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INTRODUCTION 

In the circular plane restricted three-body problem, we study the 
stable large retrograde non-periodic satellite orbits. We use rotating 
axes with the origin in the body around which turns the satellite, cal­
led its primary. We choose the initial conditions such as Yo»0 and Uo=0, 
so that an orbit can be represented by a point in the (X0,V0) plane. In 
this plane, the set of stable orbits is represented by a limited region, 
which we call the stability zone. This zone is composed in general by a 
large continental region, approximately limited by Lagrange points, and 
a peninsula more or less elongated. Inside, takes place the characte­
ristic of the single-periodic symmetrical family f which can be called 
the backbone of the zone [figure l). 

Figure 1. An example of the stability zone. 

The numerical explorations have shown that the non—periodic orbits 
can be approximately decomposed into a fast "reference motion" and a 
slow libration of its centre around the primary of the satellite. More­
over, the amplitude of the libration, which is zero for the periodic 
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orbits, increases when the initial conditions of the non-periobic orbits 
move off from the initial conditions of the periodic orbits. 

HILLfS CASE 

In Hill's case, the reference motion is elliptic, with a period of 
the order of 2rt, and the centre of this ellipse librates on a very 
elongated oval with a period much larger than 2TL9 The analysis of this 
libration is developped in a paper published in 1976♦ In this paper, 
we establish the equations of motion for the coordinates of the centre 
of the ellipse and we found two integrals of motion: the first is the 
semi-major axis of the ellipse; the second is essentially Jacobi's in­
tegral, translated into the new coordinates. A numerical verification 
gives very good agreement for all these results. 

GENERAL CASE 

We turn now to the general case, i.e. U, £ 0. In this case, neither 
the reference motion, nor the trajectory or its centre cannot be des­
cribed by simple curves (figure 2J. The trajectory of the centre of the 
reference motion can be considered as a very narrow "bean", elongated 
along the circle of centre B and radius 1. 

Figure 2. An example of libration. 

To use the same analysis as in Hill's case, we must first "rectify the 
bean". This lead us to use the transformation defined by: 

X* ( ? + l ) c o s 6 - 1 and Y» f ? + l ) s i n © . (0 
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Figure 3, Representation of the coordinate systems (X,Y) 
and {%,*). 

Then, the classical equations of motion for the satellite become: 

x-* 
i«1 » * - f , 

(2 ) 

In the limiting case jut=0 (which corresponds to the two-body problem), 
the family f reduces (in fixed axes) to a family tl of ellipses of 
focus B and semi-major axis 1• In this case, the terms in u* vanish in 
equations (2) and the reduced equations have a well-known solution, 
Rather than the constants of integration, which are the elements of o1 
the physically interesting quantities are the coordinates (x,y) of the 
centre of ̂ , the amplitude A in 5 and the phase difference <p between 
the motions of S and B2, given by the equations: 

(3) x=a-1, y«(l-a3'2)o£+ oj +t0, 
A — a e , <fc»tof 

where a, e, OJ and t0 are the elements of w and ck is the 
eccentric anomaly of S on c. 

Then the solution of the reduced equations can be written: 

t-N/HT (A sinc<+(x+l)et)+<f, 
5=A cos qc+x+1, f'ttX4 A" 
9—AN/x+T sin * -oC +2 arc t g ( ^ ^ ~ * tg <*/2)+Y. 

In the approximation jJk̂ O (considering x, y, A and (D as constant), we 
differentiate equations (4) to obtain *) and ^ : 

(4 ) 

ty=-A sinoc/V/xTTfA cos<<+x+l), 
vL=\/(x+l)2-A2 /vx+T(A COSOC+X+1 

) 2 - I . 

(3 ) 
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We return now to exact equations (2) and we effect a change of va­
riable, replacing f|t^f»>>t) by (xfyiAf*f)« Therefore, we differentiate 
equations (4) and [5)t considering now x, y, A and <f as variables, to 
obtain the values#of (f ,6,tj,^); then, substituting in equations (2) and 
solving for (x,y,A,<p), we obtain the differential equations for the new 
variables: 

x= jjLF(x,yfA,f,oO, ^ 

£«(l - (x+l)3 '2 ) / \ /x7T(A cost*+x+l)+iA G(x,y,A,^,cOi > (6) 

A= jk H (x ,y ,A , f , * ) , <j> = ^ K(x,y,A,<f,*), J 
where F, G, H and K are rather complicated expressions, which inte­

gration does not seem to be feasible analytically in general. 
Fortunately, we may put some approximations. The period T of the 

libration is much greater than the period 21t of the reference motion; 
therefore we can say that x is of the order of x/T and y of the order 
of y/T. On the other hand, the numerical results show that X<£1, while 
A and y are of the order of 1. And from the equations (6), we deduce 
that x is of the order of k, so that finally *A must be much smaller 
than x. This means particularly that we can neglect in y the term in juu 
Moreover, we can average the equations (6) over Xtt with the assumption 
that x, y, A and CD stay constant over this period. Finally, we obtain 
the following equations: 

*" I* 4^ ' y=-3x/2, A=0, 
Oy 

where 1 f 2 T t P 
1= - ~ l ((A coseC+l)/p-(A cosd+1) cos©)d«L r^\ 

=(A cosot+1) -2(A cosol+l) cos 8 +1 
& = -A s i n * - * +2 arc tg(x£j~ tg <*/2)+y. and 

The integration of the integral I does not seem to be feasible analyti­
cally in general? nevertheless, the numerical integration for a set of 
values of A and y is in progress. 

As in Hill's case, we have two integrals of motion. The first is: 
A = cSt". (8) 

The other: 
B(x,y,A)=3Ax2/4+ P> AI = cst, (9) 

is essentially Jacobi's integral, translated into the new variables 
and averaged over 2n, under the same assumptions which lead us to the 
final equations (?). 

Now we have to compute numerically some examples of curves 
B=cst and verify all these results for some actual orbits. 
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