Cusp Forms Like Δ

C. J. Cummins

Abstract. Let f be a square-free integer and denote by $\Gamma_{0}(f)^{+}$the normalizer of $\Gamma_{0}(f)$ in $\operatorname{SL}(2, \mathbb{R})$. We find the analogues of the cusp form Δ for the groups $\Gamma_{0}(f)^{+}$.

Let G be a discrete subgroup of $\operatorname{SL}(2, \mathbb{R})$ acting on the upper half plane \mathcal{H} by fractional linear transformations and let $\mathcal{H}^{*}=\mathcal{H} \cup(\mathbb{O}) \cup \infty$. Suppose $G \backslash \mathcal{H}^{*}$ is compact, i.e., G is a Fuchsian group of the first kind. For any meromorphic function h on \mathcal{H} and $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G$ define the slash operator by

$$
h \mid[M]_{k}=(c z+d)^{-k} h(M z)
$$

The convention here for arguments and exponents, following Knopp [8], is that $z^{r}=|z|^{r} \exp (i r \arg (z))$, where $-\pi \leq \arg (z)<\pi$. (Note the non-standard choice of argument for the negative reals.) Recall that h is called an automorphic form for G of weight k and multiplier ν if in addition to being meromorphic on \mathcal{H}, it also satisfies the following two conditions:
(i) $\quad h \mid[M]_{k}=\nu(M) h$ for all $M \in G$;
(ii) h is meromorphic at the cusps of G.

In (i) we require $|\nu(M)|=1$ for all $M \in G$ and

$$
\nu\left(M_{3}\right)\left(c_{3} z+d_{3}\right)^{k}=\nu\left(M_{1}\right) \nu\left(M_{2}\right)\left(c_{1} M_{2} z+d_{1}\right)^{k}\left(c_{2} z+d_{2}\right)^{k}
$$

for all $M_{1}, M_{2} \in G, M_{3}=M_{1} M_{2}$. If k is integral this is just the condition that ν is a character of G. See for example Knopp [8, Chapter 2] and Shimura [13, Chapter 2]. If in addition h is holomorphic on \mathcal{H} and vanishes at the cusps of G then it is called a cusp form.

Let

$$
\eta=q^{1 / 24} \prod_{i \geq 1}\left(1-q^{i}\right), \quad q=\exp (2 \pi i z)
$$

Then with the above definitions η is a cusp form of weight $1 / 2$ on $\operatorname{SL}(2, \mathbb{Z})$ for an appropriate multiplier system. Petersson [11], following Rademacher [12], gave an explicit formula for the multiplier system for η :

Theorem 1 Let $a, b, c, d \in \mathbb{Z}$ with $a d-b c=1$. Then the multiplier system ν for $\eta(z)$ is given by

$$
\nu\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)= \begin{cases}\left(\frac{d}{c}\right)^{*} \exp \left(\frac{\pi i}{12}\left[(a+d) c-b d\left(c^{2}-1\right)-3 c\right]\right) & \text { if } c \text { is odd } \\
\left(\frac{c}{d}\right)_{*} \exp \left(\frac{\pi i}{12}\left[(a+d) c-b d\left(c^{2}-1\right)+3 d-3-3 c d\right]\right) & \text { if } c \text { is even }\end{cases}
$$

[^0]where if $c \neq 0$ then
$$
\left(\frac{c}{d}\right)^{*}=\left(\frac{c}{|d|}\right) \quad \text { and } \quad\left(\frac{c}{d}\right)_{*}=\left(\frac{c}{|d|}\right)(-1)^{\frac{\operatorname{sign}(c)-1}{2} \frac{\operatorname{sign}(d)-1}{2}}
$$
with $\left(\frac{d}{|c|}\right)$ and $\left(\frac{c}{|d|}\right)$ being the standard Jacobi symbols with $\left(\frac{c}{1}\right)=1$. We also have $\left(\frac{0}{ \pm 1}\right)^{*}=\left(\frac{0}{1}\right)_{*}=-\left(\frac{0}{-1}\right)_{*}=1$.

Note that this formula is for the non-standard choice of argument given above, as can be seen, for example, by considering the transformation $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$. See the proof in [8, Chapter 4, Theorem 2] for details.

It follows that $\Delta=\eta^{24}$ is a weight 12 cusp form on $\operatorname{SL}(2, \mathbb{Z})$ with trivial multiplier system. The cusp form Δ has many remarkable properties and has been extensively studied. More generally there has been much study of automorphic forms that can be expressed as products of η functions. One particularly nice result is the following, which we shall use later:

Fix a positive integer N and define $h(z)=\prod_{\delta \mid N} \eta(\delta z)^{r(\delta)}$ where $\delta>0$ and $r(\delta) \in$ \mathbb{Z}. Let $w=\frac{1}{2} \sum_{\delta \mid N} r(\delta)$.
Theorem 2 The function $h(z)$ is an automorphic form on $\Gamma_{0}(N)$ if and only if the following conditions are satisfied:
(i) 24 divides $\sum_{\delta \mid N} \delta r(\delta)$,
(ii) 24 divides $\sum_{\delta \mid N}\left(\frac{N}{\delta}\right) r(\delta)$,
(iii) w is a positive integer.

