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SUMMARY

Accurately identifying resistance to gastrointestinal nematode infections requires the ability to identify animals with low
and high intensities of infection. The pathogenic effects of nematodes depend upon both the length and number of worms,
neither of which can be measured in live animals. Indices that predict these quantities are urgently needed. Monthly fecal
egg counts, bodyweights, IgA concentrations and pepsinogen concentrations were measured on Scottish Blackface sheep
naturally infected with a mixture of nematodes, predominantly Teladorsagia circumcincta. Worm number and average
worm length were available on over 500 necropsied lambs. We derived predictive indices for worm length and number
using linear combinations of traits measured in live animals. The correlations between the prediction values and the
observed values were 0·55 for worm length and 0·51 for worm number. These indices can be used to identify the most
resistance and susceptible lambs.
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INTRODUCTION

Nematodes reduce animal health and welfare as well
as the profitability of livestock production. In predo-
minantly Teladorsagia circumcincta infection, the
major consequences are reduced growth and
occasionally the death of severely affected animals.
Profitable production of small ruminants requires
the control of nematodes, for example through selec-
tive breeding or targeted selective treatment. Effective
implementation of such controls requires a better
understanding of the host–parasite interaction, and
one of the major constraints is our inability to deter-
mine the intensity of infection in a live animal.
The severity of infection depends on the nutritional

state of the host and its ability to mount an immune
response (Stear et al. 2003; Roeber et al. 2013).
Resistance is defined as the ability of a host to suppress
establishment and/ordevelopment of aparasite (Sayers
and Sweeney, 2005). Thus, resistance can be assessed
directly by measuring worm number and worm
length (Stear et al. 1999b; Sayers and Sweeney,
2005). Neither can be measured in live animals.
Worm number is a direct method of identifying

resistantanimals (SayersandSweeney,2005)and is cor-
related with an animal’s productivity. Consequently,
inaccurate estimation of worm number can hamper

diseasemanagement (Raadsma et al. 2008). In contrast,
worm length can be measured more accurately (Stear
et al. 1999a) and is a more heritable trait with resistant
lambs able to better control worm growth rather than
worm numbers (Strain et al. 2002).
Several traits have been shown to correlate with

nematode infection (Davies et al. 2005), one of
which is fecal egg count (FEC), which is routinely
used as a measure of resistance (Sayers and
Sweeney, 2005). The number of eggs reflects both
the number of worms present and their fecundity,
which depends on worm length (Stear et al. 2003).
Several other traits are also associated with T. cir-
cumcincta worm number and length. Increased con-
centrations of parasite-specific mucosal IgA and
eosinophil are associated with reduced adult worm
length, suggesting that worm length is regulated
through an interaction between IgA and eosinophils
(Henderson and Stear, 2006). Plasma pepsinogen
concentration (Peps) is associated with abomasal
damage as well as the immune response. It is associ-
ated with worm length and weakly associated with
worm number (Stear et al. 1999a). Reduced weight
gain is also a characteristic of infected lambs
(Miller and Horohov, 2006) and is used as a
measure of animal resilience (Bisset and Morris,
1996). As a result, the degree of infection manifests
itself through a complex interaction between many
traits and a multitrait marker may be a valuable
tool for identifying resistant sheep. The aim of the
present paper is to describe the creation of predictive
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indices for worm number and worm length by com-
bining several immunological and parasitological
traits that are associated with nematode infection.

MATERIALS AND METHODS

Data

Data were collected over consecutive years from five
cohorts of 200 straight-bred Scottish Blackface
lambs. All lambs were given anthelmintic every 28
days. Within each year, monthly FEC, weights,
IgA concentrations, Peps and eosinophilia were
measured using standard procedures between May
and October with additional post-mortem counts
(Stear et al. 1999a; Strain et al. 2002; Henderson
and Stear, 2006). In total, 20 different measurements
were collected on live animals. However, the data are
unbalanced with different numbers of animals tested
for each trait (Table 1). Summary statistics for each
trait in the month of October are provided by Davies
et al. (2005).
Post-mortem adult worm number and length were

collected from 531 lambs. After data editing to
remove lambs with incomplete information 490
lambs remained. In total seven categories of adult
nematode were found with variation in prevalence
across the five years. T. circumcincta were found in
all lambs (Stear et al. 1998). We use worm number
and worm length to refer to T. circumcincta only.
The distribution of adult T. circumcincta is overdis-
persed and follows a negative binomial distribution
(Henderson and Stear, 2006). Adult worm length
was defined as the average length of at least 25 ran-
domly selected adult female worms, and had a

distribution consistent with a normal distribution
(Stear et al. 2007).

