CORRESPONDENCE.

TABLES TO CONVERT q_x TO m_x AND m_x TO q_x

To the Edulors of the Journal of the Institute of Actuaries.

SIRS,—Many hours must have been spent by actuaries in converting various values of q_x to the corresponding values of m_x and vice versa. Assuming a uniform distribution of deaths over each year of age, the relationship between these two functions is fixed and it is therefore possible to give it in a simple table which applies to any values of q_x and m_x independently of the table of mortality concerned.

As in working to a given number of figures the difference between q_x and m_x is the same for several values of the function the table can be given as a "critical" table, *i.e.*, this difference is tabulated as a correction to the function and only the largest value of the function which produces each correction is inserted.

1929.]

Correspondence.

3-figure Table

4-figure Table

q_x	Cor- rec- tion	m_x		q_x	Cor- rec- tion	m_x	q_x	Cor- rec- tion	m_{z}	Ŷx	Cor- rec- tion	m_x	q_x	Cor- rec- tion	m.,
•000		•000		.0000		•0000	·0614		·0634	·0869		·0908	·1061		·1121
.031		•031		.0099	+U-	·0100	·0630	-+-20-	.0650	0879	+-40	·0920	·1070	+60~	• 11 30
•054	1	.055	ļ	0.0172	ו 0	$\cdot 0173$	·0645	21	0666	-0890	41	·0932	.1078	01	$\cdot 1140$
•069	2	$\cdot 071$		0222	2	$\cdot 0224$	·0659	22	$\cdot 0682$	·0900	42	0943	1087	62	.1149
·081	3	.085		0262	3	$\cdot 0266$	•0673	23	·0697	·0911	43	·0954	$\cdot 1095$	03	·1159
•092	4	.097		0297	4	$\cdot 0302$	-0687	95	$\cdot 0712$	0921	44	•0965	·1104	04 65	.1168
·101	с С	·107		·0328	5 6	0334	•0701	20 06	$\cdot 0727$	·0931	40	-0976	.1112	60	·1177
·110	7	$\cdot 117$		0357	7	.0363	•0714	20	$\cdot 0741$	·0941	40	·0987	·1120	67	$\cdot 1186$
·118	2 2	$\cdot 126$		0383	, (0	$\cdot 0391$.0727	, <u>21</u> 90	$\cdot 0755$.0951	41	$\cdot 0998$	·1128	69	$\cdot 1196$
·126	0	$\cdot 134$		·0408		$\cdot 0416$	·0740) 20	$\cdot 0769$	-0960	40	·1009	·1136	00	$\cdot 1205$
·133	10	$\cdot 142$		•0431	10	$\cdot 0440$	•0753	5 20	$\cdot 0783$.0970	40 50	$\cdot 1020$	·1144	70	·1214
·139		$\cdot 150$		·0453	11	$\cdot 0463$	-0765	, 30 , 31	.0796	.0980	50	$\cdot 1030$	·1152	70	$\cdot 1223$
·146	19	$\cdot 157$		•0473	10	$\cdot 0485$	0778	30	.0809	·0989	50	$\cdot 1040$	·1160	79	$\cdot 1232$
·151	12	$\cdot 164$		·0493	12	$\cdot 0506$	-0790) 22	$\cdot 0822$	0999	52	$\cdot 1051$	·1168	72	$\cdot 1240$
•137	14	$\cdot 171$		·0512	14	$\cdot 0526$.0801	24	$\cdot 0835$	·1008	50	$\cdot 1061$	·1176	74	$\cdot 1249$
·163	14	$\cdot 177$		·0531	14	0545	•0813	95	$\cdot 0848$.1017	54	$\cdot 1071$	·1183	75	$\cdot 1258$
·168	15	$\cdot 183$		0549	15	$\cdot 0564$	0825	36	.0860	1026	56	$\cdot 1081$	·1191	76	$\cdot 1267$
•173	17	$\cdot 190$		-0566	17	0.0582	·0836	37	$\cdot 0872$	·1035	57	$\cdot 1091$	·1199	77	$\cdot 1275$
·178	11	$\cdot 196$		0582	18	·0600	0847	38	.0884	·1044	58	$\cdot 1101$.1206	78	$\cdot 1284$
·183	- 19-	·201	1	0599	+ 10-	.0617	0858	30-	·0896	·1052	-L 59 -	·1111	·1214	10 170-	$\cdot 1292$
·187	, 10-	·207		·0614	. 13-	·0634	0869)	•0908	•1061	1.00-	·1121	•1221		·1301

