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Cusp Forms Like ∆

C. J. Cummins

Abstract. Let f be a square-free integer and denote by Γ0( f )+ the normalizer of Γ0( f ) in SL(2,R). We

find the analogues of the cusp form ∆ for the groups Γ0( f )+.

Let G be a discrete subgroup of SL(2,R) acting on the upper half plane H by

fractional linear transformations and let H
∗

= H ∪ Q ∪ ∞. Suppose G\H∗ is
compact, i.e., G is a Fuchsian group of the first kind. For any meromorphic function

h on H and M = ( a b
c d ) ∈ G define the slash operator by

h|[M]k = (cz + d)−kh(Mz).

The convention here for arguments and exponents, following Knopp [8], is that

zr
= |z|r exp(ir arg(z)), where −π ≤ arg(z) < π. (Note the non-standard choice

of argument for the negative reals.) Recall that h is called an automorphic form for
G of weight k and multiplier ν if in addition to being meromorphic on H, it also

satisfies the following two conditions:

(i) h|[M]k = ν(M)h for all M ∈ G;
(ii) h is meromorphic at the cusps of G.

In (i) we require |ν(M)| = 1 for all M ∈ G and

ν(M3)(c3z + d3)k
= ν(M1)ν(M2)(c1M2z + d1)k(c2z + d2)k

for all M1,M2 ∈ G,M3 = M1M2. If k is integral this is just the condition that ν is a
character of G. See for example Knopp [8, Chapter 2] and Shimura [13, Chapter 2].

If in addition h is holomorphic on H and vanishes at the cusps of G then it is called

a cusp form.
Let

η = q1/24
∏

i≥1

(1 − qi), q = exp(2πiz).

Then with the above definitions η is a cusp form of weight 1/2 on SL(2,Z) for an

appropriate multiplier system. Petersson [11], following Rademacher [12], gave an
explicit formula for the multiplier system for η:

Theorem 1 Let a, b, c, d ∈ Z with ad− bc = 1. Then the multiplier system ν for η(z)

is given by

ν

(

a b

c d

)

=

{

( d
c
)∗ exp( πi

12
[(a + d)c − bd(c2 − 1) − 3c]) if c is odd,

( c
d

)∗ exp( πi
12

[(a + d)c − bd(c2 − 1) + 3d − 3 − 3cd]) if c is even,
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where if c 6= 0 then

( c

d

)∗

=

( c

|d|

)

and
( c

d

)

∗
=

( c

|d|

)

(−1)
sign(c)−1

2
sign(d)−1

2

with ( d
|c| ) and ( c

|d| ) being the standard Jacobi symbols with ( c
1
) = 1. We also have

( 0
±1

)∗= ( 0
1
)∗= −( 0

−1
)∗=1.

Note that this formula is for the non-standard choice of argument given above, as
can be seen, for example, by considering the transformation ( −1 0

0 −1 ). See the proof

in [8, Chapter 4, Theorem 2] for details.

It follows that ∆ = η24 is a weight 12 cusp form on SL(2,Z) with trivial multiplier
system. The cusp form ∆ has many remarkable properties and has been extensively

studied. More generally there has been much study of automorphic forms that can

be expressed as products of η functions. One particularly nice result is the following,
which we shall use later:

Fix a positive integer N and define h(z) =
∏

δ|N η(δz)r(δ) where δ > 0 and r(δ) ∈

Z. Let w =
1
2

∑

δ|N r(δ).

Theorem 2 The function h(z) is an automorphic form on Γ0(N) if and only if the

following conditions are satisfied:

(i) 24 divides
∑

δ|N δr(δ),

(ii) 24 divides
∑

δ|N( N
δ )r(δ),

(iii) w is a positive integer.

If h(z) satisfies these conditions, then it has weight w and multiplier

ν

(

a b

cN d

)

= χ(d) =

( (−1)wD

d

)

,

where D =
∏

δ|N δ
r(δ). In particular h(z) is an automorphic form with trivial character

if and only if it satisfies conditions (i) and (ii), w is an even positive integer, and D is a

square in Q .

This result is essentially due to Newman [9, 10]; see also [5] and [2]. This partic-

ular formulation is taken from Gordon and Ono [6].
Now let f be a positive, squarefree integer and define

Γ0( f )+
= {e−1/2( ae b

c f de ) ∈ SL(2,R)|a, b, c, d, e ∈ Z, e| f , ade2 − bc f = e}.