Univariate analysis

We assessed the linear relationships between each
response variable and the list of independent vari-
ables (Table 1) using a series of linear regressions.
For each response, the p-values were corrected for
multiple comparisons using the methods described
by Bretz et al. (2011). The p-values were adjusted
using the p-adjust function in R (R Core Team,
2013).
In addition to the original variables (Table 1), we

also considered other possible indicators of infec-
tion. The relationship between worm number and
FEC is not linear (Bishop and Stear, 2000); low
FECs occur in animals with both low and high
worm numbers. Therefore, quadratic relationships
between FECs and worm length and number were
considered. To predict worm number and worm
length, we considered changes in lamb weights in
July and August, and August and September.
Lastly, there may be interactions between some of
the variables. Increased IgA activity is negatively
correlated with FECs (Strain et al. 2002).
Interaction terms between FECs and IgA across
the 6 months were included.

Multivariate analyses

Multiple linear regression (MR) is a commonly used
method for estimating the importance of multiple
independent variables in accounting for variation

Table 1. Summary statistics for 20 predictor variables including median values, ranges (minimal and
maximal values) and the per cent of missing values from the 490 necropsied lambs

Trait Median Range
Per cent
missing (%) Trait Median Range

Per cent
missing (%)

May fecal egg count
(FEC.1)

0 (0, 8100) 61 May weight
(WT1)

10 (4, 17·5) 2

June fecal egg count
(FEC.2)

200 (0, 1750) 42 June weight
(WT2)

17 (9, 25) 2

July fecal egg count
(FEC.3)

350 (0, 3200) 13 July weight
(WT3)

22 (12, 36) 0·6

Aug fecal egg count
(FEC.4)

150 (0, 2450) 9 Aug weight
(WT4)

27 (14, 38) 2

Sep fecal egg count
(FEC.5)

125 (0, 2700) 4 Sep weight
(WT5)

29 (16, 43) 1

Oct fecal egg count
(FEC.6)

225 (0, 3612) 27 May eosinophil
(EOS1)

3 (0, 56) 80

August IgA
(IgA.4)

0·06 (0, 1·38) 31 June eosinophil
(EOS2)

3 (0, 59) 80

Sep IgA
(IgA.5)

0·15 (0, 0·87) 0·8 July eosinophil
(EOS3)

3 (0, 40) 80

Oct IgA
(IgA.6)

0·1 (0, 0·79) 44 Aug eosinophil
(EOS4)

9 (0, 83) 60

Oct pepsinogen
(Peps)

21·6 (0, 281·4) 3 Sep eosinophil
(EOS5)

9 (0, 161) 50
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in a dependent variable. It is also used for prediction
(Raadsma et al. 2008; Nathans et al. 2012). In this
paper, we take a regression approach to predict the
intensity of nematode infection in lambs using a
range of traits. However, many of the potential pre-
dictive traits are correlated. Some correlations arise
because the data are longitudinal. Others arise for
biological reasons. For example, plasma IgA and
peripheral eosinophilia have similar kinetics
(Henderson and Stear, 2006). High correlations
between variables can cause multicollinearity pro-
blems by inflating estimated standard errors of
regression coefficients (Dunteman, 1989) creating
difficulty in finding statistically significant variables.
Principal component analysis (PCA) is a dimension
reduction tool that can be used in these circum-
stances. In multivariate problems, PCA aims to
make independent linear combinations of the orig-
inal variables which account for most of the variation
in the data, and correlation principal component
regression (CPCR) can be used as a multivariate cali-
bration method to overcome multicollinearities
between regression variables (Jolliffe, 2002).
For both responses –worm number and length –