If $h(z)$ satisfies these conditions, then it has weight w and multiplier

$$
\nu\left(\begin{array}{cc}
a & b \\
c N & d
\end{array}\right)=\chi(d)=\left(\frac{(-1)^{w} D}{d}\right)
$$

where $D=\prod_{\delta \mid N} \delta^{r(\delta)}$. In particular $h(z)$ is an automorphic form with trivial character if and only if it satisfies conditions (i) and (ii), w is an even positive integer, and D is a square in (\mathbb{O}).

This result is essentially due to Newman [9, 10]; see also [5] and [2]. This particular formulation is taken from Gordon and Ono [6].

Now let f be a positive, squarefree integer and define

$$
\Gamma_{0}(f)^{+}=\left\{e^{-1 / 2}\left(\begin{array}{cc}
a e & b \\
c f & d e
\end{array}\right) \in \mathrm{SL}(2, \mathbb{R})|a, b, c, d, e \in \mathbb{Z}, e| f, a d e^{2}-b c f=e\right\} .
$$

These groups are of particular importance, since Helling [7] has shown that if G is a subgroup of $\operatorname{SL}(2, \mathbb{R})$ which is commensurable with $\operatorname{SL}(2, \mathbb{Z})$, then G is conjugate to a subgroup of $\Gamma_{0}(f)^{+}$for some squarefree f. For this reason we call these groups Helling groups. Conway [3] has given a nice proof of Helling's Theorem. Note that $\Gamma_{0}(f)^{+}$has one cusp.

In the rest of this paper, by cusp form we will mean a cusp form with a trivial multiplier system. The aim of this paper is to describe the analogues of the cusp form
Δ for the Helling groups. We shall call these forms Δ_{f}. For $\operatorname{SL}(2, \mathbb{Z})$, up to a nonzero multiplicative constant, Δ is the unique cusp form of smallest-weight. We could also define Δ, up to a nonzero multiplicative constant, as the cusp form of smallest weight which is an η product or as the cusp form of smallest weight which does not vanish on \mathcal{H}. For a general Helling group G the last two conditions are equivalent and we will define Δ_{f} to be the smallest weight cusp form on G which is an η product. It is in this sense that Δ_{f} is a cusp form like Δ. In general Δ_{f} is not a cusp form of smallest weight.

A complete characterization of the cusp forms Δ_{f} is given in Theorem 6. The difficulty in obtaining this result is the complexity of the expression for ν in Theorem 1. This problem was also faced by Newman in obtaining Theorem 2. Newman observed that $\Gamma_{0}(N)$ is generated by matrices satisfying additional congruence conditions and inequalities, and that with these additional conditions the multiplier system simplifies:

Lemma 3 If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is an element of $\operatorname{SL}(2, \mathbb{Z})$ with $a>0, c>0$ and $\operatorname{gcd}(a, 6)=1$, then

$$
\eta(A z)=(-i)^{1 / 2} \exp (-\pi i \alpha(A))(c z+d)^{(1 / 2)} \eta(z)
$$

and

$$
\alpha(A) \equiv \frac{1}{12} a(c-b-3)-\frac{1}{2}\left(1-\left(\frac{c}{a}\right)\right)(\bmod 2)
$$

Note that if $c>0$ then $c z+d \in \mathcal{H}$ and so $0<\arg (c z+d)<\pi$, so that this lemma holds for our nonstandard choice of argument.

In this paper we will make use of Theorem 1, Lemma 3, the structure of $\Gamma_{0}(f)^{+}$ and a congruence argument inspired by Newman to prove Theorem 6. First we need an explicit description of the generators of $\Gamma_{0}(f)^{+}$over $\Gamma_{0}(f)$; see for example AtkinLehner [1]:

Let $f>1$ be a squarefree integer and p a prime divisor of f and let

$$
W_{p}=p^{-1 / 2}\left(\begin{array}{cc}
a p & b \\
c f & d p
\end{array}\right)
$$

where a, b, c, d are integers chosen so that $a d p^{2}-c f b=p$. Different choices of a, b, c, d give rise to matrices in the same coset of $\Gamma_{0}(f)$. The Helling group $\Gamma_{0}(f)^{+}$ is generated by $\Gamma_{0}(f)$ together with the W_{p} for all primes p dividing f. Also W_{p} normalizes $\Gamma_{0}(f)$. By an abuse of notation we will refer to any element of the coset $W_{p} \Gamma_{0}(f)$ as an Atkin-Lehner element. The proof of Theorem 6 will depend on making a suitable choice of W_{p}, just as Newman's proof of Theorem 2 depends on making a suitable choice of generators of $\Gamma_{0}(N)$.

Lemma 4 Let δ be a positive divisor of f. Then $\eta_{\delta} \mid W_{p}=\left(p / g^{2}\right)^{1 / 4} \nu \eta_{\delta \circ p}$, where ν is a 24-th root of unity (that depends on $\left.W_{p}\right), \delta \circ p=(\delta p) / g^{2}$ with $g=\operatorname{gcd}(\delta, p)$, and $\eta_{\delta}(z)=\eta(\delta z)$.

