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Abstract
Data-driven generative design (DDGD) methods utilize deep neural networks to create
novel designs based on existing data. The structure-aware DDGD method can handle
complex geometries and automate the assembly of separate components into systems,
showing promise in facilitating creative designs. However, determining the appropriate
vectorized design representation (VDR) to evaluate 3D shapes generated from the structure-
aware DDGDmodel remains largely unexplored. To that end, we conducted a comparative
analysis of surrogate models’ performance in predicting the engineering performance of 3D
shapes using VDRs from two sources: the trained latent space of structure-aware DDGD
models encoding structural and geometric information and an embedding method encod-
ing only geometric information. We conducted two case studies: one involving 3D car
models focusing on drag coefficients and the other involving 3D aircraft models considering
both drag and lift coefficients. Our results demonstrate that using latent vectors as VDRs can
significantly deteriorate surrogate models’ predictions. Moreover, increasing the dimen-
sionality of the VDRs in the embeddingmethodmay not necessarily improve the prediction,
especially when the VDRs contain more information irrelevant to the engineering perform-
ance. Therefore, when selecting VDRs for surrogate modeling, the latent vectors obtained
from training structure-aware DDGDmodels must be used with caution, although they are
more accessible once training is complete. The underlying physics associated with the
engineering performance should be paid attention. This paper provides empirical evidence
for the effectiveness of different types of VDRs of structure-aware DDGD for surrogate
modeling, thus facilitating the construction of better surrogate models for AI-generated
designs.

Keywords: Data-driven generative design, Structure-aware generative design, Vectorized
design representation, Surrogate modeling, Engineering performance prediction,
Automated machine learning

1. Introduction
Design researchers have applied artificial intelligence (AI) techniques to support
various design activities, including design exploration and optimization, design
synthesis and the extraction of human preferences for designs to help human
designers make decisions during the design process (McComb, Cagan & Kotovsky
2017; Panchal et al. 2019; Rahman, Xie & Sha 2019, 2021; Rahman et al. 2020).
Among various AI techniques, generative design (GD) techniques are receiving
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more attention in both industry and academic fields (Krish 2011; McKnight 2017;
Matejka et al. 2018; Chen, Chiu & Fuge 2020; McComb et al. 2020). GD is a term
for a class of tools that can generate novel yet realistic designs leveraging compu-
tational andmanufacturing capabilities (Shea, Aish &Gourtovaia 2005). There are
some widely used GD techniques, such as genetic algorithms and shape grammars
(Singh & Gu 2012). GD has been applied in several commercial CAD software,
such as Autodesk Fusion 360, PTC Creo and Siemens NX. However, current GD
methods are driven primarily and solely by engineering performance, so the
generated designs often do not agree with conventional aesthetics (Oh et al.
2019). Additionally, generated designs may be too complex to be created without
using additive manufacturing (McKnight 2017). These problems can be alleviated
by deep generativemodels (Oh et al. 2019), capable of learning to produce new data
given a set of training examples. State-of-the-art deep generative models, such as
the variational autoencoder (VAE) (Kingma & Welling 2013) and the generative
adversarial network (GAN) (Goodfellow et al. 2014), have been applied in various
fields, including computer vision, computational creativity, architecture and
engineering design (Yi, Walia & Babyn 2019; de et al. 2020; Regenwetter, Nobari
& Ahmed 2022; Li, Wang & Sha 2023).

In the design literature, these deep generative models are often referred to as
data-driven generative design (DDGD) methods. DDGD methods have been
increasingly used to improve design creativity and facilitate conceptual design,
such as airfoil design (Chen et al. 2020; Chen & Ahmed 2021), car wheel design
(Oh et al. 2019; Yoo et al. 2021) and car shape design (Li, Xie & Sha 2021, 2022).
DDGDmethods can learn to synthesize designs from data without explicit human
configuration by training a deep neural networkmodel and learning a latent vector
space with a predefined (often reduced) dimensionality. Such a latent vector space
is a low-dimensional representation of the design space from which the data were
observed. Since the training process combines features from all existing designs,
new designs that are not seen from existing data can be sampled from the latent
design space (Krish 2011; Cunningham et al. 2020). Therefore, DDGD methods
have become an important tool for the generation of conceptual design ideas due to
their ability to quickly generate a large number of novel designs.

Traditionally, most DDGD methods treat each design data as a monolithic
whole (i.e. one single object without considering the interconnections of compo-
nents as shown in Figure 1(a)) formodel training (Shu et al. 2020). In this paper, we
refer to them as traditional DDGD methods. Recently, there have been emerging
interests in developing structure-aware DDGD methods (Chen & Fuge 2019; Mo
et al. 2019; Gao et al. 2019b; Li et al. 2021). Compared to traditional DDGD
methods, structure-aware DDGD methods can handle complex geometries con-
sisting of interconnected components and learn interdependencies between com-
ponents (i.e. structure-aware shapes as shown in Figure 1(b)) to enable automatic
assembly of deep-generated components in a system (Gao et al. 2019b). It can also
provide designers with increased flexibility to make local design modifications by
altering or substituting individual parts.

To evaluate the engineering performance of designs from DDGD methods,
there are two different ways. One is to conduct high-fidelity simulations, for
example, based on computational fluid dynamics (CFD) or finite element analysis
(FEA). However, the downside of these simulations is the high computational cost.
For example, assessing the aerodynamic performance of a 3D carmodel using CFD
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software could take hours to complete. Therefore, it is impractical to evaluate the
vast number of design alternatives obtained from DDGD methods in support of
fast design decision-making. The other way is to use surrogate models that have a
relatively lower fidelity but can significantly accelerate the evaluation process.
Surrogate modeling is a supervised machine learning technique to approximate
the output based on the labeled training dataset (i.e. pairs of inputs and their
corresponding outputs) (Sun et al. 2020; Whalen & Mueller 2022). Generally, in
these surrogate modeling methods, each design is represented as a fixed-length
vector of design parameters, referred to as vectorized design representation (VDR).
VDR enables compact encoding of complex design configurations, making it easy
to process and analyze design data mathematically and computationally. As one
type of VDRs, latent vectors have recently been widely adopted in design gener-
ation, evaluation and optimization (Burnap et al. 2016; Umetani & Bickel 2018;
Chen et al. 2020; Li, Xie & Sha 2022). Latent vectors are obtained from a latent
space during the training process in neural network models, such as VAEs and
GANs. A latent space is often continuous and low-dimensional (compared to the
dimensionality of the training data) and packs complex data distributions. Vectors
in such a latent space can capture the underlying structure and important features
of the training data.

Previous studies have primarily concentrated on utilizing latent vectors from
traditional DDGD methods as the VDR for design evaluation. Little is known
about the efficacy of latent vectors acquired from the structure-aware DDGD
training process, which encompasses both part-to-part structural information and
geometric information. The research question, therefore, arises:What would be the
appropriate VDR for a computational pipeline in support of the evaluation of
structure-aware deep-generated shapes? In particular, is it reliable to directly use
the latent vectors readily available from the training process of a structure-aware
DDGD model?

