Marcinkiewicz’s Fourier multiplier theorem on Lp(T) holds for the Besov space Bs

p,q(T; X) if and only
if 1 < p < ∞ and X is a UMD-space. Introducing stronger conditions we obtain a periodic Fourier
multiplier theorem which is valid without restriction on the indices or the space (which is analogous to
Amann’s result (Math. Nachr. 186 (1997), 5–56) on the real line). It is used to characterize maximal
regularity of periodic Cauchy problems.
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1. Introduction

In a series of recent publications, operator-valued Fourier multiplier theorems on diverse
vector-valued function spaces have been studied (see, for example, [1,3–5,10,11,13,14,
19,22–24]). They are needed to establish existence and uniqueness as well as regularity
for differential equations in Banach spaces, and thus also for partial differential equations.

Besov spaces form one class of function spaces which are of special interest. They can
be defined via dyadic decomposition and form scales Bs

p,q carrying three indices s ∈ R,
1 � p, q � ∞. The relatively complicated definition is justified by very useful applications
to differential equations (see, for example, [2] for a concrete and important model). Note
also that the space Bs

∞,∞ is nothing else but the familiar space of all Hölder continuous
functions of index s if s ∈ (0, 1).

It was Amann [1] (see also [22]) who discovered another favourable property of vector-
valued Besov spaces on the real line: a certain form of the (most efficient) Mikhlin’s
multiplier theorem does hold for arbitrary Banach spaces (see [13] for refinements). This
is a dramatic contrast to the Lp-scale, where the corresponding theorem merely holds for
Hilbert spaces even if p = 2 (see [4] for details). Whereas Amann and Girardi and Weis

15

https://doi.org/10.1017/S0013091502000378 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091502000378


16 W. Arendt and S. Bu

consider Besov spaces on R, we are here interested in the periodic case. There are several
reasons for this investigation. First of all, the periodic Besov spaces are much easier to
define and to handle. Moreover, they are natural for periodic problems. Frequently, more
general problems can also be reduced to this case (as in the case of classical Lp-regularity
(see [3, Corollary 5.2])). Whereas scalar periodic Besov spaces have been studied by
Triebel [20] and Schmeisser and Triebel [18], we believe that this paper represents the
first work on vector-valued periodic Besov spaces, and it seems that Fourier multipliers
on periodic Besov spaces have not previously appeared in the literature even in the scalar
case.

There are several possibilities concerning the conditions to impose on a sequence in the
attempt to establish a periodic Fourier multiplier theorem. It is interesting that success
depends on the choice of the index p and on the Banach space X. We explain this in
more detail. In view of the classical result, we say that a sequence (Mk)k∈Z of operators
on a Banach space X satisfies the variational Marcinkiewicz condition if

sup
k∈Z

‖Mk‖ + sup
j�0

∑
2j�|k|�2j+1

‖Mk+1 − Mk‖ < ∞. (1.1)

If X = C, then Marcinkiewicz’s classical theorem says that such a sequence is an Lp(T, C)-
Fourier multiplier for 1 < p < ∞. Our first main result states that each sequence sat-
isfying (1.1) is a Bs

p,q(T, X)-Fourier multiplier if and only if 1 < p < ∞ and X is a
UMD-space (where 1 � q � ∞ and s ∈ R are arbitrary). In particular, even in the scalar
case there are sequences satisfying (1.1) which are not Fourier multipliers on the periodic
Hölder spaces.

The following stronger condition was introduced in [3] in the Lp-context:

sup
k∈Z

(‖Mk‖ + ‖k(Mk+1 − Mk)‖) < ∞. (1.2)

Here one may consider Mk+1 − Mk as the first derivative of the sequence (and con-
dition (1.2) becomes analogous to Mikhlin’s condition on the line). Taking the second
derivative leads to the condition

sup
k∈Z

‖k2(Mk+2 − 2Mk+1 + Mk)‖ < ∞. (1.3)

We call (1.2) Marcinkiewicz’s condition of order 1. Moreover, we speak of Marcinkiewicz’s
condition of order 2 if (1.2) as well as (1.3) are satisfied. It is clear that condition (1.2)
is stronger than the variational Marcinkiewicz condition.

In § 4 we show that the Marcinkiewicz condition of order 1 implies that (Mk)k∈Z is a
Bs

p,q(T; X)-Fourier multiplier for every s ∈ R and every 1 � p, q � ∞ whenever X has a
non-trivial Fourier type. This is analogous to the result of Girardi and Weis [13] on the
real line. For arbitrary Banach spaces the Marcinkiewicz condition of order 2 is sufficient
without restriction to the indices and the space. This is the periodic version of Amann’s
result [1] on the line.

Even though the Marcinkiewicz condition of order 2 is stronger than the variational
Marcinkiewicz condition, in the context of resolvents, it is characteristic. In fact, given
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an operator A on a Banach space X such that iZ ⊂ ρ(A), we show that (k(ik −A)−1)k∈Z

is a Bs
p,q(T; X)-Fourier multiplier if and only if the sequence is bounded. In view of the

resolvent identity this is precisely the Marcinkiewicz condition of order 2. This result can
be reformulated in terms of well-posedness of the periodic Cauchy problem:

Pper

{
u′(t) = Au(t) + f(t),

u ∈ B1+s
p,q (T, X) ∩ Bs

p,q(T, D(A)),

where f ∈ Bs
p,q(T, X). The study of this and similar problems is another motivation of

our investigation.
We are only interested in the study of Bs

p,q(T; X) for 1 � p, q � ∞. It is possible to
do this with all −∞ < p, q � ∞ and even for T

n in place of T, but the notation would
be more complicated. If S is a set and I is an index set, the notation (si)i∈I ⊂ S means
that for each i ∈ I, we have si ∈ S.

