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Evanescent inertial waves
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We investigate evanescent inertial waves, both theoretically and experimentally, in a fluid
subject to a background rotation of Ω . We predict that there is a smooth transition from
conventional inertial waves to evanescent disturbances at a frequency of � = 2Ω , and that
at this cross-over frequency the evanescent disturbances are spatially extensive, having a
horizontal extent which is limited only by viscosity, or by the size of the domain. These
findings are confirmed by our experiments, which, to the best of our knowledge, represent
the first quantitative experimental investigation of evanescent inertial waves.
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1. Introduction

Inertial waves play an important role in rotating fluid mechanics, especially in geophysical
flows, where they are often responsible for the maintenance of quasi-geostrophic motion
(Greenspan 1968), and in rapidly-rotating turbulence, where they generate and maintain
columnar structures aligned with the rotation axis (Davidson 2013). Their dispersion
relationship is � = 2Ω cos ϕ, where � is the wave frequency, Ω the background rotation
rate and ϕ the angle between Ω and the wavevector k. Evidently, inertial waves are
anisotropic and dispersive, with a frequency limited to the range 0 < � < 2Ω . The case of
low-frequency waves, � � 2Ω , has been extensively studied, in part because these have
the largest group velocity, and in part because such waves are responsible for the formation
of columnar motion (Greenspan 1968; Davidson 2013). There has been less interest in the
limit � → 2Ω , possibly because such waves have a vanishingly small group velocity, and
almost no interest in evanescent disturbances, for which � > 2Ω . This lies in contrast
to the case of internal gravity waves, where the properties of evanescent gravity waves
are well known (Sutherland 2010). Yet, disturbances near twice the rotation frequency
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might occur in the liquid fuel tank of satellites, resulting from rotation and mechanical
instabilities. In a geophysical context topography may also result in energy injection at
frequencies near or above 2Ω due to the Doppler shift resulting from a differential motion
between the core and the mantle or a subsurface ocean and the surrounding shells.

In many systems, evanescent disturbances are of limited interest, as they are localized
around the boundary at which they are generated, with an amplitude that falls off
exponentially with distance from that surface. However, this is not true of internal gravity
waves in the limit as � approaches the Brunt–Väisälä frequency from above, or for tidally
driven gravito inertial-waves (Ogilvie & Lin 2004; Richet, Chomaz & Muller 2018). In
this limit, an evanescent disturbance extends over large distances above and below its
source, limited only by viscosity. Given the similarities between internal gravity waves
and inertial waves, we might expect a similar phenomenon in the limit of � → 2Ω , and
we shall see that this is indeed the case. In particular, as � approaches 2Ω from above, an
evanescent disturbance in a rotating fluid is predicted to extend over very large horizontal
distances. Given the counterintuitive nature of this phenomenon, it seems appropriate to
investigate this limit experimentally, and this provides much of the motivation for our
study. Consequently, we provide here a detailed experimental investigation of evanescent
inertial waves in which measurements and theory are compared. This represents the first
quantitative experimental study of evanescent inertial waves, though see McEwan (1970)
for a qualitative study.

We focus on the simplest case of evanescent disturbances which are linear and
axisymmetric, with emphasis on the limit of � → 2Ω . We shall see that the link between
inviscid theory and experiment is remarkably close, with spatially extended evanescent
disturbances emerging near the cross-over frequency � = 2Ω . For completeness, we also
consider the case where � approaches 2Ω from below, where conventional inertial waves
exist, but their group velocity is horizontal and vanishingly small. Not surprisingly, we
find the same behaviour at � = 2Ω , irrespective of whether the limit is approached from
above or from below. Although the evanescent disturbances in our experiment are more
or less independent of viscosity, the same cannot be said for the inertial waves generated
when � < 2Ω . This is because, in a closed domain, standing inertial waves can exhibit
resonances, and in such cases viscosity plays an important role in controlling the amplitude
of the motion (Greenspan 1968). This is precisely what we find in our experiment, where
we observe a geometrical resonance at a frequency just below � = 2Ω . Let us start,
however, with the inviscid theory of linear evanescent disturbances.