To answer this question, we performed experiments to compare the perform-
ance of the latent vectors obtained from the training process of a structure-aware

Figure 1. Comparison between a monolithic shape (a) and a structure-aware
shape (b), where dash lines indicate structural interdependencies (i.e. support and
symmetry) between components.
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DDGDmodel in predicting the engineering performance of the designs, with those
obtained by embedding the generated 3D shapes (after training) using a 3D point
grid (3DPG), as shown in Figure 2. We conducted the comparative study in two
case studies: 1) predicting the drag coefficients of car designs and 2) predicting both
the drag and lift of aircraft designs. Our results indicate that while latent vectors are
frequently used in surrogate models, they may not be suitable when the encoded
information includes factors that have minimal relevance to the engineering
performance under investigation (e.g. the SPVAE vectors containing structural
information in our study). Employing such VDRs can actually hinder the predic-
tion accuracy of a surrogate model. This new knowledge is significant because a
proper VDR is crucial to the accuracy of the engineering analysis and, therefore, the
validity of a 3D shape and its associated economic impact. For example, the drag
evaluation of car body shapes significantly influences their fuel economy estimate.
With a 10% reduction in aerodynamic drag, the highway fuel economy will
improve by approximately 5% and the city fuel economy by approximately 2%
(ARC, n.d.). Therefore, it is crucial to consider the physics underlying engineering
performance metrics and select VDRs that integrate relevant information, such as
geometric information, to enhance the prediction accuracy of surrogate models.

The remainder of this paper is organized as follows. Section 2 provides a review
of relevant research on both traditional and structure-aware DDGD methods and

Figure 2. Overview of the research approach consisting of two key modules: the structure-aware generative
design module and the design evaluation module
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surrogate models. The DDGD methods and surrogate models adopted, as well as
the proposed research approach, are presented in Section 3. We then present and
discuss the experimental results and summarize the main findings in Sections 4
and 5. The paper is concluded in Section 6, in which we summarize the closing
insights and potential future research directions.

2. Literature review
In this section, we present a review of the existing literature that is most relevant to
this study, including data-driven generative design methods, structure-aware
generative design methods and surrogate models for design evaluation.

2.1. Data-driven generative designmethods in engineering design

Data-driven generative design (DDGD) methods can conduct an efficient design
space exploration by generating a large number of various new design concepts
from existing design data (e.g. images or 3D shapes) without an explicit set of
design variables (Achour et al. 2020). In engineering design, DDGD methods are
developed mainly based on two techniques, generative adversarial networks
(GANs) and variational autoencoders (VAEs), in addition to a few others,
such as recurrent neural networks (RNNs) and reinforcement learning
(RL) (Regenwetter et al. 2022).

For example, focusing on 2D design applications, Oh et al. (2019) integrate a
topology optimization (TO) technique with GANs to generate numerous aesthetic
design options taking into account engineering performance. Their method was
applied to the design of 2D car wheel rims. Chen et al. (2020) develop a Bezier-
GANmodel that can learn from shape variations in an existing 2D airfoil database
to parameterize aerodynamic designs so that the resulting parameterization can
accelerate design optimization. Dering et al. (2018) set up a physics-based virtual
environment that combines an RNN model to enhance the quality of deep-
generated designs of 2D cruise ships. Fujita et al. (2021) propose a framework
for the generation of design concepts by applying TO and a variational deep
embedding method in a 2D bridge design problem.

In 3D design applications, Shu et al. (2020) present a method that combines
GANs and a physics-based virtual environment introduced by Dering et al. (2018)
to generate high-performance 3D aircraft models. Zhang et al. (2019) propose a
method using VAEs, a physics-based simulator, and a functional design optimizer
to synthesize 3D aircraft with prescribed engineering performance. Building on the
2D wheel generative design work (Oh et al. 2019), Yoo et al. (2021) develop a deep
learning-based CAD/CAE framework that can automatically generate 3D car
wheels from 2D images by point extraction (i.e. to extract the points from contour
lines of the wheels) and sketch extrusion.

All of the methods mentioned above address the form and functionality of
designs in either 2D or 3D forms, which can help designers explore the design space
by automatically generating a large number of design concepts with informed
engineering performance. However, they all consider designs as one single mono-
lithic piece and ignore the interrelations between components in a product or an
assembly.
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2.2. Structure-aware design generation methods

Acknowledging that real-world designs usually consist of multiple parts, Chen
& Fuge (2019) develop hierarchical GANs to synthesize designs with inter-part
dependencies. The method is demonstrated using a design case of 2D airfoils.
However, 3D shapes are often the final form of most products, and structure-
aware 3D design studies mostly come from the computer science community. Li
et al. (2017) introduce a generative recursive autoencoder for shape structures
(GRASS) based on recursive neural networks. GRASS trains independent
networks for the geometry and structure of parts and generates 3D voxel shapes
by producing a hierarchical series of bounding boxes filled with voxels. Nash &
Williams (2017) propose a generative model of part-segmented 3D objects,
namely, the shape variational autoencoder (ShapeVAE). Given a collection of
dense surface points with surface normals of part-segmented objects, Shape-
VAE can learn a low-dimensional shape embedding to synthesize new and
realistic 3D shapes represented by point clouds, which can then be converted to
3D meshes using the surface normals. Mo et al. (2019) introduce StructureNet,
a generative autoencoder that learns shape structure using graph neural net-
works. StructureNet uses graphs to encode hierarchical representations of
shapes. After training, it can generate 3D shapes formed by box structures or
3D point cloud shapes. Gao et al. (2019b) propose Structured Deformable
Meshes Net (SDM-NET) which consists of PartVAEs and a Structured-Part
VAE (SPVAE) for the generation of 3D mesh shapes. PartVAE is used to learn
individual part geometry, and SPVAE is used to learn part geometries and the
structure of the 3Dmodels. SDM-NET can directly output 3Dmesh shapes with
high surface quality. Compared to point clouds and voxels, meshes can better
capture the geometric details (e.g. smoothness, curvature) of 3D objects
without consuming large storage space. Therefore, mesh representation is
more suitable for engineering design that requires fine-grained details of
geometry so that they can be accurately measured, prototyped and tested for
engineering performance. In this study, we adopt SDM-NET as our structure-
aware generative design module to generate 3D mesh shapes with high surface
quality.