In critical cases ascend.

N.B.—The q_{λ} and m_{λ} columns form independent tables and are not related to each other.

To obtain the value of m_x corresponding to any value of q_x add that correction (\div 1,000 in the 3-figure table or \div 10 000 in the 4-figure table) given in the centre column which is found opposite the interval in the first column in which the particular value of q_x lies; if q_x is one of the values given, add the correction next above it. Similarly to obtain q_x from m_x enter the third column and deduct the correction found in the centre column.

Examples:
$$q_x = \cdot 0473$$
, $m_x = \cdot 0473 + \cdot 0011 = \cdot 0484$
(+figure table) $q_x = \cdot 0474$, $m_x = \cdot 0474 + \cdot 0012 = \cdot 0486$
 $m_x = \cdot 0970$, $q_x = \cdot 0970 - \cdot 0045 = \cdot 0925$
 $m_x = \cdot 1149$, $q_x = \cdot 1149 - \cdot 0062 = \cdot 1087$

As m_x increases more rapidly than q_x there are bound to be

values of m_x which do not correspond to any particular value of q_x (*i.e.*, there will be gaps in the values of m_x). On the other hand a value of q_x corresponding to these missing values of m_x can always be found; in fact, two values of m_x at each of these critical points will give the same value of q_x .

The basis upon which the table was constructed is as follows :

$$m = \frac{2q}{2-q}$$
 \therefore $m-q = \frac{q^2}{2-q} =$ (say) n

To find the values of q which make $n = \frac{1}{2}, 1\frac{1}{2}, 2\frac{1}{2}, \&c.$, in order to ascertain the largest values of q which give a correction (*i.e.*, m-q) of 0, 1, 2, &c., one must solve for q in terms of n.

$$q = \frac{\sqrt{n^2 + 8n} - n}{2}$$

Similarly for m in terms of n (*i.e.*, m-q)

$$m = \frac{\sqrt{n^2 + 8n} + n}{2}$$

The working is shown in the following table :

n (1)	n(8 + n) (2)	$\begin{array}{c} \sqrt{(2)} \\ = \sqrt{n^2 + 8n} \\ \\ (3) \end{array}$	$\frac{(3)-(1)}{2}$ $= q_x$ (4)	$ \begin{array}{c} \underline{(3)+(1)}\\ \underline{2}\\ =m_x\\ (5) \end{array} $
·00005 15 25 35 : :	·000400 1200 2000 2800 :	-02000 3464 4472 5292 : :	0099 0172 0222 0262	·0100 ·0173 ·0224 ·0266 : :

Cols. (4) and (5) are always rounded off to the lower figure in the fourth place, *i.e.*, $\cdot 009975$ is taken as $\cdot 0099$. This ensures that this value of q (or m) gives a correction of just less than n (in this case $\frac{1}{2}$), *i.e.*, the correction to the fourth place is $n - \frac{1}{2}$ (in this case 0), hence the rule "In critical cases ascend."

A 5-figure table can be constructed similarly and, in spite of its greater size, it would be well worth the doing if any considerable number of conversions had to be made.

This process is illustrative of the construction of "critical" tables in general which are extremely useful in such circumstances as the present.

I am,

Yours faithfully,

112 Malford Grove, Woodford, E. 18. W. A. FORSTER,

27 February 1929.