2. Inviscid, axisymmetric, evanescent inertial waves of small amplitude

Consider axisymmetric motion in a rotating fluid confined to an annulus. We use
cylindrical polar coordinates, (r, θ, z), with R1 and R2 the inner and outer radii of
the annulus (see figure 1). The angular momentum density is Γ = ruθ and the Stokes
stream-function Ψ is defined by

(ur, 0, uz) = ∇ × [(Ψ (r, z)/r)êθ ]. (2.1)

The inner boundary is assumed to oscillate with the radial displacement

η(z, t) = η̂ cos(kzz) cos � t, (2.2)

and this excites standing waves or evanescent disturbances through the boundary condition

ur(z, t) = ∂η

∂t
. (2.3)

In the linear approximation, (2.3) is applied at r = R1, rather than at r = R1 + η.
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Figure 1. (a) Sketch of the experimental apparatus, showing all principal parts of the experiment. A wave
generator with sinusoidal topography is used to excite inertial waves with angular frequency � . (b) Amplitude
of the velocity in vertical (left column) and horizontal (right column) planes for three oscillation frequencies:
�/2Ω ≈ 0.72 (top), �/2Ω ≈ 1 (middle) and �/2Ω ≈ 1.5 (bottom). We have normalized each panel by its
maximum amplitude of velocity.

The inviscid vorticity equation in the rotating frame is (Davidson 2013)

∂ω

∂t
= 2(Ω · ∇)u, (2.4)

where ω denotes the vorticity, and the application of the operator ∇ × (∂/∂t) to (2.4)
yields the well-known wave-like equation for inertial waves,

∂2

∂t2
∇2u + (2Ω · ∇)2u = 0, (2.5)

with dispersion relation �/2Ω = kz/|k|. For axisymmetric flows the θ component of ∇2u
is

(∇2u)θ = 1
r
∇2

∗Γ, (2.6)

and so the azimuthal component of our wave equation can be written in the form

∂2

∂t2
∇2

∗Γ + (2Ω)2 ∂2Γ

∂z2 = 0, (2.7)

where

∇2
∗ = r

∂

∂r
1
r

∂

∂r
+ ∂2

∂z2 (2.8)

is the Stokes operator. It is readily confirmed that Ψ is governed by exactly the same
equation.
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Consider first the evanescent case of � > 2Ω . Given the boundary condition (2.3), we
look for disturbances of the form

Γ = rûθ (r) cos(kzz) exp(j� t), (2.9)

and (2.7) then yields

r2û′′
θ (r) + rû′

θ (r) − ûθ − (rγ )2ûθ = 0, (2.10)

where

γ = kz

√
1 − (2Ω/�)2. (2.11)

This can be rewritten as

s2û′′
θ (s) + sû′

θ (s) − (s2 + 1)ûθ = 0, s = γ r, (2.12)

which has the general solution

ûθ = AK1(s) + BI1(s), (2.13)

where K1 and I1 are the usual exponential-like modified Bessel functions and A and B are
constants. Moreover, ur can be found from uθ using the azimuthal component of the Euler
equation:

∂Γ

∂t
= −2Ωrur. (2.14)

It remains to combine (2.14) with (2.3) to give the boundary condition at R1,

uθ = −2Ωη, r = R1, (2.15a,b)

which, along with the boundary condition ur = uθ = 0 at R2 , allows us to determine the
two unknown coefficients in (2.13). In particular, uθ = 0 at R2 demands

uθ = A
[

K1(γ r) − K1(γ R2)

I1(γ R2)
I1(γ r)

]
cos(kzz) cos(� t), (2.16)

while (2.15a,b) yields

A = −2Ωη̂
I1(γ R2)

I1(γ R2)K1(γ R1) − I1(γ R1)K1(γ R2)
. (2.17)

Finally, (2.14) gives us

ur = A
�

2Ω

[
K1(γ r) − K1(γ R2)

I1(γ R2)
I1(γ r)