These groups are of particular importance, since Helling [7] has shown that if G

is a subgroup of SL(2,R) which is commensurable with SL(2,Z), then G is conjugate

to a subgroup of Γ0( f )+ for some squarefree f . For this reason we call these groups

Helling groups. Conway [3] has given a nice proof of Helling’s Theorem. Note that
Γ0( f )+ has one cusp.

In the rest of this paper, by cusp form we will mean a cusp form with a trivial

multiplier system. The aim of this paper is to describe the analogues of the cusp form
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∆ for the Helling groups. We shall call these forms ∆ f . For SL(2,Z), up to a nonzero
multiplicative constant, ∆ is the unique cusp form of smallest-weight. We could also

define ∆, up to a nonzero multiplicative constant, as the cusp form of smallest weight
which is an η product or as the cusp form of smallest weight which does not vanish

on H. For a general Helling group G the last two conditions are equivalent and we

will define ∆ f to be the smallest weight cusp form on G which is an η product. It is in
this sense that ∆ f is a cusp form like ∆. In general ∆ f is not a cusp form of smallest

weight.

A complete characterization of the cusp forms ∆ f is given in Theorem 6. The dif-

ficulty in obtaining this result is the complexity of the expression for ν in Theorem 1.

This problem was also faced by Newman in obtaining Theorem 2. Newman observed
that Γ0(N) is generated by matrices satisfying additional congruence conditions and

inequalities, and that with these additional conditions the multiplier system simpli-
fies:

Lemma 3 If A = ( a b
c d ) is an element of SL(2,Z) with a > 0, c > 0 and gcd(a, 6) = 1,

then

η(Az) = (−i)1/2 exp(−πiα(A))(cz + d)(1/2)η(z),

and

α(A) ≡ 1
12

a(c − b − 3) − 1
2
(1 − ( c

a
)) (mod 2).

Note that if c > 0 then cz + d ∈ H and so 0 < arg(cz + d) < π, so that this lemma
holds for our nonstandard choice of argument.

In this paper we will make use of Theorem 1, Lemma 3, the structure of Γ0( f )+

and a congruence argument inspired by Newman to prove Theorem 6. First we need

an explicit description of the generators of Γ0( f )+ over Γ0( f ); see for example Atkin–

Lehner [1]:

Let f > 1 be a squarefree integer and p a prime divisor of f and let

Wp = p−1/2

(

ap b

c f dp

)

where a, b, c, d are integers chosen so that adp2 − c f b = p. Different choices of

a, b, c, d give rise to matrices in the same coset of Γ0( f ). The Helling group Γ0( f )+

is generated by Γ0( f ) together with the Wp for all primes p dividing f . Also Wp

normalizes Γ0( f ). By an abuse of notation we will refer to any element of the coset

WpΓ0( f ) as an Atkin–Lehner element. The proof of Theorem 6 will depend on mak-
ing a suitable choice of Wp , just as Newman’s proof of Theorem 2 depends on making

a suitable choice of generators of Γ0(N).

Lemma 4 Let δ be a positive divisor of f . Then ηδ|Wp = (p/g2)1/4νηδ◦p , where ν is

a 24-th root of unity (that depends on Wp), δ ◦ p = (δp)/g2 with g = gcd(δ, p), and

ηδ(z) = η(δz).
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Proof First note that
(

δ 0

0 1

) (

ap b

c f dp

)

=

(

g 0

0 g

) (

ag bδ/g

f gc/pδ dp/g

) (

δ ◦ p 0

0 1

)

=

(

g 0

0 g

)

A

(

δ ◦ p 0

0 1

)

and so η(δWpz) = η(A(δ ◦ p)z). Hence we have

η(δWpz) = ν(A)(( f gc/pδ)(δp/g2)z + dp/g)1/2η((δ ◦ p)z)

= ν(A)(( f c/g)z + dp/g)1/2η((δ ◦ p)z)

= g−1/2ν(A)( f cz + dp)1/2η((δ ◦ p)z)

= (p/g2)1/4ν(A)(p−1/2 f cz + p−1/2dp)1/2ηδ◦p.

So ηδ|Wp = (p/g2)1/4νηδ◦p and ν = ν(A) is a 24-th root of unity by Theorem 1, as

required.

Lemma 5 If h(z) =
∏

δ| f η(δz)r(δ) is an automorphic form on Γ0( f )+, then r(δ) = r

for some fixed r.

