PRIME MODULES
E. H. FELLER AND E. W. SWOKOWSKI

Introduction. Characterizations for prime and semi-prime rings satisfying
the right quotient conditions (see § 1) have been determined by A. W. Goldie
in (4 and 5). A ring R is prime if and only if the right annihilator of every
non-zero right ideal is zero. A natural generalization leads one to consider
right R-modules having the properties that the annihilator in R of every
non-zero submodule is zero and regular elements in R annihilate no non-zero
elements of the module. This is the motivation for the definition of prime
module in § 1.

By employing some ideas of R. E. Johnson together with those of Goldie,
along with some innovations, we are able to generalize Goldie’s work (4) to
modules and add some new results. Specifically, Theorem (3.2) gives an ex-
ternal characterization for a prime R-module M in terms of a completely
reducible module containing M. It is interesting to note that in (3.2), although
right quotient conditions are assumed in R, it is unnecessary to assume a
maximum condition for the submodules of M. An internal type of structure
for prime modules (hence prime rings) is also obtained in § 3. It is shown
that if R satisfies the right quotient conditions, then an R-module M is No-
etherian and prime if and only 1f M is a subdirect sum of uniform Noetherian
prime R-modules.

In (4.4) we characterize the uniform prime modules as those prime modules
for which the ring of endomorphisms of the injective envelope is a division
ring. For a prime module M over a prime ring R satisfying the right quotient
conditions, we know, by (4), that R € D,, a total matrix ring over a division
ring D. We obtain D in (4.8) using a uniform prime R-module as given by
the structure theorem (3.3). This is not a uniform submodule of M as in
Goldie's work, but a module of the form M/J, where J is MN-irreducible.

It is also shown, in § 4, that every prime R-niodule M contains a uniform
B-module ‘N, where B is a prime ring containing R and where N over B has
the double centralizer property. This provides the result that every prime ring
R with right quotient conditions is contained in a prime ring B, where B is
the ring of endomorphisms of a module over an integral domain and where
B and R have the same right quotient ring.

In § 5 we consider a finitely generated module M over a right and left
Ore domain A. By taking M as a module over Hom, (M, M) we obtain a
non-trivial example of a uniform prime module.

Received September 1, 1964. This research was supported in part by grants from the
National Science Foundation.

1041

https://doi.org/10.4153/CJM-1965-099-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1965-099-5

1042 E. H, FELLER AND E. W. SWOKOWSKI

In the final section we give a matrix representation for prime rings of the
type discussed in § 5.

1. Conventions and definitions. Throughout this paper all R-modules
will be right R-modules. In addition, R will always denote a ring that satisfies
the right quotient conditions of (4 and 5). These are:

(i) every direct sum of non-zero right ideals of R has a finite number of

terms;

(ii) the ascending chain condition holds for the annihilator right ideals of R.

Let A and B be rings and let M be an (4, B)-bimodule, i.e. a left 4-module
and a right B-module. We shall adopt the following notation for the various
annihilators to be considered. If X, ¥, and Z are subsets of 4, M, and B
respectively, then

X" ={m¢€ Mlxm =0 for all x € X},
Yr =1{b € Blyt =0 for all y € YV},
and Z'={m € M|mz =0 for all z € Z}.

For Z C B we shall use subscripts to denote annihilators of Z in the ring B.
Thus
Z,=1{b¢c B|zb =0 for all z € Z}

and Z,=1{b€ Blbz =0 for all z € Z}.

If M and N are R-modules, then M is an essential extension of Nif N C M
and if N M P # 0 for every non-zero submodule P of M. If M is an essential
extension of N, we write N C’ M and call N a large submodule of M. We
shall also speak of large right ideals of R by considering R as a right module
over itself.

It will be convenient to use the following system when dealing with endo-
morphisms. If M is an R-module and H = Hompg (M, M), then M will be
considered as a left H-module (more specifically, M is an (H, R)-bimodule)
where, as usual, for # € H and m € M, hm denotes the image of m under .
Again, writing the elements of K = Homy (M, M) as right operators, M
becomes a right K-module. If M™ = 0, then the usual correspondence yields
an embedding of R in K and we may assume, in this case, that R C K.