2.3. Surrogate models and AutoML in engineering design

Engineering performance evaluation is a critical link in engineering design,
optimization and computational manufacturing. But it is usually computation-
ally expensive. For example, CFD evaluation of the aerodynamic performance of
3D automobile models requires solving the Navier–Stokes equation, which could
take hours and days depending on the level of fidelity and computer configur-
ations (Umetani & Bickel 2018). Therefore, the development of a cost-effective
surrogate model holds practical significance. The primary purpose of a surrogate
model is to act as an approximation model, replacing intricate and time-
consuming computations, to facilitate a fast evaluation of designs without
compromising on accuracy (see Queipo et al. 2005 and Wang & Shan 2006 for
a review). Typically, surrogate models require that the design be represented as a
fixed-length vector (i.e. vectorized design representation (VDR)) (Umetani &
Bickel 2018; Chen et al. 2020).
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The process of training surrogate models typically involves utilizing labeled
design data, where the labels represent performance metrics of interest. This
training can be approached as a supervised learning problem by employing
machine learning (ML) techniques. Creating an ML model that achieves
excellent performance often requires much investment in terms of computa-
tional time and resources in tasks such as feature engineering, model selection
and hyperparameter optimization. Recently, there has been a growing interest
in applying Automated Machine Learning (AutoML) to accelerate the process
of training optimal surrogate models. AutoML leverages sophisticated algo-
rithms to explore a wide range of models and hyperparameters. This automated
search process often leads to better-performing models compared to manual
experimentation due to its ability to navigate effectively through extensive
search spaces and discover the most favorable configurations (He, Zhao &
Chu 2021).

Although design researchers have been employing common surrogatemodels
outlined in the literature and following industry practices (Cunningham, Simp-
son & Tucker 2019; Whalen & Mueller 2022), there is limited awareness of
AutoML within the engineering design community (Regenwetter, Weaver &
Ahmed 2023). Regenwetter et al. (2023) took a lead in this regard by comparing
the performance of surrogate models constructed using traditional methods
(e.g. decision trees, k-nearest neighbors, XGBoost (Chen & Guestrin 2016) and
neural networks with Bayesian optimization) against those built using AutoML
frameworks. They demonstrated that AutoML outperforms other surrogate
models in a bicycle design application and called for the attention of the design
community to explore the use of AutoML frameworks. Based on their findings,
we compare the performance of different VDRs by adopting two AutoML
frameworks, that is Auto-sklearn (Feurer et al. 2015) and AutoGluon
(Erickson et al. 2020), due to their superior performance compared to other
alternatives.

3. Research approach
As shown in Figure 2, the proposed approach consists of two key modules: the
structure-aware generative design module, which employs the SDM-NET (Gao
et al. 2019b); and the design evaluation module, which utilizes surrogate models
implemented with AutoML frameworks. The structure-aware generative design
module (Section 3.1) harnesses the capabilities of SDM-NET to enable efficient
exploration of design spaces by incorporating structural information and can
generate designs that not only exhibit aesthetic appeal but also possess fine
geometric details. On the other hand, the design evaluation module (Section 3.2)
uses AutoML techniques to construct surrogate models that approximate the
engineering performance of interest. While focusing on a car body design as
the primary case study to showcase the proposed approach, we ensure that the
methodology maintains its generalizability. Therefore, we present a second case
study on the aircraft design. See Section 4 for details.
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3.1. Structure-aware generative design module

We implement SDM-NET (Gao et al. 2019b) for the structure-aware generative
design module to generate 3D mesh shapes. This module consists of two types of
VAEs: PartVAE and SPVAE. Given a 3D shape consisting of several parts, a
PartVAE can learn the geometry of an individual part, and SPVAE can learn the
geometries and the structure of parts jointly. We make no novel modifications to
the network architecture of SDM-NET. Therefore, we only explain the key steps
(see Figure 3) to facilitate the understanding of the latent spaces of the structure-
aware generative design module. The generative design module is trained using a
two-stage training strategy by training the PartVAEs first and then the SPVAE.

3.1.1. Two-stage training of the PartVAEs and SPVAE
A 3D car model is first segmented into seven parts (i.e. one car body, two mirrors
and four wheels). 3D models from open source databases, such as ShapeNet
(Chang et al. 2015), are often unstructured and unoriented triangle meshes. Thus,
such 3D mesh shapes cannot be directly used in DDGD methods without proper
preprocessing (e.g. voxelized or re-meshed). These shapes may also contain
interior parts (e.g. seats and steering wheels) that are not desired, since we focus
on the external geometry only. As a widely used technology in computer graphics
that maps one point set to another, non-rigid registration (Zollhöfer et al. 2014) is
applied to re-mesh each part (e.g. car body) using a watertight template mesh
shape. In our study, we use a cube as the template mesh that contains 19.2 k
triangles (9602 vertices). All re-meshed parts are watertight with the same mesh
connectivity of the template mesh from which design features will be extracted.

The As Consistent As Possible (ACAP) method (Gao et al. 2019a) is applied to
extract the design features of a part for the input of its corresponding PartVAE.We
deform the same cubemesh as the one used in non-rigid registration to a target part
by multiplying transformation matrices, from which nine unique numbers can be
extracted for each vertex of the mesh shape. Thus, a part with v vertices can be
represented by a feature matrix Mf ∈ℝv × 9, where v¼ 9602 in our implementa-
tion. One feature matrix can be obtained from each part of a car model, which will
be the input to one PartVAE. Thus, seven PartVAEs are trained for car models.
After training, the latent space of each PartVAE can be obtained and the latent
vector corresponding to a part will be concatenated with the structural information
(i.e. support and symmetry information) of the part to form a feature vector vf . All
feature vectors from all parts of a car model will then be concatenated to form the
input vector of SPVAE. The SPVAE can then be trained using the concatenated
input vectors.

3.1.2. Structure-aware generative design of 3D shapes in meshes
The trained generative design module can enable structure-aware generative
design tasks, such as shape interpolation and random shape generation. As
introduced, both the geometric information of parts and inter-part structural
information are encoded into the SPVAE latent space.

As shown in Figure 3, when provided with an SPVAE vector obtained from the
latent space learned by SPVAE, the SPAVE decoder can transform it into an output
vector. This resulting vector can be subdivided into seven distinct vectors, each
representing a specific car part. These individual vectors contain both the encoded
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structural information and a separate vector that encodes the geometry of the
corresponding part. Afterward, the vector can be decoded using the decoder of the
corresponding PartVAE model, resulting in a feature matrix. This feature matrix
can then be further processed with the template cubemesh to create a car part using

Figure 3. Overview of the data-driven structure-aware generative design module
demonstrated using a car design case. The design module is implemented using
SDM-NET (Gao et al. 2019b) that consists of PartVAEs and SPVAE.
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the reverse process of extracting the feature matrix as introduced in Section 3.1.1.
Separate parts can be combined into one holistic car model with their structural
information. It should be noted that independent of the SPVAE, the seven
PartVAEs can also be used to generate individual car parts. However, it is not
guaranteed to obtain a reasonable car model when combining those parts, as the
structural information is not included.

3.2. Design evaluation module

As shown in Figure 2, we construct surrogate models to enable a rapid and reliable
evaluation of the engineering performance of interest for the design evaluation
module. To achieve that, we need to determine the appropriate vectorized design
representation (VDR) and the surrogate modeling frameworks. To train a surro-
gate model, the label data (the engineering performance of interest, such as drag
and lift coefficients) can be obtained from computer simulations, for example
computational fluid dynamics (CFD) analysis.