Proof If h(z)|Wp = const × h(z), then by the previous lemma
∏

δ| f
η(δz)r(δ)

η(δz)r(δ◦p) is a

constant. But by [2, Theorem B] this implies that r(δ) = r(δ ◦ p) for all positive
divisors δ of f and all primes p dividing f . But the positive divisors of f form a group

of exponent 2 under the operation δ ◦ δ ′ = (δδ ′/gcd(δ, δ ′)2), which is generated by

the prime divisors of f . Thus r(δ) = r(δ ′) for all positive divisors δ, δ ′ of f .

Now let ψ( f ) =
∏

p| f (1 + p), which is equal to
∑

δ| f δ since f is squarefree. Then

define

rmin =

{

24/gcd(24, ψ( f )) if 24/gcd(24, ψ( f )) is even or f is composite,

48/gcd(24, ψ( f )) if 24/gcd(24, ψ( f )) is odd and f is prime,

or equivalently

rmin =

{

24/gcd(24, ψ( f )) if 8 ∤ ψ( f ) or f is composite,

48/gcd(24, ψ( f )) if 8|ψ( f ) and f is prime.

A simple calculation shows that if r(δ) is constant and f is squarefree, then D =
∏

δ| f δ
r
= f r2# f−1

. So by Theorem 2 and Lemma 5, d f (z) =
∏

δ| f η(δz)rmin is a cusp

form with trivial multiplier system on Γ0( f ) and is the smallest power of
∏

δ| f η(δz)

that is a cusp form with trivial multiplier system on Γ0( f ). Since the square of the
Atkin–Lehner element Wp is in Γ0( f ), we have d f |Wp = ±d f . Set ∆ f = d f if

d f |Wp = d f for all primes p dividing f and ∆ f = d2
f otherwise. Then ∆ f is the

smallest power of
∏

δ| f η(δz) that is a cusp form with trivial multiplier system on

Γ0( f )+, and it is not difficult to see that every such power is a multiple of ∆ f .

Let # f be the number of prime factors of f . The following theorem characterizes

the two cases ∆ f = d f and ∆ f = d2
f .
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Theorem 6 ∆ f = d f if and only if one of the following conditions holds:

(i) # f ≥ 3;

(ii) # f = 2 and either

(a) f is even and either p ≡ 1 (mod 4) or p ≡ 3 (mod 8) where p is the odd

factor of f or

(b) f is odd and p ≡ 1 (mod 4) for all factors p of f ;

(iii) # f = 1 and f ≡ 1 (mod 4) or f = 2.

To prove this theorem we first derive a transformation rule for η for a particular

choice of Wp.

Lemma 7 Let f be a squarefree integer and p a divisor of f . Let S be any finite set of

primes excluding p, fix a positive integer m, and set Q =
∏

q∈S qm. Then we can take the

Atkin–Lehner transformation Wp to have the form p−1/2
( ap b

f p

)

with a > 0, pa ≡ 1

(mod Q), and a ≡ 1 (mod p).

Proof If f ′
= f /p, then since f is squarefree, p and f ′ are coprime. So we can find

a and b so that ap − b f ′
= 1 so that p−1/2

( ap b
f p

)

is in Γ0( f )+ and so is a possible
Atkin–Lehner element. By the Chinese Remainder Theorem, we can find arbitrarily

large solutions to the congruences:

k ≡ (1 − a) f ′−1 (mod p),

k ≡ (p ′ − a) f ′−1 (mod qm), q ∤ f ′,

k ≡
( (p ′ − a)

q

)

( f ′

q

)−1
(mod qm−1), q| f ′,

where p ′ is some integer such that p ′p ≡ 1 (mod Q)

Then replacing a by a′
= a + k f ′ and b by b + kp we obtain another Atkin–Lehner

element. From the congruence mod p we have that a′ ≡ 1 (mod p). The second two
congruences imply that pa′ ≡ 1 (mod Q) and since we can take k f ′ to be arbitrarily

large we can also arrange for a′ to be positive.

Using this lemma we can give the transformation rule in Lemma 8 below. Al-

though it is possible in principle to prove this result using Petersson’s formula, a

direct application leads to an explosion of special cases. In [10] Newman used a
“congruence trick”, which makes use of Lemma 3 to simplify the proof of Theorem

2. The proof of Lemma 8 uses a similar strategy to reduce the number of cases that

have to be considered, although we still have to use the general formula for some of
the cases.