2. Periodic Besov spaces

Let X be a Banach space and let T = [−π, π], where the points −π and π are iden-
tified. Let D(T) be the space of all complex-valued infinitely differentiable functions
on T. The usual locally convex topology in D(T) is generated by the semi-norms
‖f‖α = supt∈T

|f (α)(t)|, where α ∈ N ∪ {0}. We let D′(T; X) := L(D(T); X). In other
words, D′(T; X) is the set of all linear mappings T from D(T) to X such that

‖T (f)‖X � C
∑
α�N

‖f‖α

for all f ∈ D(T) and for some N ∈ N and C > 0 independent of f . Elements in D′(T; X)
are called X-valued distributions on T. We use the weak topology on D′(T; X), i.e. a
sequence Tk converges to T in D′(T; X) if and only if limk→∞ Tk(f) = T (f) for all
f ∈ D(T).

Let 1 � p � ∞. For g ∈ Lp(T; X) let

‖g‖p =
(∫ π

−π

‖g(t)‖p dt

2π

)1/p

, if 1 � p < ∞,

‖g‖∞ = ess sup
t∈T

‖g(t)‖.

Each element g ∈ Lp(T; X) can be interpreted in a natural way as an element of D′(T; X),
as in the scalar case. Let ek be the function ek(t) = eikt for k ∈ Z and t ∈ T. For
x ∈ X, we denote by ek ⊗ x the X-valued function (ek ⊗ x)(t) = ek(t)x. We then have
ek ⊗ x ∈ D′(T; X).

Recall that a sequence (ak)k∈Z ⊂ X is of at most polynomial growth if there exist
c, N > 0 such that for k ∈ Z, we have ‖ak‖ � c(1 + |k|)N . We have the following
characterization of D′(T; X). The proof is similar to the scalar case [12, Chapter 12].
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Proposition 2.1. Let (ak)k∈Z ⊂ X be of at most polynomial growth. Then

g(φ) =
+∞∑

k=−∞
φ̂(k)ak

converges for all φ ∈ D(T) and defines a distribution g ∈ D′(T, X). We write

g =
∞∑

k=−∞
ek ⊗ ak.

Conversely, each distribution g ∈ D′(T, X) is of this form with ak = g(ek).

Let g ∈ D′(T; X) and
g =

∑
k∈Z

ek ⊗ ak

as in Proposition 2.1. Then we call ĝ(k) := ak the kth Fourier coefficient of g. We say
that g is an X-valued trigonometric polynomial if there exist N ∈ N and ak ∈ X such
that

g =
N∑

k=−N

ek ⊗ ak.

Let S be the Schwartz space on R and let S ′ be the space of all tempered distributions
on R. Let Φ(R) be the set of all systems φ = (φj)j�0 ⊂ S satisfying

supp(φ0) ⊂ [−2, 2],

supp(φj) ⊂ [−2j+1,−2j−1] ∪ [2j−1, 2j+1], j � 1,∑
j�0

φj(t) = 1, t ∈ R,

and for α ∈ N ∪ {0}, there exists Cα > 0 such that

sup
j�0, x∈R

2αj‖φ
(α)
j (x)‖ � Cα. (2.1)

The set Φ(R) is not empty [20, Remark 1, p. 45] (see also Lemma 4.1 below).
Let 1 � p, q � ∞, s ∈ R and φ = (φj)j�0 ∈ Φ(R). We define the X-valued periodic

Besov spaces by

Bs,φ
p,q (T; X) :=

{
f ∈ D′(T; X) : ‖f‖Bs,φ

p,q
=

(∑
j�0

2sjq

∥∥∥∥ ∑
k∈Z

ek ⊗ φj(k)f̂(k)
∥∥∥∥

q

p

)1/q

< ∞
}

,

with the usual modification when q = ∞.
Note that for f ∈ D′(T; X) and j � 0,∑

k∈Z

ek ⊗ φj(k)f̂(k)
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is a trigonometric polynomial by Proposition 2.1. So∥∥∥∥ ∑
k∈Z

ek ⊗ φj(k)f̂(k)
∥∥∥∥

p

< ∞ for 1 � p � ∞.

We can identify Bs,φ
p,q (T; X) with the space of all sequences (ak)k∈Z in X such that(

2sjq

∥∥∥∥ ∑
k∈Z

ek ⊗ φj(k)ak

∥∥∥∥
p

)
j�0

∈ �q.

This shows that ‖ · ‖Bs,φ
p,q

is a norm and that Bs,φ
p,q (T, X) is complete.

We begin by proving a result on operator-valued Fourier multipliers on Lp(T; X) which
will enable us to show the equivalence of the norms ‖ · ‖Bs,φ

p,q
for different φ ∈ Φ(R). Let X

and Y be Banach spaces. We denote by L(X; Y ) the set of all bounded linear operators
from X to Y . When X = Y , we will simply denote it by L(X). For f ∈ L1(R; L(X, Y )),
we denote by Ff , given by

(Ff)(t) =
1√
2π

∫
R

e−istf(s) ds (t ∈ R),

the Fourier transform of f .

Proposition 2.2. Let X and Y be Banach spaces. For every M ∈ Cc(R; L(X; Y )) ∩
FL1(R; L(X, Y )) and 1 � p � ∞, we have∥∥∥∥ ∑

k∈Z

ek ⊗ M(k)f̂(k)
∥∥∥∥

p

� 1√
2π

‖F−1M‖1‖f‖p

whenever f is an X-valued trigonometric polynomial, where F−1 denotes the inverse
Fourier transform.

Proof. We have∑
k∈Z

ek(t)M(k)f̂(k) =
∑
k∈Z

(FF−1M)(k)f̂(k)eikt

=
1√
2π

∫
R

(F−1M)(y)
[∑

k∈Z

f̂(k)eik(t−y)
]

dy

=
1√
2π

∫
R

(F−1M)(y)f(t − y) dy

=
1√
2π

(F−1M) ∗ f(t).