we performed PCA on the full set of variables, redu-
cing the dimensionality to relatively few com-
ponents. By selecting the components most
correlated to the response variable and analysing
each component weight, or loading, this method
assesses the importance of each variable in prediction
(Magidson, 2013).
Our interest lies primarily in the predictive ability

of each regression model. The model selection cri-
teria used was root mean squared error of prediction
(RMSEP) for worm length and root mean squared
log error of prediction (RMSLEP) for worm

number (described below). For each response, we
compared 6 models, three versions of the MR
model and three versions of the CPCR model
(Table 2). Specifically, the alternative versions
allowed us to compare the predictive ability of the
full set of variables (models MR3 and CPCR3)
with the set of variables found to be significant in
the univariate analyses (models MR2 and CPCR2)
in addition to assessing the value of repeated
measurements (models MR1 and CPCR1).

Correlation principal component regression

The method used was adapted from Sun (1995).
Given a training dataset of size n with response vari-
able Y and P explanatory variables stored in matrix
X of dimension n ×P:

1. For variable Xj (j = 1…P), set fXj ¼ ðXj � �XjÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXjÞ

p� �
. This produces a matrix eX, a

scaled and centred version of X.
2. Find a set of linear combinations PC1…PCP such

that for lamb i,

PCij ¼
XP
p¼1

c jp ~Xip;

where cjp are the component loadings.
3. RegressY on theA principal components, PC1…

PCA, most correlated withY. Selecting the value
of A is discussed in the next section.

4. Predict new observation y′ by

y0 ¼ �yþ
XA
p¼1

b̂pPCp;

Table 2. Description of the 6 models applied to the two variables

Code Method Response Variables

MR1_Length Multiple regression Worm length Last measurement taken for each variable
CPCR1_Length Correlation principal components

regression
Worm length Last measurement taken for each variable

MR2_Length Multiple regression Worm length Variables found to be significant listed in
Table 3

CPCR2_Length Correlation principal components
regression

Worm length Variables found to be significant listed in
Table 3

MR3_Length Multiple regression Worm length Full set of variables
CPRR3_Length Correlation principal components

regression
Worm length Full set of variables

MR1_Number Multiple regression Worm number Last measurement taken for each variable
CPCR1_Number Correlation principal components

regression
Worm number Last measurement taken for each variable

MR2_Number Multiple regression Worm number Variables found to be significant listed in
Table 4

CPCR2_Number Correlation principal components
regression

Worm number Variables found to be significant listed in
Table 4

MR3_Number Multiple regression Worm number Full set of variables
CPRR3_Number Correlation principal components

regression
Worm number Full set of variables
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where �y is the mean value of the response vari-
able Y and b̂1; . . . ; b̂A are estimated regression
coefficients.

Model selection

To find the best predictor of worm number or worm
length, we used 10-fold cross-validation to select the
value of A (step 3 in CPCR) which minimized the
RMSEP, defined as

RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðy0i � ŷ0iÞ2
s

(Sun, 1995). This is a function of the difference
between the true value y0i and the predicted value ŷ0i
with each difference equally weighted. TheRMSLEP

RMSLEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

logðy0i þ 1Þ � log ŷ0i þ 1
� �2� �s

;

ismore appropriate for data over a larger range.Worm
numbers in this data are between 100 and 28 400.
Therefore, any slight deviations from the true values
in the upper tail of this distribution will heavily
influence the value of RMSEP. We therefore used
RMSEP to choose the value of A when modelling an
average worm length and we used RMSLEP when
modelling a worm number.
In order to compare the results from the 6 models