If M is an R-module, then

MA = {x € M|x" C' R}
is a submodule called the singular submodule of M. Similarly,
RA = {a € R|a, C' R}

is a two-sided ideal in R called the singular ideal of R.
As in (12), call an R-module forsion-free if, whenever xc = 0 for x € M
and ¢ regular in R, then x = 0.
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The prime rings of (4) provide the following natural extension for a defi-
nition of prime modules.

(1.1) Definition. An R-module M is prime if N™ =0 for every non-zero
submodule NV of M and if one of the following equivalent conditions is satis-
fied:

(i) MA =0;
(1") M is torsion-free.

In order to show the equivalence of (i) and (i’) one can proceed as follows.
Let J be a non-zero right ideal in R (in general we shall exclude from our
discussion the trivial cases M =0 or R = 0). Since M™ =0, MJ is a non-
zero submodule of M. From (MJ)J, = 0, we have J, C (MJ)" = 0, whence
R is a prime ring. Then by (5, 3.9), an element x of M belongs to M4 if and
only if x” contains a regular element of R. Thus MA = 0 if and only if M is
torsion-free.

This discussion gives us

(1.2.) ProrosiTION. If M is an R-module such that N = O for every non-
zero submodule N, then R is a prime ring.

Let M be a torsion-free R-module where R is a prime ring and let N be
a non-zero submodule of M. Since N7 is a two-sided ideal of R, N = 0; for
otherwise by (5, 3.9) N” contains a regular element ¢, contradicting the fact
that A is torsion-free. This proves

(1.3) ProrosiTioN. If M is an R-module and R is a prime ring, then M is
prime if and only if either M is torsion-free or MA = 0.

It is clear that the prime rings of (4), when considered as right modules
over themselves, are prime modules. Obviously, a prime R-module is faithful
and every submodule of a prime R-module is a prime R-module.

It should be noted that different definitions for the term ‘‘prime module”
occur elsewhere in the literature. Our definition most closely resembles that
given by R. E. Johnson in (9, p. 353), where a right B-module 3 is called
prime provided N7 = 0 for every non-zero submodule N. A somewhat different
definition is stated in (10), where a right B-module M is designated as prime
if and only if whenever xJ = 0 for x € M and J an ideal in B such that
J, = 0, then x = 0. Evidently, if M is prime in the sense of (9) or (1.1), then
it is also prime according to (10). The converse is false, as may be seen by
the following example.

Example. A ring B is termed N-local if the elements not in the nil-radical
N are the units of B. When B satisfies the maximum condition for right ideals,
N is nilpotent. Let M be a unitary right B-module, where B is an N-local
ring satisfying the maximum condition for right ideals and where N # 0.
Let J be an ideal in B for which J; = 0 and suppose xJ = 0 for some x € M.
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If J C N, then, since N* = 0 and N*! 5 0 for some positive integer 7, we
have N""1J = 0 contrary to J; = 0. Thus J is not contained in N and there
exists ¢ € J such that ¢ ¢ N. Since B is N-local, a is a unit in B. Then from
xa = 0 we have x = 0, which proves that M is prime in the sense of (10).
On the other hand, M is not prime according to (9) since B is not a prime
ring.

2. Submodules of prime modules. If M is a prime R-module, then as
in (10. 6.4) and (6, 3.8) each submodule N of M has a unique maximal
essential extension cl IV in M given by

cl N = {x € M|xI C N for some large right ideal I of R}.

By (5, 3.9), a right ideal of R is large if and only if it contains a regular
element. It follows that x € cI NV if and only if x¢c € N for some regular
¢ € R.

Similarly, each right ideal J in R has a unique maximal essential extension
in R.

(2.1) LEMMA. Let M be a prime R-module and let N be a proper submodule
of M. Then M/N is a prime R-module if and only if c| N = N.