The claim now follows from Young’s inequality. �

Notice that for M ∈ L1(R; L(X; Y )) and a > 0, we have ‖F−1M‖1 = ‖F−1M(a·)‖1. If
M ∈ W 2

1 = {f ∈ L2(R) : f ′ ∈ L2(R)} with the natural norm ‖f‖W 2
1

= (‖f‖2
2 +‖f ′‖2

2)
1/2,

then F−1M ∈ L1(R) and there exists a numerical constant C > 0 such that

‖F−1M‖1 � C‖M‖W 2
1
.
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Let φ, ϕ ∈ Φ(R), f ∈ D′(T; X), 1 � p � ∞ and j � 1. We have supp(φj(2j ·)) ⊂
[−2,− 1

2 ] ∪ [ 12 , 2]. By (2.1), supj�1 ‖φj(2j ·)‖W 2
1

< ∞. Thus, by Proposition 2.2,∥∥∥∥ ∑
k∈Z

ek ⊗ φj(k)f̂(k)
∥∥∥∥

p

�
∑

l=j−1,j,j+1

∥∥∥∥ ∑
k∈Z

ek ⊗ φj(k)ϕl(k)f̂(k)
∥∥∥∥

p

� 1√
2π

‖F−1φj‖1

∑
l=j−1,j,j+1

∥∥∥∥ ∑
k∈Z

ek ⊗ ϕl(k)f̂(k)
∥∥∥∥

p

� 1√
2π

‖F−1φj(2j ·)‖1

∑
l=j−1,j,j+1

∥∥∥∥ ∑
k∈Z

ek ⊗ ϕl(k)f̂(k)
∥∥∥∥

p

� C√
2π

‖φj(2j ·)‖W 2
1

∑
l=j−1,j,j+1

∥∥∥∥ ∑
k∈Z

ek ⊗ ϕl(k)f̂(k)
∥∥∥∥

p

� C ′
∑

l=j−1,j,j+1

∥∥∥∥ ∑
k∈Z

ek ⊗ ϕl(k)f̂(k)
∥∥∥∥

p

for f ∈ D′(T; X), where C ′ is a constant independent of f and j.
By the definition of Φ(R), we have supp(φ0) ⊂ [−2, 2], so supp(φ0) ∩ supp(φj) = ∅

when j � 2. Hence there exists C ′′ > 0 such that∥∥∥∥ ∑
k∈Z

ek ⊗ φ0(k)f̂(k)
∥∥∥∥

p

� C ′′
(∥∥∥∥ ∑

k∈Z

ek ⊗ ϕ0(k)f̂(k)
∥∥∥∥

p

+
∥∥∥∥ ∑

k∈Z

ek ⊗ ϕ1(k)f̂(k)
∥∥∥∥

p

)
.

We deduce that there exists a constant α > 0 independent of f such that

‖f‖Bs,φ
p,q

� α‖f‖Bs,ϕ
p,q

(2.2)

for f ∈ D′(T; X). Thus the space Bs
p,q(T; X) is independent of φ ∈ Φ(R) and the norms

‖ · ‖Bs,φ
p,q

are equivalent. We will simply denote Bs,φ
p,q (T; X) by Bs

p,q(T; X), and ‖ · ‖Bs,φ
p,q

by ‖ · ‖Bs
p,q

for some φ ∈ Φ(R).
The following theorem summarizes some useful properties of Bs

p,q(T; X). Here ↪→
denotes that the natural injection is a continuous linear operator.

Theorem 2.3.

(i) Bs
p,q(T; X) is a Banach space. Furthermore, when p, q < ∞, the set of all X-valued

trigonometric polynomials is dense in Bs
p,q(T; X).

(ii) If s > 0, then Bs
p,q(T; X) ↪→ Lp(T; X).

(iii) One has

Bs
p,q0

(T; X) ↪→ Bs
p,q1

(T; X), q0 � q1, 1 � p � ∞,

Bs+ε
p,q0

(T; X) ↪→ Bs
p,q1

(T; X), ε > 0, 1 � q0, q1, p � ∞.
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(iv) Let 1 � p, q0, q1, q � ∞, s0, s1 ∈ R, s0 �= s1, 0 < θ < 1 and s = θs1 + (1 − θ)s0.
Then

(Bs0
p,q0

(T; X), Bs1
p,q1

(T; X))θ,q = Bs
p,q(T; X).

(v) The lifting property: let f ∈ D′(T; X) and α ∈ R. Then f ∈ Bs
p,q(T; X) if and only

if ∑
k �=0

ek ⊗ (ik)αf̂(k) ∈ Bs−α
p,q (T; X).

(vi) Let s > 0. Then f ∈ B1+s
p,q (T; X) if and only if f is differentiable a.e. and

f ′ ∈ Bs
p,q(T; X).

Proof. Parts (i), (ii) and (iii) follow easily from the definition of periodic Besov spaces.
Part (iv) follows by the same argument as in the scalar Besov spaces case [20, Theo-
rem 2.4.2, p. 64]. We will only give the proof for (v) and (vi).

Let f ∈ Bs
p,q(T; X) and let φ = (φj)j�0 ∈ Φ(R). Let ϕ ∈ S be such that ϕ(t) = 1 for

1/2 � |t| � 2 and supp(ϕ) ⊂ [14 , 4] ∪ [−4,− 1
4 ]. Then by Proposition 2.2 for j � 1:∥∥∥∥ ∑

k �=0

ek ⊗ φj(k)(ik)αf̂(k)
∥∥∥∥

p

=
∥∥∥∥ ∑

2j−1�|k|�2j+1

ek ⊗ (ik)αφj(k)ϕ(2−jk)f̂(k)
∥∥∥∥

p

� ‖F−1(x → ϕ(2−jx)(ix)α)‖1

∥∥∥∥ ∑
k∈Z

ek ⊗ φj(k)f̂(k)
∥∥∥∥

p

= 2jα‖F−1(x → ϕ(2−jx)(2−j ix)α)‖1

∥∥∥∥ ∑
k∈Z

ek ⊗ φj(k)f̂(k)
∥∥∥∥

p

� 2jαC‖(x → ϕ(x)(ix)α)‖W 2
1

∥∥∥∥ ∑
k∈Z

ek ⊗ φj(k)f̂(k)
∥∥∥∥

p

� C ′2jα

∥∥∥∥ ∑
k∈Z

ek ⊗ φj(k)f̂(k)
∥∥∥∥

p

,

where C ′ depends only on ϕ and α. This implies that∑
k �=0

ek ⊗ kαf̂(k) ∈ Bs−α
p,q (T; X).