(Table 2), we randomly sampled 300 observations to
act as a training set and the remaining data were used
as a test set and RMSEP (or RMSLEP in the case of
worm number) was calculated to access the predic-
tive ability of the models. This process was repeated
1000 times. RMSEP and RMSELP are only infor-
mative about the accuracy of a predictor.
To assess precision, we computed prediction

bands. For any linear regression model, uncertainty
arises due to the variability between the fitted values
and the observed values. However, given that the
fitted values are only expectations of the observed
data, applying a fitted regression model to new
data presents additional sources of variation due to
the uncertainty in these expectations (Gelman et al.
2004). Since we assumed normality in modelling
worm length, we computed prediction intervals in
R using the predict.lm function. However, we took
a Bayesian approach to compute prediction bands
for worm number since we used negative binomial
models. This was achieved by first sampling from
the joint posterior distribution of all estimated
regression parameters given in the observed data,
and given these samples and new data, we simulated
from the data distribution (Gelman et al. 2004).
The best model minimized RMSEP (or

RMSLEP) and produced narrow prediction bands.

Rotating principal components

Principal components are useful if they are interpret-
able and rotating a set of components can ease
interpretation (Jolliffe, 2002). Variables that are
most influential in prediction are more heavily
weighted in the first component, which is the com-
ponent most correlated with the response variable,
and have previously been referred to as prime pre-
dictors (Magidson, 2013). We rotated the set of com-
ponents using the varimax method, which is
designed to inflate higher component weights and
decrease the lower weights (Dunteman, 1989).

Missing data

A major constraint in using principal component
regression is that we require observations from all
of the original variables for all of the lambs, which
is not the case in the dataset (Table 1). One
method is to simply use only lambs with a complete
set of observations in any analysis. However, very
few lambs had observations for every variable.
There are several statistical methods for imputation
of missing data. We used singular value decompo-
sition (Troyanskaya et al. 2001 and Wong, 2013).

RESULTS

We first analysed the data univariately and then con-
sidered the full set of variables simultaneously.

Univariate analysis

Pairwise correlations between the variables are shown
in Fig. 1. The highest correlations occurred between
repeated measurements of the same variable. For
instance, lamb weights between May and September

Fig. 1. Pairwise correlations between variables listed in
Table 1. Correlations between IgA.6 and EOS1, EOS2
and EOS3 could not be estimated due to the overlap in
missing data (black boxes). Grey boxes indicate non-
significant correlations.
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had correlations from 0·89 between June and July to
0·62 between May and September. On the other
hand, FEC taken at 1 or 2 months of age showed no,
or weakly negative, correlations with later FEC.
Lamb weight was weakly negatively correlated with
some FEC and Peps, whereas there were some weak
positive correlations between IgA and pepsinogen.

Univariate analysis: worm length

There were significant relationships between a
variety of variables and worm length (Table 3).
Lambs with longer worms had higher FEC
(FEC.4 and FEC.5), higher body weights (WT.4
and WT.5) but lower IgA activity (IgA.4 and
IgA.5) and lower pepsinogen (Peps.). Pepsinogen
had the strongest correlation with worm length
(−0·34). The similar RMSEP showed that the vari-
ables had similar predictive abilities (Table 3).

Univariate analysis: worm number

Table 4 shows that there were significant associ-
ations between the measurements on live lambs
and worm number. FEC in October (FEC.6), IgA
in August (IgA.4) and Peps were positively associ-
ated with worm number; the correlation of Peps

was higher than FEC. Lamb weights (WT.2,
WT.3, WT.4 and WT.5) were negatively correlated
with worm number. There was a little difference in
the predictive ability of each significant variable.
However, FEC with a quadratic term in October
(FEC.6+FEC.62) produced slightly lower values of
RMSLEP (Table 4, RMSLEP).

Multivariate analysis: worm length

The predictabilities (the mean values of RMSEP)
for all 6 models relating to worm length are given
in Table 5. There was no difference between mul-
tiple regression and CPCR with the reduced set of
variables (models MR1_Length, MR2_Length,
CPCR1_Length and CPCR2_Length). The MR
with the full set of variables (MR3_Length) pro-
duced the widest confidence interval for RMSEP.
There was little difference in the distributions of
RMSEP using CPCR with the full set of variables
(CPCR3_Length) and the remaining 4 models.
The indices from models CPCR3_Length and

MR1_Length were used to compare the full set of
variables with just the final measurement of each
variable. In each case, worm length was predicted
as a weighted linear combination of the standardized
indicator traits (Table 6).