]
cos(kzz) sin(� t), (2.18)

which we integrate to give

Ψ = −A
� r

2Ωkz

[
K1(γ r) − K1(γ R2)

I1(γ R2)
I1(γ r)

]
sin(kzz) sin(� t). (2.19)

These expressions all relate to evanescent disturbances. The equivalent results for inertial
waves can be obtained by returning to (2.7) and (2.10) and taking � < 2Ω . Introducing

β = kz

√
(2Ω/�)2 − 1, (2.20)
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Evanescent inertial waves

and following the same steps as above, we find

uθ = A∗
[

Y1(βr) − Y1(βR2)

J1(βR2)
J1(βr)

]
cos(kzz) cos(� t), (2.21)

ur = A∗ �

2Ω

[
Y1(βr) − Y1(βR2)

J1(βR2)
J1(βr)

]
cos(kzz) sin(� t), (2.22)

where Y1 and J1 are the usual oscillatory Bessel functions and

A∗ = −2Ωη̂
J1(βR2)

J1(βR2)Y1(βR1) − J1(βR1)Y1(βR2)
. (2.23)

Finally, it is of interest to consider what happens as we approach the cross-over frequency
� = 2Ω from above and below. It is readily confirmed that, if we let � → 2Ω in either
(2.16) or (2.21), we find

uθ ∼ −2Ωη̂
R1

r
R2

2 − r2

R2
2 − R2

1
cos(kzz) cos(2Ωt). (2.24)

Evidently, there is a smooth transition from inertial waves to evanescent disturbances at
� = 2Ω . Moreover, at the cross-over frequency, the radial variation in velocity is neither
oscillatory nor exponential, but a simple power law. For example, the angular momentum
density, Γ , falls monotonically from a maximum at the inner boundary to zero at the outer
boundary, according to Γ ∼ (R2

2 − r2) cos(kzz) cos(2Ωt).

3. The experimental set-up

Let us now turn to the experiment. Figure 1(a) shows the experimental set-up. A closed
cylindrical tank of radius R2 = 14 cm and height H = 28.5 cm is completely filled with
water and mounted on a turntable rotating at an angular velocity of Ω = 3.14 rad s−1.
To excite wave motion, we use a wave generator in the form of a cylindrically-shaped
shaft of mean radius R1 = 3.99 cm, and with a sinusoidal surface of vertical wavelength
λ = 2.86 cm and radial amplitude η0 = 0.79 cm. The wave generator is oscillated up
and down the rotation axis with a frequency of 4.52 rad s−1 < � < 9.42 rad s−1 and
amplitude z0 = 0.5 mm by a servo motor and a cam. The choice of a small displacement
amplitude is motivated by our interest in studying the laminar flow response without
inducing any instabilities, which should be a safe assumption at our Rossby numbers
Ro = �η̂/(ΩR1) < 0.02.

As a consequence of this oscillation, the inner boundary is perturbed radially according
to

η(z, t) = −η0 sin[kz(z − δz(t))], δz = z0 cos(� t), (3.1)

where kz = 2π/λ. For kzz0 � 1, the inner boundary condition can be linearized to give

η(z, t) = −η0 sin(kzz) + (kzz0η0) cos(kzz) cos(� t), (3.2)

the time-dependant part of which we rewrite as

η(z, t) = η̂ cos(kzz) cos(� t), η̂ = kzz0η0. (3.3)

For quantitative flow visualization we use Particle Image Velocimetry (PIV) in horizontal
and vertical planes. We seed the fluid with hollow glass spheres of diameter 15 μm and
density 1050 kg m−3. The particles are illuminated by a 1 watt continuous green laser
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and a line generator lens, which can provide a horizontal and vertical laser light sheet.
We position the horizontal laser light sheet at mid-height and the vertical laser light sheet
along a meridional plane of the cylinder. Note that we align the horizontal laser light sheet
with the plane of maximum velocity of the excited waves. A MicroVec camera equipped
with a NikonTM 50 mm lens is used to record images of 2592 × 2048 pixels at 30 frames
per second. We use the PIV package DPIVsoft2010 (Meunier & Leweke 2003) to calculate
velocity fields with 320 × 232 vectors over an area equivalent of 14.5 × 11.5 cm.