Proof First note that

$$
\begin{aligned}
\left(\begin{array}{cc}
\delta & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
a p & b \\
c f & d p
\end{array}\right) & =\left(\begin{array}{ll}
g & 0 \\
0 & g
\end{array}\right)\left(\begin{array}{cc}
a g & b \delta / g \\
f g c / p \delta & d p / g
\end{array}\right)\left(\begin{array}{cc}
\delta \circ p & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
g & 0 \\
0 & g
\end{array}\right) A\left(\begin{array}{cc}
\delta \circ p & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

and so $\eta\left(\delta W_{p} z\right)=\eta(A(\delta \circ p) z)$. Hence we have

$$
\begin{aligned}
\eta\left(\delta W_{p} z\right) & =\nu(A)\left((f g c / p \delta)\left(\delta p / g^{2}\right) z+d p / g\right)^{1 / 2} \eta((\delta \circ p) z) \\
& =\nu(A)((f c / g) z+d p / g)^{1 / 2} \eta((\delta \circ p) z) \\
& =g^{-1 / 2} \nu(A)(f c z+d p)^{1 / 2} \eta((\delta \circ p) z) \\
& =\left(p / g^{2}\right)^{1 / 4} \nu(A)\left(p^{-1 / 2} f c z+p^{-1 / 2} d p\right)^{1 / 2} \eta_{\delta \circ p}
\end{aligned}
$$

So $\eta_{\delta} \mid W_{p}=\left(p / g^{2}\right)^{1 / 4} \nu \eta_{\delta \circ p}$ and $\nu=\nu(A)$ is a 24-th root of unity by Theorem 1 , as required.
Lemma 5 If $h(z)=\prod_{\delta \mid f} \eta(\delta z)^{r(\delta)}$ is an automorphic form on $\Gamma_{0}(f)^{+}$, then $r(\delta)=r$ for some fixed r.
Proof If $h(z) \mid W_{p}=$ const $\times h(z)$, then by the previous lemma $\prod_{\delta \mid f} \frac{\eta(\delta z)^{r(\delta)}}{\eta(\delta z)^{r^{(\delta \delta p)}}}$ is a constant. But by [2, Theorem B] this implies that $r(\delta)=r(\delta \circ p)$ for all positive divisors δ of f and all primes p dividing f. But the positive divisors of f form a group of exponent 2 under the operation $\delta \circ \delta^{\prime}=\left(\delta \delta^{\prime} / \operatorname{gcd}\left(\delta, \delta^{\prime}\right)^{2}\right)$, which is generated by the prime divisors of f. Thus $r(\delta)=r\left(\delta^{\prime}\right)$ for all positive divisors δ, δ^{\prime} of f.

Now let $\psi(f)=\prod_{p \mid f}(1+p)$, which is equal to $\sum_{\delta \mid f} \delta$ since f is squarefree. Then define

$$
r_{\min }= \begin{cases}24 / \operatorname{gcd}(24, \psi(f)) & \text { if } 24 / \operatorname{gcd}(24, \psi(f)) \text { is even or } f \text { is composite } \\ 48 / \operatorname{gcd}(24, \psi(f)) & \text { if } 24 / \operatorname{gcd}(24, \psi(f)) \text { is odd and } f \text { is prime }\end{cases}
$$

or equivalently

$$
r_{\min }= \begin{cases}24 / \operatorname{gcd}(24, \psi(f)) & \text { if } 8 \nmid \psi(f) \text { or } f \text { is composite } \\ 48 / \operatorname{gcd}(24, \psi(f)) & \text { if } 8 \mid \psi(f) \text { and } f \text { is prime. }\end{cases}
$$

A simple calculation shows that if $r(\delta)$ is constant and f is squarefree, then $D=$ $\prod_{\delta \mid f} \delta^{r}=f^{r 2^{2 f-1}}$. So by Theorem 2 and Lemma 5, $d_{f}(z)=\prod_{\delta \mid f} \eta(\delta z)^{r_{\text {min }}}$ is a cusp form with trivial multiplier system on $\Gamma_{0}(f)$ and is the smallest power of $\prod_{\delta \mid f} \eta(\delta z)$ that is a cusp form with trivial multiplier system on $\Gamma_{0}(f)$. Since the square of the Atkin-Lehner element W_{p} is in $\Gamma_{0}(f)$, we have $d_{f} \mid W_{p}= \pm d_{f}$. Set $\Delta_{f}=d_{f}$ if $d_{f} \mid W_{p}=d_{f}$ for all primes p dividing f and $\Delta_{f}=d_{f}^{2}$ otherwise. Then Δ_{f} is the smallest power of $\prod_{\delta \mid f} \eta(\delta z)$ that is a cusp form with trivial multiplier system on $\Gamma_{0}(f)^{+}$, and it is not difficult to see that every such power is a multiple of Δ_{f}.

Let $\# f$ be the number of prime factors of f. The following theorem characterizes the two cases $\Delta_{f}=d_{f}$ and $\Delta_{f}=d_{f}^{2}$.

Theorem $6 \Delta_{f}=d_{f}$ if and only if one of the following conditions holds:
(i) $\# f \geq 3$;
(ii) $\# f=2$ and either
(a) f is even and either $p \equiv 1(\bmod 4)$ or $p \equiv 3(\bmod 8)$ where p is the odd factor of f or
(b) f is odd and $p \equiv 1(\bmod 4)$ for all factors p of f;
(iii) $\# f=1$ and $f \equiv 1(\bmod 4)$ or $f=2$.

To prove this theorem we first derive a transformation rule for η for a particular choice of W_{p}.

Lemma 7 Let f be a squarefree integer and p a divisor of f. Let S be any finite set of primes excluding p, fix a positive integer m, and set $Q=\prod_{q \in S} q^{m}$. Then we can take the Atkin-Lehner transformation W_{p} to have the form $p^{-1 / 2}\left(\begin{array}{cc}a p & b \\ f & p\end{array}\right)$ with $a>0, p a \equiv 1$ $(\bmod Q)$, and $a \equiv 1(\bmod p)$.