Table 3. Univariate significant relationships found between worm length and the set of predictor variables
(corrected for sex and year of birth). For each variable, the correlation and RMSEP are given. The p-values
reported for quadratic relationships correspond to the quadratic term

Variable Direction p-value Correlation RMSEP

IgA.4 − 0·027 −0·17 (−0·27, −0·07) 0·017 (0·015, 0·019)
IgA.5 − 0·0007 −0·18 (−0·27, −0·10) 0·016 (0·015, 0·018)
FEC.4 + <0·0001 0·23 (0·14, 0·31) 0·017 (0·015, 0·018)
FEC.5 + 0·0007 0·19 (0·10, 0·28) 0·017 (0·015, 0·018)
WT.4 + 0·001 0·18 (0·09, 0·27) 0·017 (0·015, 0·019)
WT.5 + 0·036 0·14 (0·05, 0·23) 0·017 (0·015, 0·019)
Peps − <0·0001 −0·34 (−0·42, −0·27) 0·016 (0·014, 0·018)
FEC.4 +FEC.42 + 0·02 0·017 (0·015, 0·018)
WT.4-WT.3 + 0·00053 0·19 (0·11, 0·28) 0·017 (0·015, 0·019)

Table 4. Univariate significant relationships found between worm number and the set of predictor variables
(corrected for sex and year of birth). For each variable, the correlation and RMSLEP are given. The p-values
reported for quadratic relationships correspond to the quadratic term

Variable Direction p-value Correlation RMSLEP

IgA.4 + <0·0001 0·19 (0·08, 0·29) 1·09 (0·84, 1·30)
FEC.6 + <0·0001 0·30 (0·20, 0·39) 0·99 (0·75, 1·18)
WT.2 − 0·019 −0·10 (−0·19, −0·01) 1·11 (0·83, 1·31)
WT.3 − 0·004 −0·13 (−0·21, −0·04 1·10 (0·83, 1·32)
WT.4 − <0·0001 −0·24 (−0·33, −0·16) 1·09 (0·83, 1·30)
WT.5 − <0·0001 −0·27 (−0·35, −0·19) 1·08 (0·81, 1·29)
Peps + <0·0001 0·37 (0·29, 0·45) 1·09 (0·82, 1·28)
FEC.6× IgA.6 + 0·011 0·20 (0·08, 0·32) 1·05 (0·81, 1·27)
FEC.6 + FEC.62 + 0·0005 – 0·97 (0·73, 1·14)
WT.4-WT.3 − <0·0001 −0·23 (−0·32, −0·15) 1·08 (0·83, 1·31)
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Using the full dataset (CPCR3_Length), we
found that the model with all 22 principal com-
ponents minimized the median RMSEP (Fig. 2A),
however not all these components were significantly
correlated with worm length. The correlation

between the leading principal component and
worm length was equal to −0·24 (Fig. 2B). The
first rotated component is a weighted average of
FEC measured between August and October. The
second component had a correlation of −0·18 with

Table 5. Predictability of models relating to worm length, measured using RMSEP, and predictability of
models relating to worm number, measured using RMSLEP, for each model listed in Table 2

Model code Variables Predictability
95% confidence
interval

MR1_Length Combination of sex, pepsinogen, fecal egg count and IgA in
October, weight and eosinophil in September that reduced
RMSEP

0·013 (0·011, 0·015)

CPCR1_Length Combination of Sex, pepsinogen, fecal egg count and IgA in
October, weight and eosinophil in September that reduced
RMSEP

0·013 (0·011, 0·015)

MR2_Length Significant variables listed in Table 3 0·013 (0·011, 0·016)
CPCR2_Length Significant variables listed in Table 3 0·013 (0·011, 0·015)
MR3_Length All variables 0·017 (0·012, 0·411)
CPCR3_Length All variables 0·014 (0·011, 0·018)
MR1_Number Combination of sex, pepsinogen, fecal egg count and IgA in