Since α ∈ R is arbitrary, we have proved (v).
Now let f ∈ B1+s

p,q (T; X). Then (v) implies that∑
k �=0

ek ⊗ kf̂(k) ∈ Bs
p,q(T; X).

By (ii) the functions f and
∑

k �=0 ek ⊗ kf̂(k) belong to Lp(T; X). So by Lemma 2.1 of [3],
f is differentiable a.e. and

f ′(t) =
∑
k �=0

ek ⊗ ikf̂(k).
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This shows one implication of (vi). Conversely, assume that g ∈ Bs
p,q(T; X) for some

s > 0, g is differentiable a.e. and g′ ∈ Bs
p,q(T; X). Then∑

k �=0

ek ⊗ ikĝ(k) ∈ Bs
p,q(T; X).

Now (v) implies that g ∈ B1+s
p,q (T; X). �

3. Sobolev–Lebesgue spaces

In this section we will see that the periodic Besov spaces Bs
p,q(T; X) contain several

classical periodic function spaces as special cases.
We let

C(T; X) := {f : T → X : f is continuous},

‖f‖C(T;X) := sup
t∈T

‖f(t)‖.

For m ∈ N, we denote by Cm(T, X) the space of all m-times continuously differentiable
functions f with the norm

‖f‖Cm(T;X) :=
∑
α�m

‖f (α)‖C(T;X).

For s > 0, let s = s1 + s2, where s1 ∈ Z and 0 � s2 < 1. Then, if s /∈ Z,

Cs(T; X) :=
{

f ∈ Cs1(T; X) : sup
x�=y, x,y∈T

‖fs1(x) − fs1(y)‖
|x − y|s2

< ∞
}

,

‖f‖Cs(T;X) := ‖f‖Cs1 (T;X) + sup
x�=y, x,y∈T

‖fs1(x) − fs1(y)‖
|x − y|s2

.

Let 1 � p < ∞, m ∈ N. Then the periodic Sobolev spaces are defined by

W p
m(T; X) := {f ∈ Lp(T; X) : f (α) ∈ Lp(T; X) for all α � m},

‖f‖W p
m(T;X) :=

∑
α�m

‖f (α)‖p.

Furthermore, we let W p
0 (T; X) = Lp(T; X). Let s = [s] + {s} with [s] ∈ N ∪ {0}, 0 <

{s} � 1. If f is defined on T and extended 2π-periodically on R, then we define

(∆1
hf)(x) := f(x + h) − f(x), h, x ∈ T,

(∆2
hf)(x) := (∆1

hf)(x + h) − (∆1
hf)(x), h, x ∈ T.

We let

C
s(T; X) :=

{
f ∈ C [s](T; X) : sup

h∈T, h �=0
|h|−{s}‖∆2

hf ([s])‖C(T;X) < ∞
}

,

‖f‖Cs(T;X) = ‖f‖C[s] + sup
h∈T, h �=0

|h|−{s}‖∆2
hf ([s])‖C(T;X).
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Let s > 0, 1 � p, q < ∞. Then

Λs
p,q(T; X) :=

{
f ∈ W p

[s](T; X) :
∫

R

|h|−{s}q‖∆2
hf ([s])‖q

p

dh

|h| < ∞
}

,

‖f‖Λs
p,q

:= ‖f‖W p
[s](T;X) +

(∫
R

|h|−{s}q‖∆2
hf ([s])‖q

p

dh

|h|

)1/q

,

Λs
p,∞(T; X) :=

{
f ∈ W p

[s](T; X) : sup
h∈T, h �=0

|h|−{s}‖∆2
hf ([s])‖p < ∞

}
,

‖f‖Λs
p,∞ := ‖f‖W p

[s]
+ sup

h∈T, h �=0
|h|−{s}‖∆2

hf ([s])‖p.

Theorem 3.1.

(i) If s > 0, then Bs
∞,∞(T; X) = Cs(T; X).

(ii) If s > 0 and s /∈ N, then Bs
∞,∞(T; X) = Cs(T; X).

(iii) If 1 � p < ∞, 1 � q � ∞ and s > 0, then Bs
p,q(T; X) = Λs

p,q(T; X).

This is the periodic counterpart in the vector-valued case of [20, Theorem 2.5.7 p. 90].
The proof is similar. The main ingredients are (iv) of Theorem 2.3 and the continuous
embeddings

B0
∞,1(T; X) ↪→ C(T; X) ↪→ B0

∞,∞(T; X), (3.1)

Bm
∞,1(T; X) ↪→ Cm(T; X) ↪→ Bm

∞,∞(T; X) (m ∈ N), (3.2)

B0
p,1(T; X) ↪→ Lp(T; X) ↪→ B0

p,∞(T; X) (1 � p < ∞), (3.3)

Bm
p,1(T; X) ↪→ W p

m(T; X) ↪→ Bm
p,∞(T; X) (1 � p < ∞, m ∈ N). (3.4)

The embeddings (3.1) and (3.3) are easy to prove by using the definition of periodic
Besov spaces and Proposition 2.2. The embeddings (3.2) and (3.4) follow from (3.1) and
(3.3) and (v) of Theorem 2.3.

4. Fourier multipliers on Bs
p,q(T; X)

In this section we will establish Fourier multiplier theorems on Bs
p,q(T; X). We will see

that the most general Marcinkiewicz Theorem on periodic Lp-spaces [25, Theorem 4.14,
p. 232] is no longer true on Bs

p,q(T; X) when p = 1 or ∞ even if X = C. However, it
remains true in the operator-valued case for 1 < p < ∞ whenever the underlying Banach
space is a UMD-space. We will also show that under some stronger conditions (see (4.3)
and (4.4)), the Marcinkiewicz Theorem on periodic Besov spaces remains true in the
operator-valued case for all 1 � p, q � ∞, s ∈ R and for all Banach spaces.

We will use the following lemma.