Proof If $f^{\prime}=f / p$, then since f is squarefree, p and f^{\prime} are coprime. So we can find a and b so that $a p-b f^{\prime}=1$ so that $p^{-1 / 2}\left(\begin{array}{cc}a p & b \\ f & p\end{array}\right)$ is in $\Gamma_{0}(f)^{+}$and so is a possible Atkin-Lehner element. By the Chinese Remainder Theorem, we can find arbitrarily large solutions to the congruences:

$$
\begin{aligned}
k & \equiv(1-a) f^{\prime-1}(\bmod p) \\
k & \equiv\left(p^{\prime}-a\right) f^{\prime-1}\left(\bmod q^{m}\right), \quad q \nmid f^{\prime} \\
k & \equiv\left(\frac{\left(p^{\prime}-a\right)}{q}\right)\left(\frac{f^{\prime}}{q}\right)^{-1}\left(\bmod q^{m-1}\right), \quad q \mid f^{\prime}
\end{aligned}
$$

where p^{\prime} is some integer such that $p^{\prime} p \equiv 1(\bmod Q)$
Then replacing a by $a^{\prime}=a+k f^{\prime}$ and b by $b+k p$ we obtain another Atkin-Lehner element. From the congruence $\bmod p$ we have that $a^{\prime} \equiv 1(\bmod p)$. The second two congruences imply that $p a^{\prime} \equiv 1(\bmod Q)$ and since we can take $k f^{\prime}$ to be arbitrarily large we can also arrange for a^{\prime} to be positive.

Using this lemma we can give the transformation rule in Lemma 8 below. Although it is possible in principle to prove this result using Petersson's formula, a direct application leads to an explosion of special cases. In [10] Newman used a "congruence trick", which makes use of Lemma 3 to simplify the proof of Theorem 2. The proof of Lemma 8 uses a similar strategy to reduce the number of cases that have to be considered, although we still have to use the general formula for some of the cases.

Lemma 8 Let $h(z)=\prod_{\delta \mid f} \eta(\delta z)$. Then with a choice of W_{p} such that $\operatorname{gcd}(a, 6)=1$ (which is possible by Lemma 7):

$$
h \left\lvert\, W_{p}=\left[\frac{f^{\prime}}{a}\right] \exp \left(\frac{\pi i}{12}\left[2(a-1) 2^{\# f-1}+\psi\left(f^{\prime}\right)(a+1)(b-1)\right]\right) h\right.
$$

where $\left[\frac{f^{\prime}}{a}\right]$ is equal to the Jacobi symbol $\left(\frac{f^{\prime}}{a}\right)$ if f^{\prime} is a prime and 1 otherwise.

Proof We start by computing $\eta_{\delta} \mid W_{p}$. By Lemma 4 this is equal to

$$
\left(p / g^{2}\right)^{1 / 4} \nu(A) \eta((\delta \circ p) z)
$$

where $A=\left(\begin{array}{cc}a g & b \delta / g \\ f g / \delta & p / g\end{array}\right)$ and $g=\operatorname{gcd}(p, \delta)$. There are two cases: $g=p$ and $g=1$. If $g=p$ then $A=\left(\begin{array}{cc}a p & b \delta^{\prime} \\ f^{\prime} / \delta^{\prime} & 1\end{array}\right)$ where $f^{\prime}=f / p$ and $\delta^{\prime}=\delta / p$. For this case we use Petersson's formula, and so we have to consider two subcases, $f^{\prime} / \delta^{\prime}$ odd and $f^{\prime} / \delta^{\prime}$ even. However, since the lower right entry is 1 , it turns out that these two subcases give the same result:

$$
\nu(A)=\exp \left(\frac{\pi i}{12}\left[\frac{f^{\prime}}{\delta^{\prime}}\left(a p-b f^{\prime}-2\right)+b \delta^{\prime}\right]\right)
$$

In $h(z)$ we get one such contribution for all the terms in the product for which δ is divisible by p, and so the total contribution to the transformation from these terms is

$$
\begin{aligned}
& \prod_{\delta^{\prime} \mid f^{\prime}} p^{-1 / 4} \exp \left(\frac{\pi i}{12}\left[\frac{f^{\prime}}{\delta^{\prime}}\left(a p-b f^{\prime}-2\right)+b \delta^{\prime}\right]\right) \\
& \quad=p^{-2^{* f-3}} \exp \left(\frac{\pi i}{12} \psi\left(f^{\prime}\right)\left[a p-b\left(f^{\prime}-1\right)-2\right]\right)
\end{aligned}
$$

The second case is $g=1$, and in this case $A=\left(\begin{array}{c}a \\ f^{\prime} / \delta \delta \\ p\end{array}\right)$. Since we have chosen W_{p} such that $\operatorname{gcd}(a, 6)=1$, we can use Lemma 3, which gives

$$
\begin{aligned}
\nu(A) & =\exp \left(\frac{\pi i}{12}\left[3(a-1)-a \frac{f^{\prime}}{\delta}+a b \delta+6\left(1-\left(\frac{f^{\prime} \delta}{a}\right)\right)\right]\right) \\
& =\left(\frac{f^{\prime} / \delta}{a}\right) \exp \left(\frac{\pi i}{12}\left[3(a-1)-a \frac{f^{\prime}}{\delta}+a b \delta\right]\right)
\end{aligned}
$$