3.2.1. Vectorized design representation
Research has demonstrated the effectiveness of latent vectors derived from the
latent space of a trained data-driven generative design (DDGD) model in design
evaluation (Umetani & Bickel 2018; Chen et al. 2020). As shown in Figure 3, there
are two types of latent vectors that can be obtained from the trained structure-
aware generative design module, namely SPVAE vectors and PartVAE vectors.
They are readily available once the training process is completed.

In addition to the commonly used latent vectors for VDR, we propose a new
method that combines a signed distance field (SDF) technique with a 3D point grid
(3DPG) inspired by the work (Badías et al. 2019) to generate an alternative form
of VDR, namely 3DPG vectors. As illustrated in Figure 2, we first construct a
3DPG filled with evenly distributed points. The dimensions of the 3DPG
Length ×Width×Heightð Þ are chosen according to the largest bounding box
of the 3D models in the dataset so that the 3DPG can include all the 3D models.
Once a 3Dmodel is put into the 3DPG, each point will be assigned a value of 1 if it
falls inside the 3D model or a value of 0, otherwise. The SDF method is used to
determine the status of each point. Signed-distance is the distance of a given pointp
from the boundary of a set, with its sign determined by whether the point is in the
set or not. The signed distance of each point can be calculated and transferred to
0 or 1 using Equation (1). Then, all binary values for all points will be concatenated
into a 3DPG vector.

ϕ pð Þ¼ 1, ifp∈Ω, i:e:,SDF pð Þ < 0,
0, otherwise:

�
(1)

The status of points in the 3DPG varies for different 3D models, so each 3D
model can be uniquely parameterized into a 3DPG vector with a dimension equal
to the number of points in the 3DPG. For example, a car model will be param-
eterized into a 20,000-dimensional vector if there are 20,000 points in the 3DPG.
The SDF method (Badías et al. 2019) is effective in handling meshes that are not
watertight, but requires the mesh to represent the outer surface (shell) of a 3D
object in order to accurately determine the status of individual points in the 3DPG.
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However, in our case, we cannot directly apply this method to the final holistic 3D
shapes created by combining parts from the structure-aware generative design
module. This is because these shapes are essentially a combination of multiple
shells of the parts. To ensure that the 3DPG vectors can better capture the
geometric information of these 3D shapes, we first convert each combined shape
into a single shell shape using ManifoldPlus (Huang, Zhou & Guibas 2020) before
sending it to the 3DPG.

3.2.2. Surrogate models using AutoML frameworks
There are three main reasons for us to utilize AutoML frameworks in constructing
the surrogate models: 1) AutoML routinely outperforms experienced data scien-
tists in identifying optimal supervised learning models (Hutter, Kotthoff &
Vanschoren 2019); 2) all of the best-performing AutoML frameworks today rely
on some forms of model ensembling techniques that combine predictions from
multiple basic models and have long been known to outperform individual models
(Dietterich 2000); and 3) it has been demonstrated that AutoML outperforms the
strongest gradient-boosting and neural network surrogate models identified
through Bayesian optimization in a bicycle design application (Regenwetter
et al. 2023). In summary, AutoML provides a streamlined workflow for training
and deploying models, making it suitable for various machine learning applica-
tions. Therefore, we use AutoML to build optimal surrogate models to fully
understand the potential of different VDRs in performance evaluation and pre-
diction.

Specifically, we apply two popular AutoML frameworks, Auto-sklearn (Feurer
et al. 2015) and AutoGluon (Erickson et al. 2020). Auto-sklearn has been the
winner of numerous AutoML competitions (Guyon et al. 2019). It employs
efficient multi-fidelity hyperparameter optimization strategies and the combin-
ation of numerousmodels through an ensemble selection strategy. AutoGluon was
introduced recently and has been reported to outperform many other alternatives
in various applications (Erickson et al. 2020). It applies an innovative layer-stack
ensembling method. Additionally, AutoGluon incorporates k-fold bagging to
minimize the risk of overfitting.

3.2.3. The objectives of the design evaluation module
The design evaluation module is to approximate the input–output relationship
defined by the computer simulation f �ð Þ as shown by Equation (2), where x
represents a VDR of a 3D shape X, and y denotes the corresponding performance
metric of interest which is used as the ground truth value. Similarly, the surrogate
model can be defined by Equation (3), where ŷ is the predicted performance of
interest and g �ð Þ is the approximation of f �ð Þ implied by the surrogate model. The
objective of the surrogatemodel can be seen as an optimization problem defined by
Equation (4).

y¼ f xð Þ (2)

ŷ¼ g xð Þ (3)

11/31

https://doi.org/10.1017/dsj.2023.25 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2023.25


ŷ∗ ¼ argmin
ŷ

y� ŷj j,∀x (4)

The pair data, that is the VDRs and their corresponding engineering perform-
ance values, form the training dataset for the surrogate models. We split the
training dataset into a train set and a test set. The surrogate models will be trained
using the train set only, and the test set serves as unseen data to test the general-
izability of the trained surrogate models. In order to conduct a fair comparison of
the performance of various types of VDRs in predicting engineering performance,
we train an optimal surrogate model for each combination (i.e. one type of VDR
and one particular AutoML framework) under identical conditions. For example,
the training data and the configurations of the AutoML framework are kept the
same. In addition, we use Auto-sklearn (Feurer et al. 2015) and AutoGluon
(Erickson et al. 2020) to examine whether the results would be independent of a
particular AutoML framework used.

For a comprehensive comparison, we adopt three evaluation metrics: the mean
absolute error (MAE), the root-mean-squared error (RMSE) and the coefficient of
determination (R2) as calculated by the following equations, where n is the total
number of observations, yi is the actual value of the observation i, ŷi is the predicted
value of the observation i and y is the mean of the actual values. We also perform
the paired t-test on the absolute errors (AE) values (∣yi� ŷi∣) of two groups to test if
there is a statistically significant difference between the prediction accuracy when
using different VDRs. The paired t-test is not performed on squared errors
(SE) since they are essentially squared AE, and the test is not conducted on the
R2 as it represents a statistics of a group of data.

MAE¼ 1
n

Xn
i¼1

∣yi� ŷi∣ (5)

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

yi� ŷi
� �2s

(6)

R2 ¼ 1�
Pn

i¼1 yi� ŷi
� �2Pn

i¼1 yi� y
� �2 (7)

4. Implementation details and results
In this section, we present the implementation details and results of the structure-
aware generative design module and the design evaluation module. All experi-
ments were run on a Linux workstation with a TITAN RTX GPU and a 20-core
Intel Xeon Silver 4114 CPU.

4.1. Design cases and datasets

We demonstrated the proposed approach and conducted a comparative study
in two design cases: the car and aircraft designs. The datasets used for the
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structure-aware generative design module and the design evaluation module are
summarized in Table 1.