Lemma 4.1. There exists a system φ = (φj)j�0 ∈ Φ(R) such that φj � 0 for j � 0
and φj(t) = 1 whenever j � 3 and |t| ∈ [7 · 2j−3, 3 · 2j−1].
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Proof. Let φ0 ∈ S be such that supp(φ0) = [−2, 2]. Let φ1 ∈ S be such that φ1 � 0,
supp(φ1) ⊂ [ 32 , 7/2] ∪ [− 7

2 ,− 3
2 ] and φ1(t) = 1 for t ∈ [2, 3] ∪ [−3,−2].

For j � 2, let φj = φ1(2−j+1·). Then for all t ∈ R, we have
∑

j�0 φj(t) �= 0. Let
ϕj = φj/

∑
k�0 φk. Then it is easy to verify that ϕ = (ϕj)j�0 ∈ Φ(R) and φj(t) = 1 for

|t| ∈ [7 · 2j−3, 3 · 2j−1] whenever j � 3. �

Let X and Y be Banach spaces and let (Mk)k∈Z ⊂ L(X; Y ). We will say that (Mk)k∈Z

is a Fourier multiplier from Bs
p,q(T; X) to Bs

p,q(T; Y ) if for each f ∈ Bs
p,q(T; X), there

exists g ∈ Bs
p,q(T, Y ) such that ĝ(k) = Mkf̂(k) for k ∈ Z. In this case, it follows from the

Closed Graph Theorem that there exists C > 0 such that for f ∈ Bs
p,q(T; X) we have∥∥∥∥ ∑

k∈Z

ek ⊗ Mkf̂(k)
∥∥∥∥

Bs
p,q

� C‖f‖Bs
p,q

.

The classical Marcinkiewicz Theorem on Fourier multipliers asserts that when a
sequence (mk)k∈Z ⊂ C is bounded and

sup
j�0

∑
2j�|k|�2j+1

|mk − mk−1| < ∞,

then (mk)k∈Z is a Fourier multiplier on Lp(T; C) for 1 < p < ∞ [25, Theorem 4.14,
p. 232]. We will consider operator-valued sequences (Mk)k∈Z ⊂ L(X; Y ) satisfying a
similar estimate, i.e.

sup
j�0

∑
2j�|k|�2j+1

‖Mk − Mk−1‖ < ∞, sup
k∈Z

‖Mk‖ < ∞. (4.1)

We call condition (4.1) the variational Marcinkiewicz condition.

Theorem 4.2. Let X be a Banach space and let s ∈ R. Then each sequence (Mk)k∈Z ⊂
L(X) satisfying (4.1) is a Fourier multiplier on Bs

p,q(T; X) if and only if 1 < p < ∞ and
X is a UMD-space.

Proof. Assume that each sequence (Mk)k∈Z ⊂ L(X) satisfying (4.1) is a Fourier
multiplier on Bs

p,q(T; X). Let φ = (φj)j�0 ∈ Φ(R) satisfying the conclusion of Lemma 4.1.
Let (Mk)k∈Z ⊂ L(X) be defined by Mk = I when |k| ∈ [7·2j−3, 2j ] for some j � 3, Mk = 0
otherwise. Then (Mk)k∈Z satisfies the condition (4.1). By our assumption, (Mk)k∈Z is a
Fourier multiplier on Bs

p,q(T; X). Then there exists C > 0 such that∥∥∥∥ ∑
k∈Z

ek ⊗ Mkf̂(k)
∥∥∥∥

Bs
p,q

� C‖f‖Bs
p,q

(4.2)

whenever f ∈ Bs
p,q(T; X). Let j � 3 be fixed and let f be an X-valued trigonometric

polynomial such that f̂(k) = 0 for k /∈ [7 · 2j−3, 3 · 2j−1]. By Lemma 4.1 φj(t) = 1 for
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t ∈ [7 ·2j−3, 3 ·2j−1]. We deduce that φk(t) = 0 for t ∈ [7 ·2j−3, 3 ·2j−1] and k �= j. Hence∥∥∥∥ ∑
k∈Z

ek ⊗ Mkf̂(k)
∥∥∥∥

q

Bs
p,q

= 2jsq

∥∥∥∥ ∑
k∈Z

ek ⊗ φj(k)Mkf̂(k)
∥∥∥∥

q

p

= 2jsq

∥∥∥∥
2j∑

k=7·2j−3

ek ⊗ f̂(k)
∥∥∥∥

q

p

and

‖f‖q
Bs

p,q
= 2jsq

∥∥∥∥
3·2j−1∑

k=7·2j−3

ek ⊗ f̂(k)
∥∥∥∥

q

p

.

It follows from this and (4.2) that∥∥∥∥
0∑

k=7·2j−3−2j

ek ⊗ xk

∥∥∥∥
p

� C

∥∥∥∥
2j−1∑

k=7·2j−3−2j

ek ⊗ xk

∥∥∥∥
p

for j � 3 and xk ∈ X. Thus the Riesz projection is bounded on Lp(T; X). We deduce
that 1 < p < ∞ and X is a UMD-space [7,9] (see also [21]).

Conversely, assume that 1 < p < ∞, 1 � q � ∞, s ∈ R, X is a UMD-space and
(Mk)k∈Z ⊂ L(X) satisfies (4.1). We will show that (Mk)k∈Z is a Fourier multiplier on
Bs

p,q(T; X). Let φ = (φj)j�0 ∈ Φ(R), j � 1, and f ∈ Bs
p,q(T; X). We have∥∥∥∥ ∑

k∈Z

ek ⊗ φj(k)Mkf̂(k)
∥∥∥∥

p

�
∥∥∥∥

2j+1∑
k=2j−1

ek ⊗ φj(k)Mkf̂(k)
∥∥∥∥

p

+
∥∥∥∥

−2j−1∑
k=−2j+1

ek ⊗ φj(k)Mkf̂(k)
∥∥∥∥

p

.

Let

Sn =
n∑

k=2j−1

ek ⊗ φj(k)f̂(k) for 2j−1 � n � 2j+1.