In $h(z)$ there is one such contribution for all the terms in the product for which δ is not divisible by p, and so the total contribution to the transformation from these terms is

$$
p^{2^{\# f-3}}\left(\prod_{\delta \mid f^{\prime}}\left(\frac{\delta}{a}\right)\right) \exp \left(\frac{\pi i}{12}\left[3(a-1) 2^{\# f-1}+\psi\left(f^{\prime}\right)(a b-a)\right]\right) .
$$

Now $\prod_{\delta \mid f^{\prime}} \delta$ is a square except in the case that f^{\prime} is a prime and so $\prod_{\delta \mid f^{\prime}}\left(\frac{\delta}{a}\right)=\left[\frac{f^{\prime}}{a}\right]$. So the total constant term in the transformation is

$$
\left[\frac{f^{\prime}}{a}\right] \exp \left(\frac{\pi i}{12}\left[3(a-1) 2^{\# f-1}+\psi\left(f^{\prime}\right)\left(a p-a-b\left(f^{\prime}-1\right)+a b-2\right)\right]\right)
$$

Finally, using the fact that $a p-b f^{\prime}=1$ we obtain the expression:

$$
\left[\frac{f^{\prime}}{a}\right] \exp \left(\frac{\pi i}{12}\left[3(a-1) 2^{\# f-1}+\psi\left(f^{\prime}\right)(a+1)(b-1)\right]\right)
$$

as required.

Using this lemma we can now complete the proof of Theorem 6.
Proof of Theorem 6 Since d_{f} is a cusp form for $\Gamma_{0}(f)$ by Theorem 2, it is sufficient to evaluate the transformation of $d_{f} \mid W_{p}$ for any representative Atkin-Lehner element W_{p} for all primes p dividing f. As noted above, we either have $d_{f} \mid W_{p}=d_{f}$ or $d_{f} \mid W_{p}=-d_{f}$. To determine this sign factor we will use the transformation rule found in Lemma 8 together with the special form of W_{p} found in Lemma 7. To do this, in Lemma 7 we take S and m to be such that $\operatorname{gcd}(a, 6)=1$ and $p a \equiv 1$ $(\bmod p+1)$, which is possible since p and $p+1$ are coprime. Then $a+1 \equiv 0$ $(\bmod p+1)$, so that

$$
r_{\min } \psi\left(f^{\prime}\right)(a+1)(b-1)=r_{\min } \psi(f) \frac{(a+1)}{(p+1)}(b-1)
$$

and the definition of $r_{\text {min }}$ tells us that this is divisible by 24 . Thus, from Lemma 8, $d_{f} \mid W_{p}=\nu d_{f}$ with

$$
\nu=\left[\frac{f^{\prime}}{a}\right]^{r_{\min }} \exp \left(\frac{\pi i}{4} r_{\min }(a-1) 2^{\# f-1}\right)
$$

Since a is odd, this implies that if $\# f \geq 3$ then $\nu=1$.
Suppose next that $\# f=1$; then $\nu=\exp \left(\frac{\pi i}{4} r_{\min }(a-1)\right)$. If $f=2$, then $r_{\text {min }}=8$ and so $\nu=1$. Otherwise f is odd. If $f \equiv 1(\bmod 4)$, then $4 \mid r_{\min }$ and $\nu=1$, while if $f \equiv 3(\bmod 4)$, then 2 exactly divides $r_{\text {min }}$ (recall that if $24 / \operatorname{gcd}(24, p+1)$ is odd then $r_{\text {min }}$ has an extra factor of 2$)$. Also $a-1 \equiv-2(\bmod f+1)$ so $a-1 \equiv 2$ $(\bmod 4)$ and hence in this case $\nu=-1$.

The remaining case is $\# f=2$, say $f=p q$ with q prime, so

$$
\begin{aligned}
\nu & =\left(\frac{q}{a}\right)^{r_{\min }} \exp \left(\frac{\pi i}{4} r_{\min } 2(a-1)\right) \\
& =\left(\frac{q}{a}\right)^{r_{\min }}(-1)^{r_{\min }(a-1) / 2}
\end{aligned}
$$

Consider the case that f is even. Take $q=2$; then $\nu=(-1)^{\frac{a^{2}-1}{8} r_{\text {min }}}(-1)^{\frac{a-1}{2} r_{\text {min }}}$. If $p \equiv 7(\bmod 8)$, then $r_{\min }$ is odd and since $a \equiv-1(\bmod p+1)$ we have $a \equiv 7$ $(\bmod 8)$, which gives $\nu=-1$. If $p \equiv 1,3,5(\bmod 8)$, then $r_{\min }$ is even and $\nu=1$. We also have to consider $p=2$. In this case

$$
\nu=\left(\frac{q}{a}\right)^{r_{\min }}(-1)^{r_{\min }(a-1) / 2} .
$$

If q is not congruent to 7 modulo 8 then $r_{\min }$ is even and ν is 1 , while if $q \equiv 7$ $(\bmod 8)$ then by quadratic reciprocity, $\nu=\left(\frac{q}{a}\right)(-1)^{(a-1) / 2}=\left(\frac{a}{q}\right)=\left(\frac{2}{q}\right)$, since $2 a-$ $b q=1$ gives $2 a \equiv 1(\bmod q)$. But $\left(\frac{2}{q}\right)=1$ since $q \equiv 7(\bmod 8)$, and so ν is one in this case also. This deals with all the cases when $\# f=2$ and f is even.