Lemma 8 Let h(z) =
∏

δ| f η(δz). Then with a choice of Wp such that gcd(a, 6) = 1
(which is possible by Lemma 7):

h|Wp =
[ f ′

a

]

exp
( πi

12
[2(a − 1)2# f−1 + ψ( f ′)(a + 1)(b − 1)]

)

h

where [
f ′

a
] is equal to the Jacobi symbol

(

f ′

a

)

if f ′ is a prime and 1 otherwise.
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Proof We start by computing ηδ|Wp. By Lemma 4 this is equal to

(p/g2)1/4ν(A)η((δ ◦ p)z)

where A =
( ag bδ/g

f g/δ p/g

)

and g = gcd(p, δ). There are two cases: g = p and g = 1.

If g = p then A =
( ap bδ ′

f ′/δ ′ 1

)

where f ′
= f /p and δ ′ = δ/p. For this case we use

Petersson’s formula, and so we have to consider two subcases, f ′/δ ′ odd and f ′/δ ′

even. However, since the lower right entry is 1, it turns out that these two subcases
give the same result:

ν(A) = exp
( πi

12

[ f ′

δ ′
(ap − b f ′ − 2) + bδ ′

]

)

.

In h(z) we get one such contribution for all the terms in the product for which δ is
divisible by p, and so the total contribution to the transformation from these terms

is

∏

δ ′| f ′

p−1/4 exp
( πi

12

[ f ′

δ ′
(ap − b f ′ − 2) + bδ ′

]

)

= p−2# f −3

exp
( πi

12
ψ( f ′)[ap − b( f ′ − 1) − 2]

)

.

The second case is g = 1, and in this case A = ( a bδ
f ′/δ p ). Since we have chosen Wp

such that gcd(a, 6) = 1, we can use Lemma 3, which gives

ν(A) = exp
( πi

12

[

3(a − 1) − a
f ′

δ
+ abδ + 6(1 − (

f ′δ

a
))

]

)

=

( f ′/δ

a

)

exp
( πi

12
[3(a − 1) − a

f ′

δ
+ abδ]

)

.

In h(z) there is one such contribution for all the terms in the product for which δ
is not divisible by p, and so the total contribution to the transformation from these

terms is

p2# f−3
(

∏

δ| f ′

(
δ

a
)
)

exp
( πi

12
[3(a − 1)2# f−1 + ψ( f ′)(ab − a)]

)

.

Now
∏

δ| f ′ δ is a square except in the case that f ′ is a prime and so
∏

δ| f ′(
δ
a
) =

[ f ′

a

]

.

So the total constant term in the transformation is

[ f ′

a

]

exp
( πi

12
[3(a − 1)2# f−1 + ψ( f ′)(ap − a − b( f ′ − 1) + ab − 2)]

)

.

Finally, using the fact that ap − b f ′
= 1 we obtain the expression:

[ f ′

a

]

exp
( πi

12
[3(a − 1)2# f−1 + ψ( f ′)(a + 1)(b − 1)]

)

as required.
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Using this lemma we can now complete the proof of Theorem 6.

Proof of Theorem 6 Since d f is a cusp form for Γ0( f ) by Theorem 2, it is sufficient

to evaluate the transformation of d f |Wp for any representative Atkin–Lehner element
Wp for all primes p dividing f . As noted above, we either have d f |Wp = d f or

d f |Wp = −d f . To determine this sign factor we will use the transformation rule

found in Lemma 8 together with the special form of Wp found in Lemma 7. To
do this, in Lemma 7 we take S and m to be such that gcd(a, 6) = 1 and pa ≡ 1

(mod p + 1), which is possible since p and p + 1 are coprime. Then a + 1 ≡ 0
(mod p + 1), so that

rminψ( f ′)(a + 1)(b − 1) = rminψ( f )
(a + 1)

(p + 1)
(b − 1),

and the definition of rmin tells us that this is divisible by 24. Thus, from Lemma 8,

d f |Wp = νd f with

ν =

[ f ′

a

] rmin

exp
( πi

4
rmin(a − 1)2# f−1

)

.

Since a is odd, this implies that if # f ≥ 3 then ν = 1.