Our experimental protocol is as follows: we set the turntable into rotation at 3.14 rad
s−1 and wait until the fluid is co-rotating with the container. We then start the motion
of the wave generator at angular frequency � and wait for the initial transient motion to
be dissipated. Finally, we start our PIV measurements and sample a time series of 1200
images, typically ∼40 oscillations of the wave generator.

In figure 1, we provide a qualitative impression of the flow excited by the wave generator
at three different frequencies, to illustrate the three different regimes. For � < 2Ω ,
we see inertial waves with a characteristic ray pattern orthogonal to the wavevector k,
which in turn satisfies the dispersion relation �/2Ω = kz/|k| = cos ϕ. As the excitation
frequency approaches the limit � → 2Ω , the group velocity cg becomes horizontal, and
so the characteristic surfaces along which the energy travels are also horizontal, with a
wavevector parallel to the rotation axis, ϕ = 0. Note that the same disturbance pattern is
obtained if we approach � = 2Ω from above, so we could equally regard the horizontal
striations in this image as indicative of evanescent waves. Finally, for � > 2Ω the energy
does not propagate into the bulk but remains confined to the vicinity of the wave generator,
except, of course, as we approach the limit � → 2Ω .

4. Evanescent disturbances and standing waves near the cross-over frequency

To compare the inviscid predictions with our experimental results, we first consider the
radial profile of kinetic energy density in the equatorial plane. We construct radial profiles
of the kinetic energy by averaging the kinetic energy density over the azimuth in each
PIV frame. The average is calculated over thin concentric rings of radial thickness 1 mm,
resulting in a radial profile of the kinetic energy density with 90 data points. Each data
point represents the azimuthal average of at least 300 individual points close to the wave
generator and up to 800 points in the outer regions. Finally, we average the time-resolved
radial profiles over approximately 40 cycles of the wave generator motion. The resulting
radial profiles are displayed in figure 2.

The inviscid analysis described in § 2 predicts exponentially decaying evanescent waves
for � > 2Ω . Consistent with this, the experimental data for excitation frequencies
significantly above 2Ω (figure 2a) shows that the kinetic energy is mostly confined to
the vicinity of the wave generator, from where it decays exponentially with the radius.
However, even at �/2Ω ∼ 1.5, the energy of the evanescent waves still penetrates into
the bulk up to around 10 % of the fluid gap. All in all, the predicted inviscid solution for u
is in good agreement with the radial structure of the measured kinetic energy, as displayed
in figure 2(a).

We now turn to excitation frequencies which are close to, but above, the critical value of
� = 2Ω (figure 2b). Again, there is a close link between theory and measurements, with
the radial profiles of the kinetic energy becoming flatter as we approach the cross-over
frequency, which means that the motion progressively spreads away from the wave
generator. This observation, while consistent with our inviscid analysis, contrasts with
the early study of Morgan (1951). Morgan investigated theoretically the problem of an
oscillating disk in a cylindrical geometry and found that, as the excitation frequency gets
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Figure 2. Kinetic energy density as a function of the radial distance for different driving frequencies. The
value above each line represents the ratio �/2Ω . Each curve on the left is offset by 0.4, while those in
the middle and right are offset by 0.6, to achieve better visibility. Crossed points depict the measurements. The
dashed lines represent the inviscid solution, while solid lines represent the solution with a viscous correction,
as discussed in §§ 5 and 6.