Since X is a UMD-space and 1 < p < ∞, the Riesz projection is bounded on Lp(T; X)
[7,9] (see also [21]). Thus∥∥∥∥

2j+1∑
k=2j−1

ek ⊗ φj(k)Mkf̂(k)
∥∥∥∥

p

=
∥∥∥∥

2j+1−1∑
k=2j−1

(Mk − Mk+1)Sk + M2j+1S2j+1

∥∥∥∥
p

�
2j+1−1∑
k=2j−1

‖Mk − Mk+1‖ ‖Sk‖p + ‖M2j+1‖ ‖S2j+1‖p

� C sup
2j−1�n�2j+1

∥∥∥∥
n∑

k=2j−1

ek ⊗ φj(k)f̂(k)
∥∥∥∥

p

� C ′
∥∥∥∥ ∑

k∈Z

ek ⊗ φj(k)f̂(k)
∥∥∥∥

p

,
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where C, C ′ are constants depending only on (Mk)k∈Z and the norm of the Riesz pro-
jection on Lp(T; X). Similarly we show that

∥∥∥∥
−2j−1∑

k=−2j+1

ek ⊗ φj(k)Mkf̂(k)
∥∥∥∥

p

� C ′
∥∥∥∥ ∑

k∈Z

ek ⊗ φj(k)f̂(k)
∥∥∥∥

p

.

Hence ∥∥∥∥ ∑
k∈Z

ek ⊗ φj(k)Mkf̂(k)
∥∥∥∥

p

� 2C ′
∥∥∥∥ ∑

k∈Z

ek ⊗ φj(k)f̂(k)
∥∥∥∥

p

.

On the other hand, it is obvious that there exists C ′′ > 0 depending only on (Mk)k∈Z

and (φj)j�0 such that∥∥∥∥ ∑
k∈Z

ek ⊗ φ0(k)Mkf̂(k)
∥∥∥∥

p

� C ′′
∥∥∥∥ ∑

k∈Z

ek ⊗ φ0(k)f̂(k)
∥∥∥∥

p

.

We deduce that there exists a constant C ′′′ > 0 such that∥∥∥∥ ∑
k∈Z

ek ⊗ Mkf̂(k)
∥∥∥∥

Bs
p,q

� C ′′′‖f‖Bs
p,q

,

i.e. (Mk)k∈Z is a Fourier multiplier on Bs
p,q(T; X). �

The case of Hölder continuous functions is of particular interest. We reformulate in
particular the ‘negative’ assertion of Theorem 4.2 which even holds in the scalar case.

Corollary 4.3. Let 0 < α < 1. Then there exists a sequence (Mk)k∈Z in C satisfying
the variational Marcinkiewicz condition (4.1), which is not a Fourier multiplier from
Cα

2π into Cα
2π, where Cα

2π denotes the space of all 2π-periodic and s-Hölder continuous
functions on R.

By the first part of the proof of Theorem 4.2, the scalar sequence (mk)k∈Z given by

mk =

⎧⎪⎨
⎪⎩

1, |k| ∈
⋃
j�3

[ 782j , 2j ],

0, otherwise,

satisfies the variational Marcinkiewicz condition (4.1), but it is not a Fourier multiplier
from Cα

2π into Cα
2π. Things are different if we consider an assumption that is slightly

stronger than (4.1). The following condition on sequences (Mk)k∈Z ⊂ L(X; Y ) was intro-
duced in [3] to study Fourier multipliers in the Lp-context:

sup
k∈Z

‖Mk‖ < ∞, sup
k∈Z

‖k(Mk+1 − Mk)‖ < ∞, (4.3)

sup
k∈Z

‖k2(Mk+1 − 2Mk + Mk−1)‖ < ∞. (4.4)
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It is easy to verify that condition (4.3) is stronger than condition (4.1).
Recall that a Banach space X has Fourier type r ∈ [1, 2] if there exists Cr > 0 such

that

‖Ff‖r′ � Cr‖f‖r, f ∈ Lr(R; X), (4.5)

where (1/r)+ (1/r′) = 1 [17], the smallest constant Cr in (4.5) is called the Fourier type
constant of X. The trivial estimate ‖Ff‖∞ � (1/

√
2π)‖f‖1 shows that each Banach space

has Fourier type 1. A Banach space has Fourier type 2 if and only if it is isomorphic to
a Hilbert space [15] (see also [16, pp. 73, 74]). A space Lq(Ω, Σ, µ) has Fourier type
r = min{q, q′} [17]. Each closed subspace and each quotient space of a Banach space X

has the same Fourier type as X. Bourgain has shown that each B-convex Banach space
(thus, in particular, each uniformly convex Banach space) has some non trivial Fourier
type r > 1 [6,8].

We will use the following lemma. Its proof is similar to that of Theorem 4.3 of [13]
and two ingredients are essential. The first one is the continuous injection W p

1 (R; X) ↪→
Bs

p,1(R; X) for p > 1, 0 < s < 1, where

W p
1 (R; X) := {f ∈ Lp(R; X) : f ′ ∈ Lp(R; X)}

equipped with the norm ‖f‖W p
1

= ‖f‖p + ‖f ′‖p, and Bs
p,q(R; X) is the X-valued Besov

space on R [1]. The second one is that when X has Fourier type r ∈ (1, 2], then the inverse
Fourier transform defines a bounded linear operator F−1 : B

1/r
r,1 (R; X) → L1(R; X) [13].

Lemma 4.4. Let X and Y be Banach spaces having Fourier type r ∈ (1, 2], 1 � p � ∞
and let M ∈ Cc(R; L(X, Y )) ∩ FL1(R; L(X, Y )). Then

∥∥∥∥ ∑
k∈Z

ek ⊗ M(k)f̂(k)
∥∥∥∥

p

� Cpηr(M)‖f‖p

whenever f ∈ Lp(T; X) is a trigonometric polynomial, where Cp is a constant
only depending on p and the Fourier type constants of X and Y , and ηr(M) :=
inf{‖M(a·)‖W r

1
: a > 0}.

Now we can prove the following general multiplier theorem.

Theorem 4.5.

(i) Let X and Y be arbitrary Banach spaces and let (Mk)k∈Z ⊂ L(X; Y ) be a sequence
satisfying conditions (4.3) and (4.4). Then for 1 � p, q � ∞, s ∈ R, (Mk)k∈Z is a
Fourier multiplier from Bs

p,q(T; X) to Bs
p,q(T; Y ).