October, weight and eosinophil in September that reduced
RMSLEP

0·760 (0·624, 0·905)

CPCR1_Number Combination of Sex, pepsinogen, fecal egg count and IgA in
October, weight and eosinophil in September that reduced
RMSLEP

0·770 (0·625, 0·945)

MR2_Number Significant variables listed in Table 4 0·897 (0·625, 0·922)
CPCR2_Number Significant variables listed in Table 4 0·812 (0·630, 0·945)
MR3_Number All variables 0·767 (0·683, 5·703)
CPCR3_Number All variables 0·760 (0·663, 1·011)

Table 6. Variable weights for models CPCR3_Length, MR1_Length, CPCR3_Number andMR1_Number.
The last row gives the correlations between each of the four resulting indices and the observed values.
Variables with the largest weights are highlighted in bold

Variable CPCR3_Length MR1_Length CPCR3_Number MR1_Number

Constant 0·874 0·816 8·170 9·047
Sex 0·006 −0·110 −0·418
FEC.1 (FEC.12) 0·007 (−0·001) −0·050 (−0·001)
FEC.2 (FEC.22) −0·003 (−0·004) −0·011 (−0·001)
FEC.3 (FEC.32) −0·005 (0·007) −0·139 (0·100)
FEC.4 (FEC.42) 0·030 (−0·021) −0·171 (0·113)
FEC.5 (FEC.52) 0·034 (−0·030) −0·081 (−0·033)
FEC.6 (FEC.62) 0·073 (−0·049) 0·0001 0·643 (−0·373) 0·001
IgA.4 −0·013 0·066
IgA.5 −0·009 −0·024
IgA.6 0·019 −0·014
WT1 0·008 0·030
WT2 −0·003 0·066
WT3 −0·041 0·097
WT4 0·052 −0·123
WT5 0·014 0·002 −0·154 −0·046
Peps −0·037 −0·002 0·244 0·010
EOS1 −0·010 0·034
EOS2 0·012 0·071
EOS3 −0·005 −0·007
EOS4 −0·002 −0·018
EOS5 0·002 0·027 −0·002
IgA.4 × FEC.4 −0·002 0·033
IgA.5 × FEC.5 −0·005 −0·003
IgA.6 × FEC.6 −0·039 −0·073
Correlation with observed values 0·55 (0·48, 0·60) 0·44 (0·37, 0·51) 0·51 (0·44, 0·57) 0·46 (0·39, 0·53)
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worm length and the rotated component is a
weighted average of the three IgA measurements
and eosinophilia measured in September.
With all the 22 components, the index for worm

length is heavily weighted by FEC from August,
September and October, lamb weight in July and
August, Peps and the interaction between IgA and
FEC inOctober (Table 6, CPCR3_Length). The cor-
relation between the predicted and observed worm
length was 0·55 and significantly different from zero
(p-value <0·0001, confidence interval 0·50, 0·62).
Using only the final measurements, we found little

difference in comparing models MR1_Length and
CPCR1_Length. Therefore, in model MR1_Length,
we used cross-validation to determine the minimal
set of traits that minimized the RMSEP. The set of
variables included sex, FEC and pepsinogen
measured in October and weight measured in
September (Table 6). The correlation between the
observed and predicted worm lengths using this
index was 0·44 and significantly different from zero
(p-value <0·0001, confidence interval 0·37, 0·51).

Prediction bands were computed over the range of
observed worm lengths using models CPCR3_
Length (Fig. 2C) and MR1_Length (Fig. 2D). In
both plots, the solid middle line shows the best
fitting line and the line of equality. The outer two
lines give prediction bands. Most notably, the
reduced set of traits (MR1_Length, Fig. 2D) does
not predict that any worms will not be longer than
1 cm. The prediction bands using model CPCR3_
Length are narrower than those using model
MR1_Length. For example, an index value of 1 cm
had a predicted observed value between 0·79 and
1·20 cm using CPCR3_Length and a predicted
observed value between 0·77 and 1·22 cm using
MR1_Length.

