CORRESPONDENCE.

TABLES TO CONVERT q_{x} TO m_{x} AND m_{x} TO q_{x}

To the Editors of the Journal of the Institute of Actuaries.
Sirs,-Many hours must have been spent by actuaries 11 converting various values of q_{x} to the corresponding values of m_{x} and vice versa. Assuming a uniform distribution of deaths over each year of age, the relationship between these two functions is fixed and it is therefore possible to give it in a simple table which applies to any values of q_{x} and m_{x} indevendently of the table of mortality concerned.

As in working to a given number of figures the difference between q_{x} and m_{x} is the same for several values of the function the table can be given as a "critical" table, i.e., this difference is tabulated as a correction to the function and only the largest value of the function which produces each correction is inserted.

3-figure Table

q_{x}	Cor- rec- tion	m_{x}
-000		. 000
.031	+0-	-031
. 034	1	.055
	2	
-069		.071
	3	.085
-081	4	
. 092		$\cdot 097$
-101	5	$\cdot 107$
	6	
$\cdot 110$		-117
	7	
$\cdot 118$	8	$\cdot 126$
$\cdot 126$. 134
	9	
-133	10	$\cdot 142$
$\cdot 139$		$\cdot 150$
	11	
$\cdot 146$	12	$\cdot 157$
-131		$\cdot 164$
	13	
-157		-171
-163	14	$\cdot 177$
	15	
-168		$\cdot 183$
	16	
$\cdot 173$		$\cdot 190$
	17	. 196
-178	18	
$-183+19-$		$\cdot 201$
-187	$+19-$	$\cdot 207$

4-figure Table

g_{x}	$\begin{aligned} & \text { Cor- } \\ & \text { rec- } \\ & \text { tion } \end{aligned}$	m_{x}	$q x$	Cor- rec- tion	m_{x}	$9 x$	Cor- rec- tion	m_{x}	$7 x$	Cor- rec- tion	$m_{d_{r}}$
-0000		.0000	.0614		$\cdot 0634$. 0869		.0908	$\cdot 1061$		$\cdot 1121$
-0099	+0	$\cdot 0100$. 0630	20	$\cdot 0650$	$\cdot 0879$	40	.0920		+60	
-	1	. 0100	-0680	21	-0650	. 0879	41	-0920		61	
-0172		-0173	. 0645		-0666	-0890		. 0932	- 1078		$\cdot 1140$
.0222	2	$\cdot 0224$.0659	22	. 0682	-0900	42	.0943	1087	62	$\cdot 1149$
-	3	. 0224	- 065	23	-0682	- 0900	43	. 0043	1087	63	1149
. 0262		$\cdot 0266$	-0673		-0697	- 0911		$\cdot 0934$	-1095		$\cdot 1159$
$\cdot 0297$	4	.0302	. 0687	24	$\cdot 0712$.0921	44	. 0965	-]104	64	$\cdot 1168$
-	5	-	-0887	25	.	OP-1	45	006s	1.104	65	1168
-0328		. 0334	.0701		. 0727	. 0931		-0976	$\cdot 1112$		$\cdot 1177$
. 0357	6	. 0363	.0714	26	$\cdot 0741$.0941	46	$\cdot 0987$	$\cdot 1120$	66	$\cdot 1186$
	7		O714	27		-041	47			67	1186
. 0383		. 0391	-0797		.0755	. 0051		-0998	-1128		$\cdot 1196$
	8			28			48			68	
. 0408	9	. 0416	$\cdot 0740$	29	-0769	-0960	49	$\cdot 1009$	- 1136	69	$\cdot 1205$
. 0431		. 0440	-0753		. 0783	. 0970		$\cdot 10 \div 0$	-1144		$\cdot 1214$
	10			30			50			70	
-0453		. 0463	. 0765		.0796	-0980		$\cdot 1030$	$\cdot 1152$		$\cdot 1323$
-0473		$\cdot 0485$. 0778	31	-0809	. 0989	51	$\cdot 1040$	- 1160	71	$\cdot 1232$
	12			32			52			72	
-0493		. 0506	$\cdot 0790$.0822	. 0999		$\cdot 1051$	$\cdot 1168$		$\cdot 1240$
.0512	13	$\cdot 0526$	-0801	33	.0835	-1008	53	$\cdot 1061$	$\cdot 1176$	73	$\cdot 1249$
-0512	14		-0801	34	. 0835	- 1008	54	$\cdot 1001$	$\cdot 1170$	74	1249
$\cdot 0.531$. 0545	-0818		. 0848	$\cdot 1017$		$\cdot 1071$	$\cdot 1183$		$\cdot 1258$
0549	15	. 0564	. 0825	35	. 0860	$\cdot 1026$	55	. 1081	$\cdot 1191$	75	$\cdot 1267$
0 ¢	16	-056	-82	36	. 080		56			76	
-0566	,	. 0.582	. 0838		.0872	$\cdot 1035$		$\cdot 1091$	$\cdot 1190$		-1275
.0582	17	. 0600	. 0847	37	. 0884	. 1044	57	. 1101	. 1906	77	. 1284
	18			38			58		'120	78	
-0599		.0617	-0858		. 0896	-1052	-	$\cdot 1111$	-1214		-1292
	$+19$			+39			-59			+79	
$\cdot 0614$. 0634	$\cdot 0869$. 0908	$\cdot 1061$		$\cdot 1121$	$\cdot 1221$		$\cdot 1301$

