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A CONVEXITY THEOREM FOR BOUNDARIES 
OF ORDERED SYMMETRIC SPACES 

JOACHIM HILGERT 

ABSTRACT. We consider a class of real flag manifolds which occur as Fiirstenberg 
boundaries of ordered symmetric spaces and study the image of associated momentum 
maps. The presence of the order structure is responsible for much stronger convexity 
properties than in the general case. 

1. Introduction. After Kostant's seminal paper [Ko73], in which he studied con­
vexity properties of Iwasawa projections and adjoint orbits of compact groups, many con­
vexity theorems appeared and proved useful in a wide variety of mathematical disciplines 
like harmonic analysis, topology or Lie theory (cf [AL92], [At82], [vdB86], [BFR90], 
[BR91], [CDM88], [Du83], [GuSt82], [Ki84], [LR91], [Ne91], [Ne93], [Pa84], [Wi89]). 
There is not yet a unified approach to all these results even though many of them can be 
phrased in terms of symplectic geometry. In that context one has a symplectic manifold 
9rf and a hamiltonian group action of a Lie group G on 9\f for which one can construct 
the so called momentum map O: 0\f —> g*, where q is the Lie algebra of G and (]* the 
dual space of q. In the case that G is a torus and M is compact, Atiyah and Guillemin-
Sternberg showed that O(iW) is a convex polyhedron (cf [At82], [GuSt82]). If the mani­
fold 0\f in addition admits an involution which in a suitable sense is compatible with the 
symplectic structure and the hamiltonian action according to Duistermaat (cf [Du83]) 
one even has O(f̂ Vf) = 0(f^fr), where fWr denotes the set of fixed points of r. The 
results of Kirwan (cf [Ki84]) show that one cannot expect results of this generality for 
non-abelian compact groups. In the case of unitary representations viewed as hamilto­
nian actions on complex projective space Arnal and Ludwig in [AL92] completely deter­
mined when the image of the momentum map is convex in terms of the highest weight of 
the representation. On the other hand one has convexity theorems even for non-compact, 
non-abelian groups in the presence of order structures (cf [Pa84], [Ne931). These results, 
even though formulated in purely Lie theoretic terms, also have a symplectic interpreta­
tion. One is lead to the conjecture that there is some underlying principle that connects 
convexity properties of moment maps and the presence of order structures. The present 
paper gives some evidence that this is so. We study real flag manifolds that are closely 
related to the orderable symmetric spaces (cf [01s82], [Ola90]) and view them as fixed 
points under complex conjugation on corresponding complex flag manifolds which are 
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Kàhler, hence symplectic. The group we let act on the complex flag manifold is a com­
pact form for the isotropy group of the symmetric space we started out with. Then the 
result is that the momentum map restricted to the real flag manifold has a compact con­
vex image. This may be viewed as an extension of Duistermaat's theorem for these flag 
manifolds to a non-abelian group action. On the other hand it is not true that the image of 
the complex flag manifold under the momentum map is convex (and hence not equal to 
the image of the real flag manifold). The cases covered by our theorem include the real 
Grassmannians sitting inside the complex Grassmannians with the action of the unitary 
group and Herman's convexity theorem (cf. [Wo72]) which asserts that hermitean sym­
metric spaces may be realized as bounded convex domains. Even though the statement of 
our theorem makes sense for more general classes of symmetric spaces, counterexamples 
show that it in general becomes false in the absence of an order structure. 

Let X = G JH be a pseudo-Riemannian symmetric space, i.e., G is a reductive group 
and H an open subgroup of the group GT if fixed points of an involutive automorphism 
T.G —> G. Then there exists a Cartan involution6:G—> G which commutes withr. Let 
g = I) + q = f + p be the eigenspace decompositions of the Lie algebra g of G with 
respect to r and 6 for the eigenvalues 1 and — 1. We assume here that G is contained in 
a complexification Gc. Then the space X carries a G-invariant infinitesimally generated 
order structure (cf. [Ola90]) if and only if it is of regular type, which means that the 
centralizer of JX G p flq : [X, p P\ q] = {0}} in q is equal to p Pi q. In this case any 
maximal abelian subspace a of p D q is also maximal abelian in p and q and one finds 
an element Xo G û such that spec(adXo) = {—1,0,1} and the centralizer of XQ in g is 
Zq(Xo) = f\ Pi f + q H p =: go- Consider the system A := A(g, a) of restricted roots 
for the pair (g, a). It can be split up into compact and non-compact roots according to 
AQ := {a G À : a(Xo) = 0} and \ := {a G A : a(Xo) ^ 0}. The condition on the 
spectrum of adX0 ensures that Ar = A_iÛAi, where A±1 := {a G A : a(X0) — ±1} 
and Ù denotes disjoint union. We may and will assume that we have an ordering on A 
such that Ai Ç A+ and any non-compact positive root is larger than all the compact roots. 
Furthermore we set 