Finally consider $\# f=2$ and f odd. If $p \equiv 1(\bmod 4)$ and $q \equiv 1(\bmod 4)$ then $r_{\min }$ is even and ν is one. So $\Delta_{f}=d_{f}$ in this case.

${ }_{2} 6 \mathrm{II}_{\sim} \mathrm{LI}_{\sim} L_{\sim} \mathrm{I}$	9	ஏ	ZI	$\left[{ }_{\text {¢ }} \mathrm{I}\right.$ ］	6I I	${ }_{\ddagger} \ddagger \mathcal{E}_{\ddagger} \angle \mathrm{I}_{\ddagger} \chi_{\ddagger} \mathrm{I}$	ワ／6	8	6	［ ${ }_{\text {c }}{ }^{\text {¢ }}$ ¢］	$\dagger \varepsilon$
	2／6	†	6	$\left[{ }_{\text {II }} z\right.$ ］	0II	${ }_{\tau} \mathcal{E} \varepsilon_{\tau} \mathrm{I} \mathrm{I}_{\tau} \varepsilon_{\tau} \mathrm{I}$	τ	†	\checkmark	［9Z］	$\varepsilon \varepsilon$
${ }_{\mathrm{I}} \mathcal{S} 0 \mathrm{I}_{\mathrm{I}} \mathcal{S} \mathcal{E}_{\mathrm{I}} \mathrm{I} \mathcal{I}_{\mathrm{I}} \mathrm{S}_{\mathrm{I}} L_{\mathrm{I}} \mathcal{S}_{\mathrm{I}} \mathcal{E}_{\mathrm{I}} \mathrm{I}$	†	■	8	［01\％］	¢0I	${ }_{\text {II }} \mathrm{I} \varepsilon_{\text {乙I }} \mathrm{I}$	$\varepsilon / 8$	ZI	9I	［9Z‘ ${ }^{\text {c }}$ ］	I ε
${ }_{\tau}{ }^{\text {S }} 6_{\tau} 6 \mathrm{~S}{ }_{\tau} \mathrm{S}_{\sim} \mathrm{I}$	S	■	0I	$\left[{ }_{\text {II }} z\right.$ ］	S6	${ }_{\mathrm{I}} 0 \mathcal{E}_{\text {I }} \mathrm{SI}_{\mathrm{I}} 0 \mathrm{I}_{\mathrm{I}} 9_{\mathrm{I}} \mathrm{S}_{\mathrm{I}} \mathcal{E}_{\text {I }} \mathrm{Z}_{\mathrm{I}} \mathrm{I}$	τ / ε	T	ε	［ ${ }_{\text {c }}$ ］	0ε
${ }_{2}{ }^{\square} 6_{\sim} L \dagger_{\tau} \chi_{\sim} \mathrm{I}$	9	■	ZI	$\left[_{\text {¢I }} \mathrm{z}\right.$ ］	I6	${ }_{\ddagger} 6 Z_{\ddagger} \mathrm{I}$	Z／¢	万	\bigcirc	［८z］	62
	¢	■	0I	$\left[{ }_{\text {II }} \mathrm{z}\right]$	$\angle 8$	${ }_{\ddagger} 9 z_{\ddagger} \varepsilon \mathrm{I}_{\ddagger} \chi_{\ddagger} \mathrm{I}$	サ／L	8	L	［ヵて「ヵ］	92
${ }_{\mathrm{I}} 8 L_{\mathrm{I}} 6 \varepsilon_{\mathrm{I}} 9 z_{\text {I }} \varepsilon \mathrm{I}_{\mathrm{I}} 9{ }_{\mathrm{I}} \varepsilon_{\mathrm{I}} z_{\mathrm{I}} \mathrm{I}$	2／L	■	L	［6\％］	84	${ }_{\ddagger} \mathcal{E} \chi_{\ddagger} \mathrm{I}$	τ	万	\checkmark	［9z］	εz
${ }_{\dagger} \mathrm{L}_{ \pm} \mathrm{I}$	9	■	ZI	$\left[{ }_{\text {¢ } / 2} z\right.$ ］	IL	${ }_{2} \chi_{2} \mathrm{I}_{2} \chi_{\sim} \mathrm{I}$	τ / ε	\square	ε	［ ${ }_{\text {c }}$ ］	てZ
${ }_{\mathrm{I}} 0 L_{\mathrm{I}} \mathcal{S E}^{1} \mathrm{I} \mathrm{I}_{\mathrm{I}} 0 \mathrm{I}_{\mathrm{L}} L_{\mathrm{I}} \mathrm{S}_{\mathrm{I}} \chi_{\mathrm{I}} \mathrm{I}$	ε	ஏ	9	［8\％］	02	${ }_{9} \mathrm{IZ} \mathrm{g}_{9}{ }_{9} \varepsilon_{9} \mathrm{I}$	ε / \square	ZI	8	［ $\left.\varepsilon^{\prime} \times 9\right]$	IZ
${ }_{2} 69_{2} \varepsilon z_{2} \varepsilon_{\tau} \mathrm{I}$	†	ワ	8	［01 z ］	69	${ }_{\text {zI }} 6 \mathrm{I}_{\text {II }} \mathrm{I}$	ε / ς	ZI	0I		6I
${ }_{\mathrm{I}} 99_{\mathrm{I}} \varepsilon \varepsilon_{\mathrm{I}} \tau z_{\mathrm{I}} \mathrm{II}{ }_{\mathrm{I}} 9_{\mathrm{I}} \varepsilon_{\mathrm{I}} z_{\mathrm{I}} \mathrm{I}$	ε	I	9	［88］	99	${ }_{\square} \mathrm{LI}_{\ddagger} \mathrm{I}$	τ / ε	ワ	ε	［ ${ }_{\text {c }} \mathrm{Z}$ ］	LI
${ }_{2}{ }^{2}{ }_{\sim}$ I $\varepsilon_{\sim} \chi_{\sim} \mathrm{L}$	†	\square	8	［01z］	29	${ }_{z} \mathcal{S I}_{z} \mathcal{S}_{z} \varepsilon_{z} \mathrm{I}$	I	7	\checkmark	［ヵて］	SI
${ }_{\ddagger} 6 \mathrm{~S}_{\text {๒ }} \mathrm{I}$	¢	■	0I	［ $\mathrm{zl}^{\text {z }}$ ］	6 S	${ }_{2} \mathrm{I}_{2} L_{2} \chi_{\sim} \mathrm{I}$	，	も	τ	［ヵて］	ØI
${ }_{\tau} \mathcal{S S}_{\sim} \mathrm{IL}{ }_{\tau} \mathrm{S}_{\tau} \mathrm{I}$	ε	■	9	［8\％］	¢S	${ }_{\text {II }} \varepsilon^{1} \mathrm{I}_{\text {乙I }} \mathrm{I}$	9／L	ZI	L	$\left[{ }_{\varepsilon} z^{\prime} \varepsilon\right]$	εI
${ }_{2}{ }^{1} S_{z}<\mathrm{I}_{\tau} \mathcal{E}_{\tau} \mathrm{I}$	ε	■	9	［8\％］	IS	${ }_{\dagger} \mathrm{II}_{\ddagger} \mathrm{I}$	I	万	て	［ヶて］	II
${ }_{\square} \angle t_{\square} \mathrm{I}$	†	t	8	$[017]$	$\angle t$	${ }_{\ddagger} 0 \mathrm{I}_{\dagger} \mathrm{S}_{\dagger} \mathrm{Z}_{\dagger} \mathrm{I}$	\dagger / ε	8	ε		0I
${ }_{z} 9 \square_{z} \varepsilon z_{z} z_{z} \mathrm{~L}$	ε	■	9	［88］	97	${ }_{\text {zI }} L_{\text {гI }} \mathrm{I}$	ε / τ	ZI	历	［حて＇$¢]$	L
${ }_{\mathrm{I}} \tau \chi_{\mathrm{I}} \mathrm{I} Z_{\mathrm{I}} \mp \mathrm{I}_{\mathrm{I}} L_{\mathrm{I}} 9_{\mathrm{I}} \varepsilon_{\mathrm{I}} \chi_{\mathrm{I}} \mathrm{I}$	τ	ワ	ワ	［9\％］	ても	${ }_{z}{ }_{2} \varepsilon_{z} z_{z} \mathrm{I}$	て／I	万	I	［ $\varepsilon^{\text {z }}$ ］	9
${ }_{\square} \mathrm{I}_{\text {¢ }} \mathrm{I}$	z／L	ワ	L	［6］	It	${ }_{\square} S_{\ddagger} \mathrm{I}$	乙／I	万	I	［ $\varepsilon^{\text {¢ }}$ ］	S
${ }_{9} 6 \varepsilon_{9} \varepsilon \varepsilon^{9} \varepsilon_{9} \mathrm{I}$	ε / L	ZI	ØI	［¢¢ ${ }^{\text {c }}$ ］	6ε	${ }_{\text {zI }} \varepsilon_{\text {II }} \mathrm{I}$	ε / I	ZI	τ	［て＇9］	ε
${ }_{\tau} 8 \varepsilon_{z} 6 \mathrm{I}{ }_{7} \chi_{\sim} \mathrm{I}$	z／s	■	¢	［ız］	8ε	${ }_{8} \mathrm{Z}_{8} \mathrm{I}$	†／L	8	I	［て＇t］	τ
${ }_{2} S^{S} \mathcal{E}_{2} L_{2} \mathrm{~S}_{2} \mathrm{I}$	Z	\＃	I	［9\％］	$\bigcirc \mathcal{E}$	${ }_{\mathrm{H} 2} \mathrm{I}$	9／I	ZI	I	［ $\chi^{`} \mathrm{c}$ ］	I
d	V	μ	a	y	f	d	V	M	a	¢	f