Proof. From the remarks above, x € cl N if and only if (x + N)c is zero
in M/N for some regular ¢ € R. Consequently, if x € cl N and M/N is prime
(hence torsion-free by (1.3)), then x € N and we have cI N C N, whence
cdd N =N.

Conversely, if cl N = N and (x + N)c C N for some regular ¢ € R, then
x € N so that M/N is a prime R-module.

(2.2) THEOREM. Let M te a prime R-module and suppose N is an (M-irre-
ducible submodule of M which is not large. Then M/N is a prime module.

Proof. Let P be a non-zero submodule of M such that N\ P = 0. Then
we have N Ccd NN (N @ P). On the other hand, let x =% 4+ p E cl NN
(N @ P), wheren € N, p € P.Sincen + p € cl N, there is a regular element
¢ in R such that (# + p)c € N. Hence pc € NN\ P =0 and since M is
torsion-free, p = 0. Thus x € N, and we have proved that N =cl NN
(N @ P). Since N is M-irreducible, N = ¢l N and by (2.1), M/N is a prime
module.

(2.3) LemMA. If M is a prime R-module, then for every x € M, cl (x7) = «7
in R.

Proof. We know that x™ C ¢l (x7). Let @ € cl (x"). Then ac € x" for some
regular ¢ € R. Therefore xac = 0 and since M is torsion-free, xa = 0. Hence
a € x" and the lemma is proved.

A submodule U of M is uniform if U # 0 and every pair of non-zero sub-

modules of U has non-zero intersection. Similarly one defines uniform right
ideal of R.
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The proof of the following theorem is patterned after that given for rings
in (6, p. 68).

(2.4) THEOREM. Let M be a right R-module such that MA = 0. If J is a
uniform right ideal in R, then

JV={x € M|x"NJ # 0}.

Proof. Let N = {x € M|x"MNJ = 0}. Take x € N, j € J, and let K be
any non-zero right ideal in R. If jK = 0, then xjK = 0 and hence K C (x7)".
Thus (xj)" N K # 0. On the other hand, if jK # 0, then (x" N\ J) NjK £ 0
since J is uniform. Therefore K contains an element k such that j& # 0 and
xjk = 0 and again we have (xj)" M K £ 0. This proves that xj ¢ MA for
allx € N,j € J, and hence NJ C MA, Since MA = 0, we have N C J%. The
proof that J' C N is direct.

3. Internal and external characterizations of prime modules. If M
is a prime R-module, then R is a prime ring with right quotient conditions
and by Goldie’s Theorem R has a right quotient ring .S that is a simple ring
with minimum condition (the term right (left) quotient ring, whenever it is
used in this paper, refers to the classical quotient rings described in (4, p.
604)). As in (12, p. 134), the mapping m - m ® 1, m € M, is an R-isomor-
phism of M into the tensor product M ®%.S, every element of MS has the
form mc! where m € M and ¢ is regular in R, and M ® xS = MS under
the correspondence m ® s — ms, s € S. As usual, we consider M as a sub-
module of MS and identify m € M with ml. In similar fashion if N is a
submodule of M, we have

NCNQ®pS=NS = {nc|n € N, c regular in R}.

Every R-module M has a unique (up to isomorphism) maximal essential
extension J that is simultaneously the unique minimal injective extension
of M. We call M the injective envelope of M. In our case we have

(3.1) THEOREM. If M is a prime R-module, then the injective envelope M of
M 4s MS, where S is the right quotient ring of R.

Proof. If x = mct € MS, then xc = m € M, which implies that MS is an
essential extension of .

Suppose M C M’, where M’ is any essential extension of M. If x is any
non-zero element of M’, there exists 6 € R such that 0 = xb € M. Let
J = {a € R|xa € M}. Using the method of proof given in (6, p. 63) one can
show that J is a large right ideal in R and therefore J contains a regular
element ¢. Thus xc = m € M and x = mc~! € MS. Then MS is the maximal
essential extension M of M.