Multivariate analysis: worm number

We compared the predictive ability of the 6 possible
models relating to worm number using RMSLEP
(Table 5). We observed a similar pattern to worm
length; the multiple regression with the full set of

Fig. 2. (A) RMSEP for worm length prediction using different numbers of components in CPC regression. This value is
minimised using 22 components. (B) Correlations between the first 20 components and worm length (dots) and 95%
confidence intervals (solid lines). (C) Predicted worm length using 20 components in CPC regression (CPCR3_Length)
plotted against observed worm length with fitted line and prediction intervals (solid lines) and the line of equality (dotted
line). (D) Predicted worm length using the minimal set of traits (MR1_Length) plotted against the observed worm length
with fitted line and prediction bands (solid lines) and the line of equality (dotted line).
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variables (MR3_Number) produced a wider range of
RMSLEP values than the remaining 5 models.
The indices from models MR1_Number and

CPCR3_Number were compared (Table 6). In
each case, worm number is predicted as the expo-
nential of a weighted linear combination of the stan-
dardized indicator traits (Table 6).
In model CPCR3_Number, 13 principal com-

ponents minimized the RMSELP (Fig. 3A). The
correlation between worm number and the first com-
ponent was−0·24 and the correlationwith the second
component was −0·21 (Fig. 3B). We found the first
rotated component to be a weighted average
between Peps and IgA in August and the interaction
between FEC and IgA in August. The second com-
ponent was a weighted average of FEC in July and
August and lamb weight in August and September.
The third rotated component was a weighted
average of the five lamb weights. FEC in July,
August and October, Peps in October and lamb
weight in August and September are the most
heavily weighted in the index (Table 6). The

correlation between the predicted worm numbers
(using CPCR3_Number) and the observed worm
numbers was 0·51 and significantly different from
zero (p-value <0·0001; confidence interval 0·53,
0·64).
Using cross-validation, the final index included

FEC and pepsinogen measured in October and
weight and eosinophil measured in September
(Table 6). The correlation between the predicted
worm numbers (using MR1_Number) and observed
worm numbers was 0·46 and significantly different
from zero (p-value <0·0001; confidence interval
0·39, 0·53).
Prediction bands were computed over the range of

observed worm numbers using models CPCR3_
Number (Fig. 4C) and MR1_Number (Fig. 4D).
In both cases, these bands are wide and indicate
that these predictive indices are not very informative
about worm number. However, we found model
CPCR3_Number to be slightly more accurate and
precise in predicting larger worm numbers corre-
sponding to the most heavily infected lambs. For

Fig. 3. (A) RMSLEP for worm number prediction using a range of component numbers in CPC regression. This value is
minimized using 13 components. (B) Correlations between the first 18 components and worm number (dots) and 95%
confidence intervals (solid lines). (C) Predicted worm number values using 18 components in CPC regression
(CPCR3_Number) plotted against observed worm number with fitted line and prediction intervals (solid lines) and the
line of equality (dotted line). (D) Predicted worm number using the minimal set of traits (MR1_Number) plotted against
observed worm number with fitted line and prediction intervals (solid lines) and the line of equality (dotted line).
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example, an index value of 10 000 would predict a
worm count between 106 and 35 294 with a point
estimate of 10 273 using model CPC3_Number,
whereas using model MR1_Number would predict
an observed worm number between 106 and 38 633
with a point estimate of 11 057.

DISCUSSION

We quantified the intensity of T. circumcincta infec-
tion in Scottish Blackface lambs using a range of
indicator traits and devised linear combinations of
these measurable traits that were highly correlated
with the intensity of infection.
MR can be used for both inference and prediction.