Next suppose both $p \equiv 3(\bmod 4)$ and $q \equiv 3(\bmod 4)$ then $r_{\min }$ is odd. Also $a \equiv-1(\bmod p+1)$ implies that $a \equiv 3(\bmod 4)$. So $\nu=\left(\frac{q}{a}\right)(-1)^{(a-1) / 2}=$ $-(-1)^{(q-1) / 2(a-1) / 2}\left(\frac{a}{q}\right)=\left(\frac{p}{q}\right)$, using $a p \equiv 1(\bmod q)$ and quadratic reciprocity. By symmetry, the sign factor for W_{q} is $\left(\frac{q}{p}\right)$, but by quadratic reciprocity, one of $\left(\frac{q}{p}\right)$ and $\left(\frac{p}{q}\right)$ is -1 and $\Delta_{f}=d_{f}^{2}$ in this case. Finally suppose $p \equiv 3(\bmod 4)$ and $q \equiv 1$ $(\bmod 4)$. Once again, $r_{\min }$ is odd. So the sign factor for W_{p} is $-\left(\frac{q}{a}\right)=-\left(\frac{a}{q}\right)=-\left(\frac{p}{q}\right)$. The sign factor for W_{q} is $\left(\frac{p}{\alpha}\right)(-1)^{(\alpha-1) / 2}$ (where we have used α rather than a to avoid confusion, since a depends on the prime). Since $p \equiv 3(\bmod 4)$, by quadratic reciprocity $\left(\frac{p}{\alpha}\right)(-1)^{(\alpha-1) / 2}=\left(\frac{\alpha}{p}\right)$ and since $\alpha q \equiv 1(\bmod p)$ this gives a sign of $\left(\frac{q}{p}\right)$ for W_{q}. Thus the product of the sign factors for W_{p} and W_{q} is $-\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=-1$ by quadratic reciprocity. So $\Delta_{f}=d_{f}^{2}$ in this case.