(ii) Let X and Y be Banach spaces having Fourier type r ∈ (1, 2] and let (Mk)k∈Z ⊂
L(X; Y ) be a sequence satisfying condition (4.3). Then for 1 � p, q � ∞, s ∈ R,
(Mk)k∈Z is a Fourier multiplier from Bs

p,q(T; X) to Bs
p,q(T; Y ).
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Proof. Let (Mk)k∈Z ⊂ L(X; Y ) be fixed and let φ = (φj)j�0 ∈ Φ(R). In order to
show that (Mk)k∈Z is a Fourier multiplier from Bs

p,q(T; X) to Bs
p,q(T; Y ), it will suffice

to show that there exists C > 0 such that for j � 0 and f ∈ Bs
p,q(T; X),

∥∥∥∥ ∑
k∈Z

ek ⊗ φj(k)Mkf̂(k)
∥∥∥∥

p

� C

∥∥∥∥ ∑
k∈Z

ek ⊗ φj(k)f̂(k)
∥∥∥∥

p

.

Let j � 1 be fixed. Define M̃j as the piecewise affine function in Cc(R; L(X; Y )) by
M̃j(x) = 0 if |x| � 2j+2 or |x| � 2j−2, M̃j(k) = Mk for some k ∈ Z satisfying 2j−1 �
|k| � 2j+1 and which is affine on [k, k + 1] for all k ∈ Z.

By Proposition 2.2,∥∥∥∥ ∑
k∈Z

ek ⊗ φj(k)Mkf̂(k)
∥∥∥∥

p

=
∥∥∥∥ ∑

2j−1�|k|�2j+1

ek ⊗ φj(k)M̃j(k)f̂(k)
∥∥∥∥

p

� 1√
2π

‖F−1M̃j‖1

∥∥∥∥ ∑
k∈Z

ek ⊗ φj(k)f̂(k)
∥∥∥∥

p

.

To prove (i) it will suffice to show that supj�1 ‖F−1M̃j‖1 < ∞. Let Nj = M̃j(2j ·).
Notice that

supp(Nj) ⊂ {x : 1
4 � |x| � 4} and sup

x∈R

‖Nj(x)‖ � sup
k∈Z

‖Mk‖.

Therefore,
sup

j�1, x∈R

‖F−1Nj(x)‖ � 8 sup
k∈Z

‖Mk‖. (4.6)

On the other hand, for x �= 0,

√
2π(F−1Nj)(x) =

∫
R

M̃j(2jy)eixy dy

= 2−j

∫
2j−2�|y|�2j+2

M̃j(y)ei2−jxy dy.

Integrating by parts twice we obtain

√
2π(F−1Nj)(x) = M−2j+1(e−i2x − e−i4x)x−2/2 − M2j+1(ei4x − ei2x)x−2/2

− 4M−2j−1(e−ix/4 − e−ix/2)x−2 + 4M2j−1(eix/2 − eix/4)x−2

+
2j+1−1∑
k=2j−1

(Mk+1 − Mk)(ei2−j(k+1)x − ei2jkx)2jx−2

+
−2j−1−1∑
k=−2j+1

(Mk+1 − Mk)(ei2−j(k+1)x − ei2jkx)2jx−2.
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The first four terms are bounded by 12 supk∈Z
‖Mk‖/x2. For the fifth term,

∥∥∥∥2jx−2
2j+1−1∑
k=2j−1

(Mk+1 − Mk)(ei2−j(k+1)x − ei2jkx)
∥∥∥∥

=
∥∥∥∥2jx−2

2j+1−2∑
k=2j−1

(Mk+2 − 2Mk+1 + Mk)ei2j(k+1)x

− 2jx−2(M2j−1+1 − M2j−1)eix/2 + 2jx−2(M2j+1 − M2j+1−1)ei2x

∥∥∥∥
�

(
16 sup

k∈Z

(k2‖Mk+2 − 2Mk+1 + Mk‖) + 4 sup
k∈Z

‖Mk‖
)
x−2.

The same argument gives a similar estimate for the sixth term. We deduce that

sup
j�1, x∈R

‖x2F−1Nj(x)‖ < ∞. (4.7)

This estimate together with (4.6) shows that

sup
j�1

‖F−1M̃j‖1 = sup
j�1

‖F−1Nj‖1 < ∞.

We have proved (i).
Now assume that X and Y have Fourier type r ∈ (1, 2] and let (Mk)k∈Z ⊂ L(X, Y )

satisfy (4.3). Define for j � 1 the same function

M̃j ∈ Cc(R; L(X, Y )) ∩ FL1(R; L(X, Y ))

as above. Applying Lemma 4.4 to M̃j we have∥∥∥∥ ∑
k∈Z

ek ⊗ φj(k)Mkf̂(k)
∥∥∥∥

p

=
∥∥∥∥ ∑

2j−1�|k|�2j+1

ek ⊗ φj(k)M̃j(k)f̂(k)
∥∥∥∥

p

� Cpηr(M̃j)
∥∥∥∥ ∑

k∈Z

ek ⊗ φj(k)f̂(k)
∥∥∥∥

p

� Cp‖M̃j(2j ·)‖W r
1

∥∥∥∥ ∑
k∈Z

ek ⊗ φj(k)f̂(k)
∥∥∥∥

p

.

If we set Nj = M̃j(2j ·), then

supp(Nj) ⊂ {x : 1
4 � |x| � 4},

sup
x∈R

‖Nj(x)‖ � sup
k∈Z

‖Mk‖,

sup
x∈R

‖N ′
j(x)‖ � 2 sup

k∈Z

‖k(Mk+1 − Mk)‖ + 8 sup
k∈Z

‖Mk‖.

We deduce that supj�1 ‖M̃j(2j ·)‖W r
1

< ∞. This proves (ii) and finishes the proof. �
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Remark 4.6.

(i) Let X be an arbitrary Banach space and let 1 � p, q � ∞, s ∈ R. Let Mk = I

for k � 0 and Mk = 0 for k < 0. Then (Mk)k∈Z defines a Fourier multiplier on
Bs

p,q(T; X) by Theorem 4.5. The associated operator is called the Riesz projection.
Similarly, letting Mk = i · (sgn k)I defines a Fourier multiplier on Bs

p,q(T; X). The
associated operator is called the Hilbert transform.