The following theorem gives a characterization for prime R-modules.
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(3.2) THEOREM. An R-module M is prime if and only if M is contained in a
completely reducible unitary right S-module where S is a simple ring with mini-
mum condition for right ideals and a right quotient ring for R.

Proof. If M is prime, then by our previous discussion and (8, p. 47), the
right S-module MS fulfils the conditions stated in the theorem.

Conversely, suppose M is contained in a unitary right S-module M’ having
the indicated properties. From (4 and 5), R is a prime ring with right quotient
conditions. Let x¢ = 0, where x € M and ¢ is regular in R. Then ¢! exists
in S and we have x = x1 = (x¢)c! = 0. Hence M is torsion-free over R
and, by (1.3), M is prime.

The preceding result may be interpreted as an ‘“‘external’’ characterization
of prime modules. If M is Noetherian, in the sense that the submodules
satisfy the maximum condition, an “internal’’ type structure for prime modules
can be obtained.

We employ the notion of irredundant subdirect sum as given by Levy (13,
p. 65). As pointed out in (13), a module M is an irredundant subdirect sum
of modules {M,} if and only if there exists a set of submodules {P,} of M
such that M, = M/P,, N, P, =0, and, for each 8, Maus P, % 0. We shall

use this criterion to establish

(3.3) THEOREM. An R-module M is a Noetherian prime R-module if and
only if M is a finite irredundant subdirect sum of uniform Noetherian prime
R-modules.

Proof. If M satisfies the maximum condition for submodules, we can write
0=N:N..."N N, where each IN; is an M-irreducible submodule of M and
where, for each k, M4 N; # 0. Setting M; = M/N,;, M is an irredundant
subdirect sum of the M. If ¢ = 1, then M = M, and M is uniform. If £ > 1,
then the N; are not large and by (2.2) each M/N; is a prime module. It
follows readily that each M/N; is uniform and Noetherian.

Conversely, suppose that M is an irredundant subdirect sum of uniform

prime Noetherian R-modules M, ..., M, Then there exist submodules
Py, ..., P,of M such that, for all 7, M, =~ M/P;, N; P; =0, and, for each
k, Ny Py 5% 0.

If ¢t = 1 the result is trivial. If ¢ > 1, then the P; are proper submodules
and, from (2.1), cl P; = P; for each 7. Let xa = 0, where x € M and «a is
regular in R. Then xa € P; for all 7 and we have x € cl P, =P, 1 <1< 1.
Therefore x € M; P; =0 and M is torsion-free and prime.

The fact that M is Noetherian follows from a result of Grundy (7, p. 242).

4. Endomorphism rings of uniform modules.

4a. A characterization of uniform prime modules. We begin with the
following general result.
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(4.1.) ProposITION. Let B be a ring that has a right quotient ring Q(B). If
N is a right Q(B)-module, then

Homjg (N, N) = Hom g5 (N, N).

Proof. Obviously Hom gz (N, N) € Homp(N, N). If h € Homgz(N, N),
then for x € M and a, b € B with b regular we have

(hx) (@b~ ') = (h(xab~18))b~! = (hxab=1)bb~! = h(xab™!).
Thus 2 € Hom g5 (IV, N) and we have equality.

(4.2.) CoroLLARY. The module N is an injective B-module if and only if N
is an injective Q(B)-module.

Now suppose M is a prime R-module and let S be the right quotient ring
of R. Since MS is the injective envelope of M and MA = 0, then by (10,
§7) each h € Homy(M, M) has a unique extension A* € Hompg(MS, MS).
We may, therefore, assume that

Homg(M, M) € Homg(MS, MS).
Indeed by (12, 1.6), k* is given by
h*(mc) = (h(m))c!
for all m € M, ¢ regular in R.

(4.3) THEOREM. Let U be a uniform submodule of a prime R-module M. Then
Homg (U, U) is an integral domain and Homg(US, US) is a division ring con-
taining Homg(U, U).