Suppose next that # f = 1; then ν = exp( πi
4

rmin(a − 1)). If f = 2, then rmin = 8

and so ν = 1. Otherwise f is odd. If f ≡ 1 (mod 4), then 4|rmin and ν = 1, while

if f ≡ 3 (mod 4), then 2 exactly divides rmin (recall that if 24/gcd(24, p + 1) is odd
then rmin has an extra factor of 2). Also a − 1 ≡ −2 (mod f + 1) so a − 1 ≡ 2

(mod 4) and hence in this case ν = −1.

The remaining case is # f = 2, say f = pq with q prime, so

ν =
( q

a

) rmin
exp

( πi

4
rmin2(a − 1)

)

=
( q

a

) rmin
(−1)rmin(a−1)/2.

Consider the case that f is even. Take q = 2; then ν = (−1)
a2

−1
8

rmin (−1)
a−1

2
rmin . If

p ≡ 7 (mod 8), then rmin is odd and since a ≡ −1 (mod p + 1) we have a ≡ 7

(mod 8), which gives ν = −1. If p ≡ 1, 3, 5 (mod 8), then rmin is even and ν = 1.

We also have to consider p = 2. In this case

ν =
( q

a

) rmin
(−1)rmin(a−1)/2.

If q is not congruent to 7 modulo 8 then rmin is even and ν is 1, while if q ≡ 7

(mod 8) then by quadratic reciprocity, ν = (
q
a
)(−1)(a−1)/2

= ( a
q
) = ( 2

q
), since 2a −

bq = 1 gives 2a ≡ 1 (mod q). But ( 2
q
) = 1 since q ≡ 7 (mod 8), and so ν is one in

this case also. This deals with all the cases when # f = 2 and f is even.

Finally consider # f = 2 and f odd. If p ≡ 1 (mod 4) and q ≡ 1 (mod 4) then

rmin is even and ν is one. So ∆ f = d f in this case.
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Next suppose both p ≡ 3 (mod 4) and q ≡ 3 (mod 4) then rmin is odd. Also
a ≡ −1 (mod p + 1) implies that a ≡ 3 (mod 4). So ν = ( q

a
)(−1)(a−1)/2

=

−(−1)(q−1)/2(a−1)/2( a
q
) = ( p

q
), using ap ≡ 1 (mod q) and quadratic reciprocity. By

symmetry, the sign factor for Wq is ( q
p

), but by quadratic reciprocity, one of ( q
p

) and

( p
q

) is −1 and ∆ f = d2
f in this case. Finally suppose p ≡ 3 (mod 4) and q ≡ 1

(mod 4). Once again, rmin is odd. So the sign factor for Wp is −( q
a
) = −( a

q
) = −( p

q
).

The sign factor for Wq is ( p
α )(−1)(α−1)/2 (where we have used α rather than a to

avoid confusion, since a depends on the prime). Since p ≡ 3 (mod 4), by quadratic

reciprocity (
p
α )(−1)(α−1)/2

= (α
p

) and since αq ≡ 1 (mod p) this gives a sign of
(

q
p

)

for Wq. Thus the product of the sign factors for Wp and Wq is −( p
q

)( q
p

) = −1

by quadratic reciprocity. So ∆ f = d2
f in this case.

Since all the cases listed in Theorem 6 give ∆ f = d f and all the remaining cases
give ∆ f = d2

f , the result follows.

If h 6= 0 is a cusp form on Γ0( f )+ of weight k and trivial multiplier system, then

for suitable integers s and t , ha/∆b is a modular function with divisor supported only

at the one cusp of Γ0( f )+. This is only possible if ha/∆b is a constant, so that h is an
η product and so h = const × ∆

u
f for some positive integer u. Thus, as mentioned

previously, ∆ f is also characterized, up to a nonzero multiplicative constant, as the
cusp form of smallest weight on Γ0( f )+ that does not vanish on H.

If the genus of G = Γ0( f )+ is not zero, then there are cusp forms of weight 2 on G.
A simple calculation shows that the weight of ∆ f is always divisible by 4, and so in this

case ∆ f is never a cusp form of smallest weight. The cases when the genus of G is zero

are given in Table 1, together with the expression for ∆ f . Since the signatures of these
groups are known, see for example Cummins [4] and the references therein, we can

use Shimura’s expression for the dimensions of spaces of cusp forms [13, Theorem
2.24] to conclude that ∆ f is, up to a nonzero multiplicative constant, the unique cusp

form of smallest weight only in the cases f = 1, 2, 5, 6.
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