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THE DIVISION OF SPACE AND THE POISSON DISTRIBUTION

RICHARD COWAN,* CSIRO Division of Mathematics and Statistics, Lindfield

This letter reports on a fascinating new result concerning the Poisson distribution. The
result arose during a study of cellular division within epithelia (fundamental 'sheet-like'
tissues of the body) and has general relevance to the partitioning to two-dimensional space
whenever the compartments of space are successively cleaved or fractured. A more complete
account of the biological context from which the mathematical problem is abstracted is given
in Cowan and Morris (1988) but, in this note, we focus on part of that work which (in a
surprising way) involves the Poisson distribution.

Consider a convex polygon with k sides. We propose to divide it with a straight line joining
two of the k sides. Suppose that the choice of sides is stochastic with the simplest probability
measure, namely, each of the kCZ choices being equally likely. Having chosen which two sides
are to be joined, it is unimportant where on these sides the line's endpoints are positioned,
except that neither should be placed at a vertex of the polygon.

After the dividing line is placed we have two convex polygons, the 'daughters' of the
original 'mother cell'. Next we independently apply the same stochastic rules to each daughter
polygon, simultaneously dividing them both and so creating four convex polygons. Division
proceeds in this way.

Let X n be the number of sides of a randomly chosen polygon from generation n (the initial
k-sided polygon is in generation 0). As n tends to infinity, it turns out that X; - 3 becomes
Poisson distributed with mean 1 for any k.

To show this, let l':(r) be the number of polygons with r sides in generation n. Given Yn(r),
the chance that a randomly sampled member of generation n has r sides is Yn(r)/2

n
•

Unconditionally, this chance is EYn(r)/2
n. Let m; be a row vector whose elements are EYn(r),

r = 3, 4, .. '. This initial vector m., contains mainly zeros but with 1 in the appropriate
position to indicate the starting polygon. It is easy to show that
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The elements of M can be indexed by (i, j), but here it is convenient to let both i and j run
over 3, 4, .. " whereupon the (i, j) element is the mean number of j-sided 'daughter'
polygons which an i-sided mother can produce. This (i, j)th element is 2/{i - 1) for
j = 3,4, ... , i + 1, zero otherwise. Define the row vector Pn as mn/2n; thus the elements of P»
are the chances of sampling an r-sided polygon in generation n (r = 3, 4, ...). From (1),

r- =Pn-lM/2=··· =po(M/2)n.

We are interested in the convergence of Pn, and thus of (M /2)n. If a limit exists then it

Received 23 September 1988; revision received 5 December 1988.
* Present address: CSIRO Division of Biotechnology, Box 184, North Ryde, NSW 2113, Australia.

233
https://doi.org/10.2307/1427208 Published online by Cambridge University Press

https://doi.org/10.2307/1427208


234 Letters to the editor

provides the limiting distribution of X; - 3. To think of this in a related setting, consider the
Markov chain that arises when, after each polygon is split, one of the two daughters is
randomly selected and discarded whilst the other is retained and further divided. The number
of sides for successive retained polygons is an irreducible Markov chain with stochastic
transition matrix M /2. Issues of convergence are as for our original problem.

If the equation p =pM/2 has a solution p whose elements sum to 1, then this establishes
that the chain is ergodic, that the chain's state vector p; converges and that p is the limit (Cox
and Miller (1965), §3.8). If we write p as (P3' P4' ...), it is a simple matter to show that
Pr = e-1/(r - 3)!. (First show P3=P4 and Pr =Pr-l - Pr-Z/(r - 3), r > 4). In the original
problem where no cells are discarded, the proof of convergence of Pn to this p follows an
identical argument. In that context Pr is the limit of E~(n )/2n as n tends to 00. Thus the
limiting Poisson result is established.

This interesting link between the division of space and the Poisson distribution is not easy
to rationalise using analogies with other problems where the Poisson distribution finds
application. It appears to be a completely new use of that remarkable distribution (though the
remarks in the companion letter of Mecke deal with a seemingly unrelated stochastic process
where the same matrix M/2 arises).

It can easily be shown that the result applies also to the situation where, instead of
simultaneous division of all cells in the same generation, any individual cell divides in the
interval (t, t + dt) with probability Adt + o(dtZ

) . A randomly sampled polygon at some large
time t will have X, sides, with X, - 3 distributed as Poisson.
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