Proof. If w € UA, then the large right ideal " of R contains a regular
element and since M is torsion-free, we have # = 0. Thus UA = 0. Moreover,
since U is uniform, every pair of non-zero submodules of U has non-zero
intersection. Hence U is an irreducible R-module in the sense of (11, p. 262).
Using (11, Theorem 1.7) we have that Homg(U, U) is an integral domain.

Since US is the injective envelope of U, we may write Homg(U, U) C
Hompg(US, US). Now the injective envelope of an irreducible module is
irreducible and, by (11, Theorem 1.7), Homgz(US, US) is a division ring.

Uniform prime R-modules may be characterized in the following way.

(4.4) THEOREM. A prime R-module M is uniform if and only if Homg (M, M)
is a division ring.

Proof. The “only if”’ part was proved above. To prove the converse, suppose
Ni:N\ Ny, =0, where N, and N, are non-zero submodules of M. Let
N = N; @ N; and let & be the projection of N on N;j. If #* is the extension
of h to M, then, since Homg (M, M) is a division ring, (#*)” = 0. This con-
tradicts the fact that AN. = 0. Hence M is uniform.
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4b. The quotient ring of R.

(4.5) LEMMA. Let M be a prime R-module and let J be a uniform right ideal
in R. Then there exists an x € M such that x” N J = 0.

Proof. If x™ N\ J £ 0 for every x € M, then, by (2.4), MJ = 0. But this
contradicts the fact that M is a prime R-module.

(4.6) THEOREM. Let M be a prime R-module and let J be a uniform right
ideal in R. Then there exists an x € M such that I = Hompg(xJ, xJ) is.a right
Ore domain. The ring D = Hompg(xJS, xJS) is a right quotient division ring
for I.

Proof. By (4.5) there is an x € M such that x" M\ J = 0. Then xJ # 0,
for otherwise, J € x7, a contradiction. It then follows that the correspondence
j—xj, j € J, is an R-isomorphism of the R-module J onto the R-module
xJ. Consequently, I = Homg(J, J) and by (4, Theorem 4), I is a right Ore
domain. From (4, pp. 606-607) we have that JS is a minimal right ideal
in S and Homg(JS, JS) is the quotient ring of Hompg(J, J). However, the
S-modules JS and xJS are isomorphic and the last part of the theorem follows
at once.

(4.7) CoRrROLLARY. The ring S is isomorphic to a total matrix ring D,, where
D = Hompg(xJS, xJS).

Proof. From (4), D = Homz(JS, JS).

We can also use (4.6) to associate the quotient ring S of R with the decom-
position of a Noetherian prime R-module as given in (3.3). Specifically we
have

(4.8) THEOREM. Let M be a Noetherian prime R-module. Then M is a sub-
direct sum of uniform Noetherian prime R-modules M, ..., M, and, for each
1, there exists x; € M; such that I, = Homg(x.J, x.J) 1s a right Ore domain
where J is a uniform right ideal of R. Moreover, if S is the quotient ring of R,
then S = D, where D 1is the quotient ring of I,.

4c. A prime ring containing R. In the following discussion let xJ, I,
and D be as in (4.6). Since S satisfies the maximum condition for right ideals,
JS is finitely generated over S and consequently xJS is a finitely generated
right S-module. Then by (1, 58.14 and 59.7), xJS is a finitely generated in-
jective left D-module and, from (1, 59.6), the pair (D, xJS) has the double
centralizer property, i.e. S = Homp(xJS, xJS). Since D is a quotient ring
for I, we may use (4.1) to obtain S = Hom;(xJS, xJS).

If @ € Hom;(xJ, xJ), define o* by (xjcVa* = ((xj)a)c! for all j € J and
¢ regular in R. It follows directly that o* is single-valued, preserves sums, and
is an extension of a to xJS.
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We show that o* is an I-endomorphism of xJS. Let % € I. By the remarks
preceding (4.3), we may identify z with #* € D, where

B*(xjc?) = (h(xj))c .
Then , I , S
(B* (xje1))e* = ((h(xf))cNa* = ((h(xf))e)c .
Since « € Hom;(xJ, xJ),
((RxNa)e = (h((xf)a))ct = B*(((x)a)c?) = h*((xjc )a*).