n, := £ Qa, i = ±1 , 

and note that 
g0 = m + a + £ g0', 

aeAo 

where ga is the root space for a and m = gf (a) is the centralizer of a in f. Then fP := 
go + ni is a maximal parabolic subalgebra and the //-orbit in the flag manifold G/P, 
where P is the subgroup corresponding to fP, plays the role of the Furstenberg boundary 
for the positive domain in the ordered symmetric space X (cf. [FH092]). 

We assume that G is contained in a simply connected group Gc with Lie algebra 
qc = g 0 C. Then G/P may be viewed as a connected component of the set of real 
points in the complex flag manifold Gc/Pc> where Pc is the parabolic subgroup of Gc 

corresponding to the complexification fPc of (P. Note that G c /Pc is a compact Kàhler 
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manifold. For a suitable compact form U of Gc the group U acts on Gc/Pc by Kâhler 
isomorphisms. Thus we have a moment map O: Gc/Pc —> u*> where u is the Lie algebra 
of U and u* its dual (cf. [At82]). If we restrict the action to some subgroup of U then 
the corresponding moment map is just O followed by the canonical projection onto the 
dual of the Lie algebra of the subgroup. We will show below that U may be chosen in 
such a way that u^ = u H f)c is a compact form of f). We consider the moment map 
O^: Gc/Pc —* nt for the corresponding subgroup of U. Then our convexity result is 

THEOREM 1.1. (i) Ofl (G/P) is a convex set. 

(ii) O^.HP/P —> nt is a diffeomorphism onto the interior ofO^G/P) in the real 
vector space spanned by Of,(G/P). • 

The proof of Theorem 1.1 rests on the fact that one can view the real flag manifold 
G/P as sitting in a real projective space derived naturally from a suitable highest weight 
representation of G (cf. Proposition 2.4). 

I would like to thank the referee for the simple argument leading to the proof of The­
orem 1.1 (ii) which replaces a tedious Sl(2)-reduction from an earlier version. 

2. Flag manifolds and moment maps. The algebra u = I + ip is a compact form 
of gc- Let t be a maximal abelian subalgebra of u containing ia then t c is a Cartan subal-
gebra of gc. Consider the root system A(gc, t c) . Similarly to the case of A we decompose 
A(gc , tc)as 

A(gc, t c ) = A_i(Gc, tc)ÙAo(0c, tc)ÙAi(gc, tc) 

and set 

p± •= E flc 
AGA±)(9c,tc) 

and 

fcc == *c + E flè-
AGA0(gc,tc) 

Now we have Tc = tc
c + P+ a n d ^ = (f c + P+) n 9-

We want to realize Gc/Pc as a projective variety (cf. [BE89]). To this end we note 
first that we may find a positive system A+(gc, t c) of A(gc, t c) which contains A\ (gc, tc) 
and for which any element of Ai(gc, t c) is larger than any element of Ao(Qc> t c) . In fact, 
we can even choose A+(gc, t c) such that A+ consists of the restrictions of the elements in 
A+(Qc> t c) to a. Fix a basis £ of A+(qc, tc) and note that Z contains only one non-compact 
root, which we denote by /?0. Then Z0 '•= ZnA0(gc, t c) is a basis for AQ((}C, t c) . As usual 
we define elements Hp G t c for (5 G A(gc, t c) via 

B(H9H0) = P(H) V / f e t c , 

where B is the Killing form. Then we have 

tR := E ^ = 't 
/3GA+(ac,tc) 
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and the Killing form induces Euclidean inner products (•, •) on t& and its dual t^ which 
allows us to identify these to spaces. The co-roots /3 G t& are given by 

A ( » = 2 s i VAe,i-
Define an element Ao G t^ via 

0 for/^GXo 
A o ( / 3 ) - \ 1 far 0 = /?<>. 

REMARK 2.1. A0 = ^f^Xo G a ç tR = t^. 