4.1.1. Training data for the structure-aware generative design module
For the training of the structure-aware generative designmodule, we collected 1824
car and 2690 aircraft mesh models from Gao et al. (2019b), which have been
divided into parts using a semantic segmentation approach (Yi et al. 2016). These
data are derived from ShapeNet (Chang et al. 2015) and ModelNet (Wu et al.
2015). We developed an algorithm to automatically select models that have all
seven parts (i.e. one body, two mirrors and four wheels) for the car models and all
eight parts (i.e. one fuselage, two wings, three tails and two engines) for the aircraft
models. Also, for car models, since we focused on regular passenger car models
(e.g. sedans, SUVs), we manually excluded the other car types, including buses,
Formula One and trucks. This gave us a total of 1161 car models and 1597 aircraft
models, which were used as training data for the structure-aware generative design
module.

4.1.2. Training data for the design evaluation module
We collected the engineering performance data of car models and aircraft models
by leveraging two open-sourced datasets: 9070 car models labeled by drag coeffi-
cients (Song et al. 2023) and 4045 aircraft models with drag and lift coefficients
(Edwards, Addala &Ahmed 2021). The 3Dmodel data of the two datasets are both

Table 1. Summary of the datasets for the two design cases: the car and aircraft designs
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derived from ShapeNet (Chang et al. 2015). The corresponding performance
values are obtained from the computational fluid dynamics (CFD) simulation tool
OpenFOAM (Jasak 2009).

To match the labeled 3D models with the training data used in the structure-
aware generative design module, we selected the overlapping models between the
two datasets for each case study. Furthermore, we only selected models with drag
or lift coefficients within the range of 0 to 1 to ensure data quality and reliability.
This gave us a total of 439 car models with corresponding drag coefficients and
1047 aircraft models with drag and lift coefficients. These data were used as
training data for the design evaluation module. Figure 4 shows the histograms of
the drag coefficients for the car models, and the drag coefficients and lift
coefficients for the aircraft models, along with their descriptive statistics in the
legend of Figure 4.

4.2. Structure-aware generative design module

We used the same strategies for both car models (1161) and aircraft models (1597)
to train the structure-aware generative design module as detailed below. We
randomly split the training dataset into train data (75%) and test data (25%).
64 and 128were chosen for the dimensionality of the latent spaces of PartVAEs and
the SPVAE, respectively, because they yield the lowest reconstruction errors, as
shown byGao et al. (2019b). To ensure effective training, we implemented the two-
stage training strategy discussed in Section 3.1.1. This involved initially training
PartVAEs, followed by training the SPVAE until the networks converged.
Throughout the training process, we monitored and evaluated all associated
training loss terms (i.e. reconstruction loss and Kullback–Leibler (KL) divergence
loss for both train and test data). The convergence of these loss terms indicated that
the networks were successfully trained. In the Appendix, we document the training
loss values throughout the training process in Figure A1. The training for the car
models took approximately 72 hours (i.e. PartVAEs: 10000 epochs; SPVAE: 20000
epochs), while it took approximately 120 hours (i.e. PartVAEs: 5000 epochs;
SPVAE: 10000 epochs) to complete the training for the aircraft models.

In Figure 5(a), several reconstructed car body models are displayed. The
first row presents the original models, while the second row displays the
corresponding reconstructed models. Figure 5(b) shows a few car bodies and

Figure 4.Histograms of (a) drag coefficients of car models, (b) drag coefficients of aircraft models and (c) lift
coefficients of aircraft models with the mean, std, min and max values.
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combined car models by linearly interpolating the shapes of the first and last
columns. The in-between columns from the second to the fourth column are
linearly interpolated shapes. We can observe a gradual transition of the geom-
etry from the first column to the last column. In addition, SPVAE vectors can be
randomly sampled from the learned latent space to generate random shapes
(car bodies, mirrors and wheels) as shown in Figure 5(c). Similarly, the results
for aircraft models are presented in Figure 6. Figure 6(a) exhibits several

Figure 5. Examples of the generated shapes for car models. (a) Reconstruction of car
bodies. (b) Shape interpolation of car bodies and merged car models. (c) Random
generation of separate parts.
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instances using shape reconstruction, where the top row shows the original
models, and the bottom row shows their corresponding reconstructed versions.
Figure 6(b) illustrates the combined aircraft models created by linearly inter-
polating the shapes of the first and last columns. Notably, the interpolation
effectively captures the transformation of the wings, progressing from a com-
pletely flat configuration to a slightly curved shape towards the wingtips.
Figure 6(c) exhibits examples of randomly generated aircraft parts: fuselage,
wings and engines, from left to right, as well as combined aircraft models.

Theoretically, we can sample as many latent vectors as possible from the
latent space for random shape generation. Shape interpolation can be performed
between every pair of car models with any number of in-between interpolation
shapes. Thus, we can generate thousands of unseen designs, and the generated
designs look reasonable in terms of visual appearance and have great geometry
details. The results also indicate that the latent spaces of PartVAEs and the
SPVAE are trained well which can serve as VDRs for the design evaluation
module.

Figure 6. Examples of the generated shapes for aircraft models. (a) Reconstruction
of aircraft models. (b) Shape interpolation of merged aircraft models. (c) Random
generation of separate parts (fuselage, wings and engines) and merged aircraft
models.
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4.3. Design evaluation module

4.3.1. Latent vectors and 3DPG vectors for the VDR
To evaluate and determine the most effective VDR in predicting the engineering
performance investigated, we prepared two representative VDRs: latent vectors
(the commonly used VDR; and are obtained from the training process of the
DDGD models) and 3DPG vectors (the proposed VDR; and require additional
steps to vectorize the generated designs) for the training of the design evaluation
module as introduced in Section 3.2.1. The configurations of these VDRs are
summarized in Table 2.

Regarding the latent vectors (as depicted in Figure 3), we utilized two types of
VAE vectors. First, we employed the 128-dimensional SPVAE vectors for both car
and aircraft models. Second, we concatenated the PartVAE vectors from all parts,
resulting in the creation of all_parts vectors. For car models, the all_parts vectors
have a dimension of 64 × 7¼ 448, while for aircraft models, the dimension is
64 × 8¼ 512. The major difference between all_parts vectors and SPVAE vectors

Table 2. Summary of the vectorized design representations (VDRs) for the
car and aircraft models
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is that all_parts vectors encode geometric information only, while the SPVAE
vectors encode both geometric and structural information. Additionally, we took
into account the significance of the car body in calculating the drag coefficient, as
well as the significance of the wings (airfoils) in determining the lift coefficient
(Fairman 1996). Thus, we specifically chose the body vectors (64-dimensional) for
the car models and the wing vectors (two wings, 64 × 2¼128-dimensional) for the
lift prediction of the aircraft models.

For 3DPG vectors, we found that the largest bounding box dimensions
(L×W ×H) for car models to be 0:86 × 0:37 × 0:29, while for aircraft models, it
was found to be 0:91 × 0:88 × 0:30. The 3Dmodels are all normalized (Chang et al.
2015) and the values of the bounding boxes in the mesh files do not have a unit
because they are dimensionless, but they are proportional to the size of actual 3D
models. To ensure the inclusion of all models in the training data for the design
evaluation module, we set the 3DPG dimensions to 5 × 2 × 2 for car models and
5 × 5 × 2 for aircraft models for convenience. They can be set to different values as
long as the ratio L=W=H is maintained. Each car or aircraft model can then be
scaled up by a factor of 5 to better fit into the corresponding 3DPG.