Hence o* € Hom;(xJS, xJS).
One can show that the correspondence a — o* is an isomorphism of
Hom,(xJ, xJ) into Hom,(xJS, xJS). We may, therefore, write

RCBCS,

*

where B = Hom;(xJ, xJ). Therefore, S is a quotient ring for B and by (4),
B is a prime ring with right quotient conditions. This gives us the following
two theorems. ‘

(4.9) THEOREM. If M is a prime R-module, then M contains a uniform sub-
module N and R is contained in a prime ring B such that the pair (N, B) has
the double centralizer property. The submodule N may be chosen to be of the
form xJ, where x € M and J is a uniform right ideal of R.

(4.10) THEOREM. Every prime ring R with right quotient conditions is con-
tained in a prime ring B which has the same quotient ring as R and satisfies
the following properties:

(a) B is the ring of endomorphisms of a left module N over an integral domain;

(b) the pair (N, B) has the double centralizer property.

We conclude this section by noting that if M is a finitely generated prime
R-module and S is the right quotient ring of R, then from (1, §§ 58, 59), MS
is a finitely generated left H-module where H = Homg(MS, MS). More-
over, H is a self-injective semi-simple ring and Homg(M, M) C H. We do
not know whether H is a quotient ring for Homg (M, M).

5. An application. Throughout this section M will denote a finitely
generated torsion-free left 4-module, where 4 is a right and left Ore domain
with identity and quotient ring Q. In (2) the authors proved that
R = Hom, (M, M) is a prime ring with right and left quotient ring of the
form Q,, a total matrix ring over Q. Indeed, as in (2), we may assume that
M is contained in the left Q-vector space Q ® 4 M, and, making the usual
identifications, we write

R = Hom (M, M) CHomo(Q ®4 M,Q @4 M) =S=Q,

for some positive integer #. In the following we shall discuss properties of M
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when considered as an R-module. Of particular interest is the fact that M
is a prime R-module of the type discussed in § 1. This is a consequence of
(1.3) and

(5.1) ProrosiTION. The singular submodule MA of the R-module M 1is zero.

Proof. 1f x € M, then the large right ideal x” of R contains a regular ele-
ment ¢. Now ¢ has an inverse in the simple ring S and hence x = 0.

(5.2) PropPOSITION. The R-module M is uniform.

Proof. Let x and y be non-zero elements of M. Since S is a dense ring of
linear transformations acting on Q ® 4 M, we have xab~! = y for suitable
a,b € R, b regular. Then xa = yb £ 0. Thus the intersection of two non-
zero R-submodules of M is non-zero.

(5.3) PropoSITION. The R-module Q ® 4 M 1is the injective envelope of the
R-module M.

Proof. Let x and y be non-zero elements of Q ® 4, M and M respectively.
Then, as in the proof of (5.2), xa = yb ¥ 0 for some a, b € R, which implies
that Q ® 4 M is an essential extension of M as an R-module. Employing (1,
58.14 and 59.7), we have that Q ® 4 M is an injective right S-module and by
(4.2) Q ®4 M is an injective R-module. Hence Q ® 4 M is the injective
envelope of M and

Homgs(Q @4 M,Q ®4 M) = Homzg(Q @4 M,Q @4 M) = Q.

Since the injective envelope is unique up to isomorphism and since M is
a prime R-module, we may write

ORI M=2MQRgS=M Qpr O,

From (4.3) M is a left module over the integral domain C = Homg (M, M).
In addition we may write 4 & C C Q, where Q is a right quotient ring for
C. Then R = Hom¢(M, M) and the (C, R)-bimodule M has the double
centralizer property on both sides.

The discussion above gives us a non-trivial example of a uniform prime
module. Furthermore, if 4 is commutative and Noetherian, then M is finitely
generated over the Noetherian ring R. From (3.3), any subdirect sum of such
modules is again a Noetherian prime module.

