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Monitoring materials evolution in extreme environments using in-situ techniques allows for increased 
insight into the active mechanisms behind materials transformations and an enhanced understanding of 
the temporal dependencies of a given materials response. These types of experiments are especially 
useful for studying the combinatorial effects of super-imposed environmental stressors, such as those 
posed by nuclear reactor and radiation environments. The In-situ Ion Irradiation Transmission Electron 
Microscope (I3TEM) at Sandia National Laboratories (SNL) was developed to study such 
microstructural changes in thin, electron transparent specimens [1]. The capability to study the effects of 
radiation damage, high temperatures, mechanical stresses, and other environmental variables has been 
demonstrated in several publications [2-4]. However, the I3TEM does not allow for the study of 
mesoscale and surface transformation, and in-situ TEM experiments in general have been known to be 
subject to various thin-film effects. As such, a complementary microscopy capability enabling work at 
larger length scales has been developed in the In-situ Ion Irradiation Scanning Electron Microscope 
(I3SEM) facility. 
 
The I3SEM facility mates a JEOL JSM-IT300HRLV FEG SEM with a 6 MV EN Tandem Van de 
Graaff-Pelletron accelerator. The SEM is equipped with the largest specimen chamber offered and is 
capable of 1.5 nm resolution and operating in low-vacuum modes with pressures up to 150 Pa. The 
Tandem is coupled with four different ion sources (SNICS, Alphatross, duoplasmatron proton source, 
and Hiconex 834 sputter source) allowing for a wide range of ion species to be produced and directed 
into the SEM chamber at energies ranging from 800 keV to 88 MeV. The two are mated via a custom 
adapter utilizing the WDS port of the stock JEOL SEM chamber. This port also allows for installation of 
a Kaufman & Robinson KDC 10 gas-fed ion source capable of high-current (>10 mA) implantation of 
He or other gaseous species with energies from less than 100 eV to 1.2 keV. The Tandem and the KDC 
10 source can be operated simultaneously for dual-beam experiments. While the secondary radiation 
produced during ion irradiation tends to saturate the secondary electron detectors, the ion beam can be 
interrupted for electron imaging, allowing for pseudo in-situ observation of microstructural evolution. 
 
These ion irradiation capabilities can be paired with various in-situ SEM testing stages, such as the 
Hysitron PI-85 picoindenter, the MTI-Fulham heating/straining tensile stage, and a custom-built piezo-
fatigue stage [5,6], allowing for radiation creep, radiation fatigue, or simply high-temperature irradiation 
experiments to be performed. The SEM is also equipped with EDAX Velocity fast-scan EBSD camera 
and an EDAX Octane Elite silicon drift detector for EDS analysis, thus enabling studies on grain 
structure evolution or chemical segregation during pseudo in-situ irradiation. This suite of capabilities 
enables a plethora of mesoscale studies of materials behaviour in extreme environments. 
 
Initial proof-of-concept experiments have been performed using 20 MeV Au+ ions into a boron-doped 
polymer. As demonstrated in Figure 2, the formation of ion-induced cracking on the surface of the 
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polymer was observed in-situ. Experimental access to the I3SEM facility is available through both the 
Nuclear Science User Facilities (NSUF) and the Center for Integrated Nanotechnologies (CINT) user 
proposals [7].  
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Figure 1.  Image of the I3SEM facility at the Sandia National Laboratories Ion Beam Laboratory. 

 
Figure 2.  A boron-doped polymer imaged in the I3SEM before irradiation and after 720 seconds of 

irradiation with 20 MeV Au+ ions. 
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