close to the critical value of 2Ω , the fluid motion is mostly confined to the vicinity of
the disk. He speculates about a resonant behaviour resulting in ‘violent motion’ when
the system is excited at exactly the critical frequency. Baines (1967), on the other hand,
concludes that no steady-state solution exists in this limit. In contrast to these statements,
we observe a smooth transition from evanescent waves with radially decaying velocity to a
standing-wave profile as � passes through the cross-over frequency of 2Ω (figure 2c). We
therefore conclude that, at least for the type of forcing used in our experiment, there is no
unusual behaviour at � = 2Ω . Rather, there is a smooth transition, exactly as predicted by
the inviscid analysis. Interestingly, figure 2(c) shows a significant discrepancy between the
inviscid analysis and the measurements when � < 2Ω , particularly at �/2Ω = 0.991.
We shall see shortly that this is due to a standing-wave resonance whose amplitude is
controlled by viscosity.
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Also shown in figure 2(a–c) are the viscous corrections to the inviscid theory. These
corrections are negligible in the evanescent regime, but important below the cross-over
frequency. We shall discuss these corrections, as well as the discrepancy between the
inviscid theory and observations for � < 2Ω , in § 6.

5. Corrections due to viscous action in the bulk

When viscosity is finite, (2.14) generalizes to(
∂

∂t
− ν∇2

∗

)
Γ = −2Ωrur, (5.1)

while the azimuthal component of

∂ω

∂t
= 2(Ω · ∇)u + ν∇2ω (5.2)

combines with

(∇2ω)θ = 1
r
∇2

∗(rωθ), (5.3)

to yield (
∂

∂t
− ν∇2

∗

)
rωθ = 2Ω

∂Γ

∂z
. (5.4)

It is convenient to introduce the Stokes streamfunction, Ψ , defined by (2.1). This gives us

ur = −1
r

∂Ψ

∂z
, rωθ = −∇2

∗Ψ, (5.5a,b)

and so (5.1) and (5.4) become(
∂

∂t
− ν∇2

∗

)
Γ = 2Ω

∂Ψ

∂z
, (5.6)

(
∂

∂t
− ν∇2

∗

)
∇2

∗Ψ = −2Ω
∂Γ

∂z
. (5.7)

These, in turn, yield (
∂

∂t
− ν∇2

∗

)2

∇2
∗Γ + (2Ω)2 ∂2Γ

∂z2 = 0, (5.8)

which is the viscous generalization of (2.7), as well as(
∂

∂t
− ν∇2

∗

)2

∇2
∗Ψ + (2Ω)2 ∂2Ψ

∂z2 = 0. (5.9)

As with the inviscid analysis, we can work with either Γ or Ψ , but for the viscous case it
is easier to work with Ψ . The boundary condition (2.3) can be rewritten in terms of Ψ as

ur(z, t) = ∂η

∂t
= −1

r
∂Ψ

∂z
, (5.10)
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which combines with (2.2) to give

Ψ (R1, z, t) = η̂
�R1

kz
sin(kzz) sin(� t). (5.11)

We therefore look for standing waves or evanescent disturbances of the form

Ψ = Ψ̂ (r) sin(kzz) exp(j� t), (5.12)

where Ψ̂ is complex. The expression (5.12) combines with (5.9) to give[
1 + j

(
νk2

z

�

)
(∇̂2

∗ − 1)

]2

(∇̂2
∗ − 1)Ψ̂ +

(
2Ω

�

)2

Ψ̂ = 0, (5.13)

where the dimensionless operator is

∇̂2
∗ = 1

k2
z

r
∂

∂r
1
r

∂

∂r
. (5.14)

At this point we can look for either evanescent disturbances or standing inertial waves. Let
us consider evanescent disturbances. For � > 2Ω , (5.13) admits solutions of the form

Ψ̂ = CrK1(κkzr) + DrI1(κkzr), (5.15)

provided [
1 + j

(
νk2

z

�

)
(κ2 − 1)

]2

(κ2 − 1) +
(

2Ω

�

)2

= 0. (5.16)

Note that, when ν = 0, (5.16) reduces to

κ = κ0 =
√

1 − (2Ω/�)2 = γ /kz, (5.17)

and so we recover the inviscid solution. For small νk2
z /� , which is the case in our

experiment, (5.16) has the solution

κ2 =
[

1 −
(

2Ω

�

)2
]

− 2j

(
νk2

z

�

)(
2Ω

�

)4

+ O((νk2
z /�)2). (5.18)

We can use this estimate of κ , along with (5.15), to estimate the effects of viscosity on
evanescent disturbances. The equivalent results for inertial waves may be found in exactly
the same way.