Since all the cases listed in Theorem 6 give $\Delta_{f}=d_{f}$ and all the remaining cases give $\Delta_{f}=d_{f}^{2}$, the result follows.

If $h \neq 0$ is a cusp form on $\Gamma_{0}(f)^{+}$of weight k and trivial multiplier system, then for suitable integers s and $t, h^{a} / \Delta^{b}$ is a modular function with divisor supported only at the one cusp of $\Gamma_{0}(f)^{+}$. This is only possible if h^{a} / Δ^{b} is a constant, so that h is an η product and so $h=$ const $\times \Delta_{f}^{u}$ for some positive integer u. Thus, as mentioned previously, Δ_{f} is also characterized, up to a nonzero multiplicative constant, as the cusp form of smallest weight on $\Gamma_{0}(f)^{+}$that does not vanish on \mathcal{H}.

If the genus of $G=\Gamma_{0}(f)^{+}$is not zero, then there are cusp forms of weight 2 on G. A simple calculation shows that the weight of Δ_{f} is always divisible by 4 , and so in this case Δ_{f} is never a cusp form of smallest weight. The cases when the genus of G is zero are given in Table 1, together with the expression for Δ_{f}. Since the signatures of these groups are known, see for example Cummins [4] and the references therein, we can use Shimura's expression for the dimensions of spaces of cusp forms [13, Theorem 2.24] to conclude that Δ_{f} is, up to a nonzero multiplicative constant, the unique cusp form of smallest weight only in the cases $f=1,2,5,6$.

References

[1] A. O. L Atkin and J. Lehner, Hecke operators for $\Gamma_{0}(m)$. Math. Ann. 185(1970) 134-160.
[2] A. J. F. Biagioli, The construction of modular forms as products of transforms of the Dedekind eta function. Acta Arith. 54(1990), no. 4, 273-300.
[3] J. H. Conway, Understanding groups like $\Gamma_{0}(N)$. In: Groups, difference sets, and the Monster, Ohio State Univ. Math. Res. Inst. Publ. 4, de Gruyter, Berlin, 1996, pp. 327-343.
[4] C. J. Cummins, Congruence subgroups of groups commensurable with $\operatorname{PSL}(2, \mathbb{Z})$ of genus 0 and 1. Experiment. Math. 13(2004), no. 3, 361-382.
[5] D. Dummit, H. Kisilevsky, and J. McKay, Multiplicative products of η-functions. In: Finite groups-coming of age, Contemp. Math. 45, American Mathemtical Society, Providence, RI, 1985, pp. 89-98.
[6] B. Gordon and K. Ono, Divisibility of certain partition functions by powers of primes. Ramanujan J. 1(1997), no. 1, 25-34.
[7] H. Helling, Bestimmung der Kommensurabilitätsklasse der Hilbertschen Modulgruppe. Math. Z. 92(1966), 269-280.
[8] M. I. Knopp, Modular functions in analytic number theory. Markham Publishing Co., Chicago, Ill., 1970.
[9] M. Newman, Construction and application of a class of modular functions. Proc. London. Math. Soc. (3) 7(1957), 334-350.
[10] M Newman, Construction and application of a class of modular functions. II. Proc. London Math. Soc., (3) 9(1959), 373-387.
[11] H. Petersson, Über Modulfunktionen und Partitionenprobleme. Abh. Deutsch. Akad. Wiss. Berlin. Kl. Math. Allg. Nat. 1954, no. 2, 59pp.
[12] H. Rademacher Zur Theorie der Modulfunktionen. J. Reine Angew. Math. 167(1932), 312-336.
[13] G. Shimura, Introduction to the arithmetic theory of automorphic functions. Publications of the Mathematical Society of Japan 11, Princeton University Press, Princeton, NJ, 1971.

Department of Mathematics and Statistics, Concordia University, Montréal, QC, H3G 1M8
e-mail: cummins@mathstat.concordia.ca

[^0]: Received by the editors June 20, 2006; revised January 24, 2007.
 Work partly supported by NSERC.
 AMS subject classification: Primary: 11F03; secondary: 11F22, 30F35.
 (C)Canadian Mathematical Society 2009.