In critical cases ascend.
N.B.-. $7 / \%$ e q_{x} and m_{x} columns form independent tables and are not related to ench other.

To obtain the value of m_{x} corresponding to any value of q_{x} add that correction $(\div 1,000$ iu the 3 -figure table or $\div 10000$ in the 4 -figure table) given in the centre column which is found opposite the interval in the first column in which the particular value of q_{x} lies; if q_{x} is one of the values given, add the cornertuon next above it. Similarly to obtain q_{x} from n_{x} enter the third column and deduct the correction found in the centre column.

Examples: $\quad q_{x}=\cdot 0473, m_{x}=\cdot 0473+\cdot 0011=\cdot 0481$
(4 - figure table) $\quad q_{x}=\cdot 0474, m_{x}=\cdot 0474+\cdot 0012=\cdot 0486$

$$
\begin{array}{ll}
m_{x}=\cdot 0970, & q_{x}=\cdot 0970-\cdot 0045=\cdot 0925 \\
m_{x}=\cdot 1149, & q_{x}=\cdot 1149-\cdot 0062=\cdot 1087
\end{array}
$$

As m_{x} increases more rapidly than q_{x} there are bound to be
values of m_{x} which do not correspond to any particular value of q_{x} (i.e., there will be gaps in the values of m_{x}). On the other hand a value of q_{x} corresponding to these missing values of m_{x} can always be found; in fact, two values of m_{x} at each of these critical points will give the same value of q_{x}.

The basis upon which the table was constructed is as follows :

$$
m=\frac{2 q}{2-q} \quad \therefore \quad m-q=\frac{q_{-}^{2}}{2-q}=\text { (say) } n
$$

To find the values of q which make $n=\frac{1}{2}, 1 \frac{1}{2}, 2 \frac{1}{2}$, \&c., in order to ascertain the largest values of q which give a correction (i.e., $m-q$) of $0,1,2$, \&c., one must solve for q in terms of n.

$$
q=\frac{\sqrt{n^{2}+8 n}-n}{2}
$$

Similarly for m in terms of n (i.e., $m-q$)

$$
m=\frac{\sqrt{n^{2}+8 n}+n}{2}
$$

The working is shown in the following table:

n (1)	$n(8+n)$ (2)		(3)-(1) $\frac{2}{2}$ $=q_{x}$ (4)	$\begin{gathered} \frac{(3)+(1)}{2} \\ =m_{x} \\ (5) \end{gathered}$
$\cdot 00005$	-000400	-02000	0099	-0100
15	1200	3464	-0172	$\cdot 0173$
25	2000	4472	-0222	$\cdot 02 \% 4$
35	2800	5292	$\cdot 0262$	0266
\vdots	\vdots	\vdots	\vdots	\vdots

Cols. (4) and (5) are always rounded off to the lower figure in the fourth place, i.e., 009975 is taken as $\cdot 0099$. This ensures that this value of q (or m) gives a correction of just less than n (in this case $\frac{1}{2}$), i.e., the correction to the fourth place is $n-\frac{1}{2}$ (in this case 0), hence the rule "In critical cases ascend."

A 5 -figure table can be constructed similarly and, in spite of its greater size, it would be well worth the doing if any considerable number of conversions had to be made.

This process is illustrative of the construction of "critical" tables in general which are extremely useful in such circumstances as the present.

I am,
Yours faithfully,
112 Malford Grove,
W. A. FORSTER.

Woodford, $E .18$.
27 February 1929.