Raadsma et al. (2008) used MR to develop a predic-
tive index for Fasciola gigantica in sheep and cattle.
Although this method can produce near perfect
results within the training data, it performs poorly
when predicting observations out with the training
set, a consequence of overfitting. We used corre-
lation principal components regression to make
linear combinations of the set of indicator traits,
and then formed a predictive index for infection
based on those linear combinations most correlated
with infection. By assessing which traits were more
heavily weighted in the leading few components,
we were able to detect traits which are most useful
in predicting infection. Predictive indices based on
this method were better predictors and more corre-
lated to worm number and length than any individ-
ual trait (Tables 3 and 4).
FECs measured between August and October

were heavily weighted in the leading rotated com-
ponent, most correlated with average worm length,
whereas IgA and eosinophils were heavily weighted
in the second rotated component. IgA activity has
previously been shown to be associated with FEC
and reduced adult female worm length (Strain
et al. 2002). Worm length is highly correlated with
fecundity (Stear et al. 1997) and IgA appears to be
a major mechanism regulating the worm growth
(Stear et al. 1999b). Univariately, our analysis is con-
sistent with the previous work since we found
plasma IgA to be negatively correlated with worm
length. However, plasma IgA, FEC and pepsinogen
were similar in their ability to predict worm length
(Table 3). The resulting predictive index
(CPCR3_Length) is mostly influenced by FEC,
lamb weight and Peps and has a relatively strong cor-
relation of 0·55 with worm length.
Using measurements for each trait taken in the last

month (MR1_Length) failed to accurately predict
lambs with an average worm length >1 cm
(Fig. 2D), which corresponds to lambs least able to
suppress worm development. The index derived,
using all available data (CPCR3_Length) had a
stronger correlation with worm length than any indi-
vidual trait or the index derived using multiple traits

taken in the last month of the study (MR1_Length,
Table 6). Therefore, it is beneficial to monitor
changes in FEC and weight over the final few
months in order to best predict a lamb’s ability to
regulate worm length.
Predicting worm number presented the biggest

challenge, partly due to the level of dispersion in
these data. Using the full set of variables in a corre-
lation principal components regression (CPCR3_
Number) produced the most precise predictions;
FEC and Peps in October and lamb weight in
the final 2 months were heavily weighted in
the predictive index (Table 6). The correlation
between the predicted and observed worm
numbers was 0·51, whereas using only the last
measurement on each trait (MR1_Number,
Table 6) produced a lower correlation of 0·46. The
latter index also produced slightly wider prediction
bands (Fig. 3C and D).
There was a clear density-dependent effect of

worm number on worm length and lambs fell into
one of the three categories. They either showed a
large number of small worms, a small number of
large worms or a small number of small worms. An
increase in worm number may stimulate an
immune response and a rise in concentration of pep-
sinogen in the plasma, which is also a characteristic
of infection and is strongly associated with the
decreased mean worm length (Table 3, Stear et al.
1999a). Since the pathogenic effects of T. circum-
cincta depend on both the length and the number
of worms (Stear et al. 2003), creating an index to
predict a combination of worm length and number,
may better identify lambs most resistant to nema-
tode infection.
The most informative indices are those that use

information from a variety of tests that are measured
on several occasions. The cost of multiple tests may
prevent multivariable indices being used widely on
many farms, although, they may have a role in
breeding farms to help identify superior rams.
However, their main role may be in experimental
studies where it is desirable to monitor changes in
the intensity of infection over time. Currently the
information from multiple tests is interpreted
based on subjective beliefs of the scientist. Indices
provide a rigorous and useful way to combine infor-
mation objectively. For instance, a multivariable
index could be used as an indicator trait in a
variety of procedures, for example searching for
QTL, identifying resistant animals for breeding, or
comparing the effect of different control procedures.
The indices in this paper have used information

from Scottish blackface lambs naturally infected
with predominantly T. circumcincta. Further
research is required to determine indices for other
breeds or nematode populations. However, the
methods developed in this paper provide a template
for constructing future indices.
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CONCLUSION

We have shown that combining measureable traits is
more informative in predicting T. circumcincta
resistance in Scottish Blackface lambs than using
individual traits. Furthermore, this comprehensive
dataset allowed us to assess the advantages of
repeated measures in predicting resistance. Using
the full dataset, we were able to more precisely and
accurately predict worm length and number than
only considering single measures of each trait taken
at the end of the grazing season.
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