After setting up the 3DPG, we can obtain a 3DPG vector as outlined in
Section 3.2.1 by utilizing the SDF method. Although only the 20,000-dimensional
vector was shown to be effective in Badías et al. (2019), we tested three different
configurations for 3DPG vectors: 1) 35 × 12 × 12¼ 5040, 2) 40 × 16 × 16¼ 10240
and 3) 50 × 20 × 20¼ 20000. The time cost for parameterization remains constant
at approximately 35 seconds, regardless of any changes in the dimension of the
VDRs or the specific car or aircraft models being used. The reason for this is that
the SDF method involves performing a virtual laser scan of the input 3D model,
and the computational time is dominated by the resolution of the scan. Although it
appears that it took no time to obtain the latent vectors from a trained structure-
aware generative design model, the training itself can be time-consuming. It took
approximately 223 seconds per car model and 271 seconds per aircraft model
according to the training time introduced in Section 4.2 while obtaining 3DPG
vectors does not involve any training process.

4.3.2. Prediction results using different VDRs and surrogate models
We ended up with a total of 439 car models, each having an associated
drag coefficient. These car models were represented by six types of VDRs, includ-
ing 128-dimensional SPVAE vectors, 448-dimensional all_parts vectors,
64-dimensional body vectors, as well as three types of 3DPG vectors with dimen-
sions of 5040, 10240 and 20000, respectively. Similarly, for the 1047 aircraft models
with associated drag and lift coefficients, we had 128-dimensional SPVAE vectors,
512-dimensional all_parts vectors, 128-dimensional wing vectors and the same
types of 3DPG vectors as car models. By utilizing each type of VDR along with the
corresponding engineering performance label data, we randomly divided the
training dataset into two parts: a train set (80%) and a test set (20%). Importantly,
this division remained the same for all VDRs within a particular design case to
make a fair and consistent comparison. We then trained an optimal surrogate
model using Auto-sklearn (Feurer et al. 2015) and AutoGluon (Erickson et al.
2020).
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These AutoMLmodels have the capability to automatically reserve a portion of
the train set data as validation data. We trained all AutoMLmodels by minimizing
RMSE on the validation data for optimal surrogate models. Given our focus on
understanding the generalizability of the trained surrogate models to unseen data,
we primarily present the prediction results specifically for the test data. We have
made the dataset, code and all results for the design evaluationmodule open-source
for the purpose of reproducibility and for further research interests.1

Results for predicting drag coefficients of the car models. Several insights can be
drawn based on the results of MAE, RMSE and R2 presented in Figure 7.2

Figure 7. The comparison of prediction accuracy for the test set data of car models using different VDRs with
drag coefficients with three evaluation metrics: MAE (↓), RMSE (↓) and the R2 (↓) using (a) Auto-sklearn or
(b) AutoGluon. The p-values resulting from the paired t-test for AE values are used to show the statistical
difference.

1https://github.com/Xingang-Li/structure_aware_design_evaluation
2The root-mean-squared error (RMSE) and R2 (coefficient of determination) are both statistics for

group data. Consequently, the error bars are not applicable to them. Additionally, the error bars are not
included for the mean absolute error (MAE) because the variance of absolute error (AE) across the
entire dataset is not relevant in this analysis due to the use of the paired t-test rather than the
independent two-sample t-test. This is because the different VDRs were obtained from the same data
group (i.e. the test dataset), so the datasets for the t-test are not independent.
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Regardless of the AutoML frameworks used, the 3DPG vectors consistently exhibit
higher accuracy than the latent vectors. SPVAE vectors achieve the lowest accur-
acy, while the 20000-dimensional 3DPG vectors achieve the highest accuracy
among all alternative VDRs. For 3DPG vectors, the mean accuracy increases in
general with higher dimensions. The best combination of the VDR and AutoML
framework is observed to be the 20000-dimensional 3DPG vectors and Auto-
sklearn, resulting in anR2 value of 0.312. On the other hand, theworst combination
is observed to be the SPVAE vectors and AutoGluon, resulting in an R2 value of
0.021.

The heatmaps in Figure 7 show the p-values associated with the paired t-test
performed on the AE values. The results indicate that regardless of the specific
AutoML framework utilized, the performance of the SPVAE vectors is consistently
inferior to that of the 20000-dimensional 3DPG vectors, and this difference is
statistically significant, that is p¼ 0:0139 when using Auto-sklearn and p¼ 0:0069
when using AutoGluon. Regarding the latent vectors, no significant differences are
observed between the SPVAE vectors, the body vectors and the all_parts vectors.
The only exception is the difference between the SPVAE vectors and the all_parts
vectors (p¼ 0:0059) in AutoGluon. Similarly, for 3DPG vectors, while the mean
values of all three metrics show an increasing trend, no significant differences are
observed between different VDRs.

Results for predicting drag coefficients of the aircraft models. Based on the results of
MAE, RMSE and R2 presented in Figure 8, we can get several insights as follows.
Similar to the findings in car models, the 3DPG vectors consistently demonstrate
superior accuracy compared to the latent vectors across both AutoML frameworks
employed. Among all the alternative VDRs, it is also observed that SPVAE vectors
exhibit the lowest accuracy, while the 20000-dimensional 3DPG vectors achieve
the highest accuracy. There is a notable trend of increasing accuracy as the
dimension of the 3DPG vectors increases. The most favorable combination of
the VDR and AutoML framework is observed with the 20000-dimensional 3DPG
vectors with AutoGluon, yielding an R2 value of 0.602. Conversely, the least
favorable combination is observed with the SPVAE vectors and Auto-sklearn,
resulting in an R2 value of 0.341.

We also conducted a paired t-test on the AE values and the resulting p-values are
visualized in the heatmaps in Figure 8. The heatmaps indicate significant differences
(p < 0:05) between most pairs of VDRs, except for three cases: 1) all_parts vectors
and 5040-dimensional 3DPG vectors with both Auto-sklearn and AutoGluon, 2)
5040 and 10240-dimensional 3DPG vectors (where the p-value slightly exceeds 0.05
with Auto-sklearn but was less than 0.05 with AutoGluon) and 3) 10240 and 20000-
dimensional 3DPG vectors with both Auto-sklearn and AutoGluon.

Results for predicting lift coefficients of the aircraft models. As the results of MAE,
RMSE and R2 shown in Figure 9, regardless of the AutoML frameworks used, the
SPVAE vectors achieve the lowest accuracy while all_parts and wing vectors
achieve the top two highest accuracies among all the alternative VDRs. However,
there is a discrepancy between the performance of the all_parts and wing vectors
using the two AutoML frameworks. 3DPG vectors perform poorly, and there is no
noticeable trend of increasing accuracy with higher-dimensional 3DPG vectors, as
previously observed in the prediction of drag coefficients. The best combination of
the VDR and AutoML framework is observed with the wing vectors and
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AutoGluon, resulting in an R2 value of 0.389. The worst combination is observed
with the SPVAE vectors and Auto-sklearn, resulting in an R2 value of 0.244.