(ii) For vector-valued Besov spaces on the real line, the corresponding result of the
first part of Theorem 4.5 has been established by Amann [1] (for arbitrary Banach
spaces) under a suitable condition on the growth at infinity of the first and the
second derivatives of the multipliers. The non-periodic counterpart of the second
part of Theorem 4.5 has been established recently by Girardi and Weis [13] (for
Banach spaces having a non-trivial Fourier type) under a suitable condition on
the growth of the first derivative of the multipliers. Note that in Theorem 4.5 the
quantities Mk+1 − Mk and Mk+1 − 2Mk + Mk−1 also somehow represent the first
and the second derivative of the sequence (Mk)k∈Z.

(iii) In the case p = q = ∞, s ∈ (0, 1), the Besov space Bs
p,q(T, X) is nothing else but

the space of all periodic functions which are Hölder continuous of index s. For this
case, Theorem 4.5 (ii) has been proved in [5] by a direct estimate which does not
use dyadic decomposition or interpolation.

5. Applications

The Marcinkiewicz-type theorems established in the previous section enable us to study
maximal regularity in vector-valued periodic Besov spaces for evolution equations with
periodic boundary conditions.

Let A be a closed operator on X. We consider the periodic problem

Pper

{
u′(t) = Au(t) + f(t), t ∈ [−π, π],

u(−π) = u(π),

where f ∈ Bs
p,q(T; X) for some 1 � p, q � ∞ and s > 0. We say that the problem

Pper has Bs
p,q-maximal regularity if for each f ∈ Bs

p,q(T; X), there exists a unique
u ∈ B1+s

p,q (T; X) (by (vi) of Theorem 2.3, u is differentiable a.e. and u′ ∈ Bs
p,q(T; X)),

such that u(t) ∈ D(A) and u′(t) = Au(t) + f(t) for almost all t ∈ [−π, π].
By the Closed Graph Theorem, it is easy to see that when the problem Pper has

Bs
p,q-maximal regularity, then there exists C > 0 independent of f and u such that

‖u‖B1+s
p,q

+ ‖Au‖Bs
p,q

� C‖f‖Bs
p,q

. (5.1)

We will prove the following result.

Theorem 5.1. Let A be a closed operator on X. Then the following assertions are
equivalent.
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(i) iZ ⊂ ρ(A) and supk∈Z
‖k(ik − A)−1‖ < ∞.

(ii) The problem Pper has Bs
p,q-maximal regularity for some (equivalently, for all) s > 0,

1 � p, q � ∞.

Proof. (ii) ⇒ (i). Assume that the problem Pper has Bs
p,q-maximal regularity for some

s > 0, 1 � p, q � ∞ and let x ∈ X be fixed. Let k ∈ Z and let f = ek ⊗ x. It is obvious
that f ∈ Bs

p,q(T; X). Hence there exists u ∈ B1+s
p,q (T; X) such that u(t) ∈ D(A) and

u′(t) = Au(t) + f(t) for almost all t ∈ [−π, π] by assumption. By Lemma 3.1 of [3], this
implies that û(k) ∈ D(A) and ikû(k) = Aû(k) + x. Thus (ik − A)û(k) = x. This shows
that ik−A is surjective. If (ik−A)x = 0, then u = ek ⊗ x ∈ B1+s

p,q (T; X) ∩ Bs
p,q(T; D(A))

defines a solution of u′ = Au, u(−π) = u(π). Hence u = 0 by the uniqueness of the
solution of Pper. We have shown that ik −A is bijective. Since A is closed we deduce that
ik ∈ ρ(A).

We consider f = ek ⊗ x for some k ∈ Z and x ∈ X, the solution u is given by
u = (ik − A)−1ek ⊗ x. The estimate (5.1) implies that

‖k(ik − A)−1x‖ � C‖x‖.

Hence supk∈Z
‖k(ik − A)−1‖ < ∞. This proves (ii) ⇒ (i).

(i) ⇒ (ii). Assume that iZ ⊂ ρ(A) and supk∈Z
‖k(ik − A)−1‖ < ∞. Let Mk =

ik(ik − A)−1, Nk = (ik − A)−1. Then (Mk)k∈Z and (Nk)k∈Z satisfy conditions (4.3)
and (4.4). By Theorem 4.5, (Mk)k∈Z and (Nk)k∈Z are Fourier multipliers on Bs

p,q(T; X).
For each f ∈ Bs

p,q(T; X), there exist u, v ∈ Bs
p,q(T; X) such that for k ∈ Z, we have

û(k) = ik(ik − A)−1f̂(k) and v̂(k) = (ik − A)−1f̂(k). By Lemma 2.1 of [3], v is dif-
ferentiable a.e. and v′ = u. By (vi) of Theorem 2.3, this implies that v ∈ B1+s

p,q (T; X).
(ik − A)v̂(k) = f̂(k) together with Lemma 3.1 of [3] implies that v(t) ∈ D(A) and
v′(t) = Av(t) + f(t) for almost all t ∈ [−π, π]. This proves (i) ⇒ (ii). �

Remark 5.2. The case p = q = ∞ and 0 < s < 1 in which Bs
∞,∞(T, X) = Cα(T, X)

has been considered in [5].

Theorem 4.5 may also be applied to the second order problem with periodic boundary
conditions and gives a necessary and sufficient condition for such a problem to have Bs

p,q-
maximal regularity. The proof of the following result is similar to that of Theorem 6.1
in [3]. We omit the details.

Theorem 5.3. Let A be a closed operator on X and let 1 � p, q � ∞, s > 0. The
following assertions are equivalent.

(i) For all f ∈ Bs
p,q(T; X), there exists a unique

u ∈ Bs
p,q(T; D(A)) ∩ B2+s

p,q (T; X)

such that
u′′ + Au = f a.e.

(ii) One has k2 ∈ �(A) for all k ∈ Z and {k2R(k2, A) : k ∈ Z} is bounded.
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