6. Matrix representations. In this section a different characterization
for Hom, (M, M), where M is a left A-module of the type discussed in § 5,
is given. Actually we work in a more general setting and obtain this charac-
terization as a special case.

In the following let 4 be an arbitrary ring with identity. It is known that
if M is a finitely generated unitary free left A-module, then Hom (M, M)
has a faithful representation as A4,, a total matrix ring over 4. We shall
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provide a faithful matrix representation for Hom, (M, M) in the case where
M is contained in a free module. Large classes of such modules are given by
Levy (12) and Gentile (3). Our work is a generalization of that in (8, p. 25),
where a characterization for Hom, (M, M) is obtained in the case where M
is cyclic.

Let M be a finitely generated unitary left A-module with generators
€1, ...,¢. Write E = (ey,...,e,) and let E* denote the corresponding trans-
pose. For V =x1e1 4+ ...+ x,e, € M, x; € A, we write V = XE!, where
X = (xy,...,%,). If 6 € Hom,(M, M), then V6 = (XE")9 = XDE!, where
D € A4,. Of course, the mapping # — D is not necessarily onto 4,, nor is it
necessarily one-to-one. A matrix D € A, is termed allowable if one of the
following equivalent conditions is satisfied:

(i) the mapping ¢ : XE*— XDE' of M into M is single-valued;

(i1) whenever XE*! = 0, then XDE' = 0.

The set W of allowable matrices forms a ring and to each element of W
there corresponds an element of Hom, (M, M). Let

T = {D € W|DE' = 0}.

Then the correspondence D — ¢, where ¢ is the mapping defined in (i) above,
is a homomorphism of W onto Hom, (M, M) with kernel 7. We have proved

(6.1) THEOREM. Let M be a finitely generated unitary left A-module and let

E = (ey...,e,), where the e; generate M. Then Hom (M, M) = W/T, where
W is the ring of allowable matrices and T = {D € W|DE' = 0}.
Now suppose M is contained in a free left A-module N with basis fi, . . . , fi.

If F=(,...,fx), then E* = QF" where Q is an #n X k matrix with elements
in 4. For V = XE' = XQF' we have V§ = XDE' = XDQF'. The mapping
6 — DQ is a 1-1 mapping of Hom4 (M, M) onto the set Z of distinct matrices
of the form DQ, where D is allowable (note that if DQ = BQ. B allowable,
then D — B € 1. If 6, —» DQ and 6: — BQ, then 6,0 — DBQ. Define addition
and multiplication in Z by

DQ + BQ = (D + B)Q, DQ-BQ = DBQ.

It is clear that addition is well defined. To see that multiplication is well
defined, let DQ = D’Q and BQ = B’Q, where D’ and B’ are allowable. Then,
forallz, D; Q = D’; Q where D;(D’;) isrow 7 of D(D’). Thus (D; — D' ,)E'=0
and, since B is allowable, (D; — D’,)BE* = 0 for all 7. Hence DBE!=D'BE!
and DBQ = D'BQ = D'B’'Q. Then Z is a ring isomorphic to Hom (M, M)
under the correspondence § — DQ.

This establishes part (a) of the next theorem. The proof of part (b) is
direct.

(6.2) THEOREM. Let M be a finitely generated unitary left A-module with
generators ey, . .., e, and suppose M is contained in a free left A-module N

https://doi.org/10.4153/CJM-1965-099-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1965-099-5

1052 E. H, FELLER AND E. W. SWOKOWSKI

with basis fi, ..., s Let E = (e, ..., e), F= (f1,...,[s), and define Q by
Et = QF". Then
(a) Hom (M, M) =~ Z, where Z is the ring of matrices of the form DQ, for
D allowable, and where multiplication and addition in Z are defined by
DQ-BQ = DBQ, DQ+ BQ = (D + B)Q;
(b) Hom (M, M) =2 W'/T’, where W' is the set of D € W such that if
XQ =0, then XDQ = 0 and where T’ is the set of D € W' such that
DO = 0.
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