For the t-test conducted on the AE values, the results of the p-values are shown
in Figure 9. The heatmaps show that apart from four specific pairs in Auto-sklearn:
1) SPVAE vectors and all_parts vectors, 2) SPVAE vectors and 5040-dimensional
3DPG vectors, 3) SPVAE vectors and 20000-dimensional 3DPG vectors and
all_parts vectors and wing vectors, there is no significant difference (p < 0:05)
observed between all combinations of VDRs when using the two AutoML frame-
works.

We summarize the results for the best combination of the VDR and AutoML
framework for the surrogate models and the corresponding prediction perform-
ance metrics of car and aircraft models in Table 3.

5. Discussion
In this section, we provide a comprehensive analysis of the results obtained from
the structure-aware generative design module (Section 5.1) and the design

Figure 8. The comparison of prediction accuracy for the test set data of aircraft models using different VDRs
with drag coefficients with three evaluationmetrics: MAE (↓), RMSE (↓) and theR2 (↓) using (a) Auto-sklearn
or (b) AutoGluon. The p-values resulting from the paired t-test for AE values are used to show the statistical
difference.
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Figure 9. The comparison of prediction accuracy for the test set data of aircraft models using different VDRs
with lift coefficients with three evaluation metrics: MAE (↓), RMSE (↓) and the R2 (↓) using (a) Auto-sklearn
or (b) AutoGluon. The p-values resulting from the paired t-test for AE values are used to show the statistical
difference.

Table 3. The best combination of the VDR and AutoML
framework for the surrogate models of car and aircraft
models
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evaluation module (Section 5.2) and discuss the limitations and potential future
research directions.

5.1. Structure-aware generative design module

Structure-aware generative design is an emerging and relatively unexplored field that
holds promise in addressing the challenges of systems design problems using data-
driven generative design (DDGD) methods. Unlike the generative design of mono-
lithic shapes that prioritize optimizing overall system performance, the structure-
aware generative design focuses on capturing and integrating the details of parts’
geometry and structure. By considering the structural characteristics of individual
parts, the structure-aware generative design enables a more comprehensive under-
standing of the system. It can also facilitate the exploration of various design
alternatives and iterations, empowering engineers to make well-informed decisions
regarding part geometries and the structural relations between parts. This opens
opportunities for the discovery of novel and optimized designs that may have been
overlooked using traditional generativemodels, especially in the early stages of design.

In our study, we implemented SDM-NET (Gao et al. 2019b), a data-driven
structure-aware generative model, as the structure-aware generative design mod-
ule. While it holds significant potential to help designers effectively explore the
design space, there is amajor limitation in the currentmethodology. The validity of
the generated designs in terms of their structural integrity heavily relies on visual
inspection, and there is no quantitative method available to assess. While most of
the generated designs are deemed acceptable, some may have unattached parts
despite the structural information learned. One possible approach to ensure
structural validity is to employ optimization techniques (Gao et al. 2019b), but it
is crucial to develop a quantitative and automatic method to assess the structural
validity of the generated designs, for example rating the designs in terms of their
structural integrity and surface quality.

5.2. Design evaluation module

5.2.1. Drag prediction for car and aircraft models
The SPVAE vectors demonstrate the least accuracy, whereas the all_parts vectors
consistently enhance the predictive accuracy in both case studies. In the context of
car models, the body vectors also exhibit superior performance compared to the
SPVAE vectors, as indicated by lower MAE and RMSE values and higher R2. This
superiority is further supported by a paired t-test using AutoGluon (p¼ 0:0184), as
depicted in Figure 7. Both all_parts vectors and SPVAE vectors encode geometric
information for all components of the 3D shapes. However, the SPVAE vectors also
include structural information such as support and symmetry. This structural
information is crucial to generate designs that account for the underlying structures
of 3D shapes, as illustrated inFigure 3.Nevertheless, when the structural information
is irrelevant to the engineering performance, such as the drag here, it can have a
detrimental impact on the suitability of the SPVAE vectors as VDRs for surrogate
models. In such cases, using latent vectors that only capture geometric information
most relevant to the engineering performance of interest, such as the all_parts vectors
or car body vectors, can be more advantageous for surrogate models. On the other
hand, in situations where the structural information plays a significant role in
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engineering performance, such as in determining the maximum allowable load for a
bike frame design problem, usingVDRs that incorporate structural informationmay
have advantages over the VDRs that only capture geometric information.

Likewise, by capturing the geometric information of all components of 3D
shapes, 3DPG vectors possess significant potential to serve as more suitable VDRs
for predicting drag coefficients. There is a general trend of improved accuracy,
reflected in lower MAE and RMSE values, and higher R2 values, as the dimen-
sionality of 3DPG vectors increases. Specifically, the 20000-dimensional 3DPG
vectors exhibit the highest level of accuracy. Increasing the dimensionality of the
3DPG vectors implies using more points to parameterize a design utilizing the 3D
point grid, as described in Table 2. This augmentation in the number of points
enables a more comprehensive capture of the geometric details of 3D shapes,
thereby enhancing the prediction of the drag coefficient, which is closely influ-
enced by the overall geometry of 3D shapes. But, it should be noted that 3DPG
vectors also encode the positional information of various components due to the
signed distance field, whereas all_parts vectors (concatenation of part vectors) do
not contain such information. This distinction in encoding positional information
could be one of the reasons why 3DPG vectors generally exhibit better performance
compared to all_parts vectors in predicting drags in both design cases.

If considering statistical significance, however, augmenting the dimensionality of
3DPG vectors does not necessarily lead to a significant improvement in prediction
accuracy as evident: 1) In the case of car models, there are generally no significant
differences in the prediction accuracy between the 3DPG vectors; 2) similarly, for the
aircraft models, there are no significant differences between 10240- and 20000-
dimensional 3DPG vectors. The lack of significant differences could be attributed
to the relatively small size of the datasets. Specifically, the dataset for car models (439)
is approximately 60% smaller than the dataset for aircraft models (1047). This
discrepancy in dataset size, as depicted in Figure 1, causes a less number of pairs of
VDRs with significant differences in the analysis of the car models compared to the
aircraft models. In addition, the curse of dimensionality could be another reason
affecting the performance of 3DPG vectors with higher dimensionality. Moreover, it
is important to acknowledge that in order to achieve a similar or higher level of
prediction accuracy compared to latent vectors (such as SPVAE vectors or all_parts
vectors), 3DPGvectors should have aminimumof 5040 dimensions, as demonstrated
in our experiments. We conducted tests using an extreme case of 128 dimensions
(same as the SPVAE vectors), which resulted in a significant decrease in prediction
accuracy and even yielded negative R2 values in the case study of car design.