6. A comparison of the measurements with the viscously corrected theory

We can use the analysis above to estimate the effects of viscosity on the propagation of both
inertial waves and evanescent disturbances. We shall do this while ignoring the viscous
boundary layer on the wave generator, of which an estimate of the thickness and local
Reynolds number are δ ∼ √

ν/Ω ≈ 0.6 mm and Re = uδ/ν = (� η̂)δ/ν ≈ 1.8. That is
to say, we shall assume, and then check retrospectively, that viscosity does not strongly
influence the generation of inertial waves or evanescent disturbances, only their subsequent
behaviour in the bulk. To that end, we use (5.18) to evaluate κ , substitute this into (5.15),
and then use the inviscid estimates for the coefficients C and D taken from (2.19). A similar
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Figure 3. (a) The kinetic energy calculated from the velocity amplitude over the PIV area as a function of
�/2Ω . The solid line represents the viscous prediction, the coloured dots the measurements, and the dashed
line the inviscid solution. (b) The peak in energy at �/2Ω ≈ 0.99 corresponds to a geometric resonance
between emitted and reflected waves at critical angle ϕ1.

procedure can be followed for inertial waves. A comparison of these viscous corrections
with the experimental data is shown in figure 2, where the viscously-corrected predictions
are the solid lines.

In our experiment we have νk2
z /� ≈ 0.008 and so we might expect the viscous

corrections to be modest for � = 2Ω . Moreover, the inviscid and viscously corrected
theory seem to capture equally well the experimental data in the evanescent regime,
� > 2Ω . This suggests that the evanescent disturbances are not strongly influenced
by viscosity, at least not in our experiment. However, the superiority of the viscously
corrected solutions over the inviscid predictions is particularly clear when � is somewhat
less than 2Ω (figure 2c). Here the inviscid solution is less successful at capturing the radial
structure of the flow, and this is especially true when we are close to a resonance of the
standing waves, as is the case for �/2Ω = 0.991.

To show that this discrepancy between the inviscid theory and the observations arises
from a resonance, we investigate the dependence of the total kinetic energy on �/2Ω .
We consider the total mean kinetic energy over the entire PIV image averaged over 40
oscillation periods and plot it against its analytical counterpart for various excitation
frequencies. The results are presented in figure 3(a), where the dashed line represents
the inviscid theory and the solid line the viscously corrected prediction. Evidently, there
is a quantitative agreement between the viscous theory and experiments, but a large
discrepancy with the inviscid theory at around �/2Ω ≈ 0.99. This frequency corresponds
to the denominator in (2.17) falling to zero, and so represents a geometrical resonance in
the standing wave pattern. Clearly, this resonance is smoothed out by viscosity.

Physically, this resonant frequency corresponds to inertial waves reflected from the outer
wall interfering constructively with outgoing waves, according to the expression

�

2Ω
= R2 − R1√

(R2 − R1)2 + (λ/2)2
. (6.1)

This is illustrated in figure 3(b). Further resonances are expected with the frequencies

�n

2Ω
= R2 − R1√

(R2 − R1)2 + (nλ/2)2
. (6.2)
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7. Conclusions

To the best of our knowledge, our experiments represent the first quantitative experimental
investigation of evanescent inertial waves. The comparison with inviscid theory is
excellent, especially the smooth transition from inertial waves to evanescent disturbances,
and the prediction that evanescent disturbances are spatially extensive near the cross-over
frequency, � = 2Ω . While the evanescent disturbances in our experiment are insensitive
to viscosity, the same is not true of the inertial waves generated for � < 2Ω . We
attribute this sensitivity to geometrical resonances associated with standing inertial waves,
resonances whose amplitudes are limited by viscosity. We have modified the inviscid
theory to allow for the effects of viscosity on the propagation of inertial waves, while
simultaneously assuming that viscosity has negligible influence on the generation of such
waves. Somewhat surprisingly, despite the neglect of the boundary layer on the wave
generator, our viscously modified theory captures well the measured amplitude of inertial
waves, even near resonance.
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