5.2.2. Lift prediction for aircraft models
SPVAE vectors consistently exhibit the lowest prediction accuracy in lift predic-
tion, similar to their performance in drag prediction regardless of the AutoML
frameworks employed. Although there are variations in the outcomes produced by
Auto-sklearn and AutoGluon, the use of the latent vectors of wings (i.e. wing
vectors) in conjunction with AutoGluon demonstrates the highest accuracy in
terms of a higher R2 value of 0.389.

In a similar manner to the drag prediction, it is evident that there are no
significant differences among 3DPG vectors with varying dimensions. Addition-
ally, there are no significant differences between all_parts vectors and 3DPG
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vectors, as supported by the p-values (all are greater than 0.1) shown in Figure 9.
However, when considering the MAE, RMSE and R2 metrics, the mean values
indicate a slightly decreasing trend in prediction accuracy for 3DPG vectors as the
dimensionality increases, and the performance of all_parts vectors surpasses that
of 3DPG vectors, which deviates from the drag prediction scenario. This discrep-
ancy can be attributed to two major factors: the encoded geometric information
and the curse of dimensionality. The drag coefficient is affected by all components
of the 3D shapes, while the lift coefficient is mainly determined by the wings
(NASA n.d.; Fairman 1996). Although the 3DPG vectors, which encode geometric
information of all components, can be advantageous for drag prediction, they pose
challenges when predicting lift because they include a considerable amount of
irrelevant geometric information from non-wing parts. Consequently, the advan-
tage of increasing the dimensionality of 3DPG vectors to capture more geometric
details is diminished by the curse of dimensionality. As a result of this phenom-
enon, the performance of the 3DPG vectors in lift prediction even decreases to a
level comparable to that of the SPVAE vectors, and even worse than that of the
all_parts vectors (512-dimensional), as shown in Figure 9.

5.2.3. Summary of the two design cases
Important insights can be derived from the two design cases involving drag and lift
prediction.While latent vectors have frequently been employed asVDRs in surrogate
models, they may not be the most appropriate option when encoded information
includes a mixture of relevant and irrelevant information for the engineering per-
formance of interest. Specifically, when utilizing structure-aware generated design,
caution should be exercised when employing latent vectors that encode both geom-
etry and structural information (such as SPVAE vectors in our case) that are often
readily obtainable from the training. Instead, the underlying physics shall be exam-
ined to determine what geometric information would contribute most and whether
the structural information is relevant to the engineering performance to be predicted.

For 3DPG vectors, increasing the dimensionality does not necessarily improve
the predictive performance of surrogate models. This is especially true when the
vectors contain more noise, that is the information irrelevant to engineering
performance, such as in the lift prediction.

Limitations. 1) Despite trying different combinations of AutoML frameworks and
VDRs, the resulting surrogate models achieved modest R2 values of 0.312, 0.602
and 0.389 for drag prediction in cars and aircraft, and lift prediction in aircraft,
respectively. These values fall short of high predictive accuracy if referring to the
criterion of R2 ¼ 0:67 (Henseler, Ringle & Sinkovics 2009). The primary reason is
the limited availability of data. This has been evident by the difference between the
R2 value of drag prediction in aircraft (0.602) and that in cars (0.312) because there
are more data points for the aircraft models compared to the car models (1047
versus 439). 2) The SDF method, although effective in capturing the geometric
information of 3D shapes, suffers from considerable computational cost, taking
approximately 35 seconds to generate each high-quality 3DPG vector. We con-
ducted experiments to explore the impact of reduced resolution in laser scans as
outlined in Section 4.3.1. In particular, utilizing a lower resolution could reduce the
processing time to 3 seconds. However, this reduction in resolution also led to a
significant drop in prediction accuracy, with the R2 value declining by up to 41%.
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To ensure data quality, computational cost poses a practical limitation for its
application in interactive generative design. Therefore, it is valuable to investigate
different implementations that can offer faster solutions to encode 3D shapes.

6. Conclusion and future work
Data-driven generative design (DDGD) methods can effectively support design
ideation and 3D shape synthesis. With the recent advances in structure-aware
DDGD, this study is motivated to answer the following question: What are the
appropriate vectorized design representations (VDRs) for fast performance evalu-
ation of the 3D shapes generated by the structure-aware DDGDmethod? To answer
this question, we first developed a structure-aware generative design module based
on SDM-NET (Gao et al. 2019b) that can generate various new 3D shapes taking into
account the interconnections between parts. Then, we realized the fast design
evaluation module by constructing surrogate models using AutoML frameworks.
Based on the integrated framework combining structure-aware DDGD for design
generation and surrogatemodeling for design evaluation, we tested different types of
VDR, including latent vectors (i.e. PartVAE vectors and SPVAE vectors) obtained
from the generative design module and the 3D point grid (3DPG) vectors.

We observed that SPVAE vectors directly from the structure-aware generative
design module achieved the worst prediction accuracy regardless of the design
cases and AutoML frameworks used. The results indicate that while latent vectors
are commonly used as VDRs for surrogate models, they may not be suitable when
the encoded information contains factors (e.g. structural information) that are of
little relevance to the engineering performance of interest. Therefore, it is crucial to
consider the physics underlying the engineering performance investigated and
select VDRs that incorporate the most relevant information to improve the
prediction accuracy of surrogate models. The results could have a broader impact
on industry professionals because the use of appropriate VDR can lead to the
improved predictive performance of design automation tools. A better prediction
of engineering performance will also help designers make informed decisions in
the early design stage when interacting with AI, facing a large number of design
alternatives generated, thus potentially shortening the overall design cycle and
reducing the development time.

The limitations presented in Section 5 help us identify some future research
directions in the development of more practical design applications for structure-
aware generative design. First, the structural integrity of the generated designs is
assessed through visual inspection, without a quantitative method. Developing an
automatic and quantitative evaluation method for structural validity will greatly
benefit future applications of structure-aware generative design. Second, we demon-
strate our method in scenarios where the engineering performance of a product is
closely related to its shape geometry. Interestingly, we observed that the inclusion of
structural information could have a detrimental effect on the suitability of SPVAE
vectors as VDRs for surrogate modeling. More research and investigation are neces-
sary to explore design cases in which structural information can significantly impact
engineering performance, so we can test whether VDRs that incorporate both
structural and geometric informationmay offer advantages over those solely capturing
geometric information. Furthermore, to generalize the findings of this study, it is
important to test more design cases or collect additional data for the two design cases.
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This would allow a deeper understanding and a wider application of the conclusions
drawn from the study.
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A. Appendix
The training loss values for both the car and aircraft models were recorded and
documented in Figure A1. It was observed that all loss terms reached convergence,
indicating successful training. Specifically, for car models, the PartVAEs were
trained for 10000 epochs, followed by training the SPVAE for 20000 epochs. On
the other hand, for the aircraft models, the PartVAEs were trained for 5000 epochs,
followed by training the SPVAE for 10000 epochs.

Figure A1. The training loss values, including reconstruction loss and KL divergence loss, were recorded for
both the car and aircraft models during the training process. However, for the purpose of showcasing the
training of PartVAEs, we have chosen to highlight the loss values specifically for the training of the body
components of the car and aircraft because similar trends were observed in the loss values for training other
parts as well.
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