PROOF. Note first that KX0 Ç a Ç tR is orthogonal to E / ^ R/5 Ç tRH[f^,f^]. But 
these two sets span t^ so the definition of Ao says that RXQ = RXQ. Since (3o G Ai(gc, tc) 
we now have 

<J30,XQ) = /30(X0) = 1 = AoOâ) = 2 ^ ^ . 
(po,po) 

Let 7r: gc —> gl(V) be the holomorphic representation with highest weight Ao and v0 

a highest weight vector. The representation ir can be integrated to a holomorphic rep­
resentation of Gc which we also denote by 7r. If P(V) is the complex projective space 
associated with V and [v] the line through v G V \ {0}, then, using Remark 2.1, we see 
Pc = {g G Gc : g • [vo] = [vo]} where g • [v] denotes the action induced on P(V) by 
7T. Therefore Gc/Pc gets identified with the orbit Gc • fvo] which is a projective variety. 
Therefore we may realize G/P as the G-orbit of [vo] in P(V). 

LEMMA 2.2. There exists a real form V^ ofV containing vo which is q-invariant. 

PROOF. We have g = n_i+g0+ni = rt_i+#(no)+m+a+rtand^P = #(rto)+m+a+n, 
where no is the sum of the root spaces for the a G AQ and n = no + n i. Let U(q) be the 
universal enveloping algebra of g and set V^ := U(Q)VQ. Note that IRvo is a weight space 
for a so that P̂Cvo Ç Cvo is possible only if 7r(#(no))vo = {0} and 7r(n)vo = {0}. Note 
that m Ç f H) go Q f c *s orthogonal to XQ with respect to the Killing form. Therefore 
we even have m Ç [f£, fc

c] which shows that 7r(m) annihilates vo since Ao vanishes on 
all the ft with /3 G Ao(gc, t c) . But then the Poincaré-Birkhoff-Witt Theorem shows that 
^(Q)vo ^ ^vo — ^vo and hence V^ is a proper subspace of V. It obviously is g-invariant 
and since V^+/V^ and V^n/V^ are gc-invariant we have Vĵ +ZV̂  = V and V^Pl/l^ = {0} 
which proves our claim. • 

From Lemma 2.2 we see that the orbit G • [vo] is contained in the real projective space 
P(V^) which is the set of real points with respect to the complex conjugation on P(V) 
induced by the real form VR of V. 

REMARK 2.3. rr(aX)v = n(X)v, where v ^ v denotes the complex conjugation on 
V with respect to VR and a is the complex conjugation of gc with respect to g. • 

Let G also denote the involutive automorphism of £/(gc) induced by a: gc —•> gc-
Then Remark 2.3 shows that a induces v —• v via a • v0 = a(a) • vo for all a G U(qc). 
Moreover we find g • v0 = cr(g) • v0 for all g G Gc. Thus Gc • [v0] H P(VR) corresponds 
to the fixed point set of the involution (still denoted by a) induced on Gel Pc by <r. 
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PROPOSITION 2.4. The real flag manifold G/P may be viewed as a connected com­
ponent ofthe set offixed points (Gc /' PcY := Gc • [volHP(V^) in Gc / Pc for the complex 
conjugation a on Gc/ Pc induced from a: Gc —> Gc. 

PROOF. We have seen above that G • [vo] is contained in (Gc/PcY- But 

T[v0](Gc • [v0]) = (p- + tcc + P+) • vo = p - • vo 

so that the real dimensions of (Gc/PcY and G/P agree. Since G is connected and 
(Gc/PcT is G-invariant, this implies the claim. • 

REMARK 2.5. We can choose a ^/-invariant Hermitian inner product (• | • ) on V which 
is real on VR and satisfies 

(v| w) = (Re v| Re w) + (Im v| Im w) — /(Re v| Im w) + /(Im v| Re w), 

where Re and Im denote the real and imaginary parts in V with respect to the complex 
conjugation. In particular we have 

(v|w) = (v|w). • 

The inner product (-|-) induces a Fubini-Study metric on P(V) and then U acts on 
P(V) preserving the Kàhler structure. Restrict the Kâhler metric to Gc • [vo] then U also 
preserves the Kâhler structure of G c / / V Using the fact that the embedding G c /P c —̂  
P(V) is £/-equivariant, it is easy to see that the moment map for the action of U on Gc /Pc 
is just the restriction of the moment map for the action of U on P( V) (cf. [GeSe87,§3]). 
But the latter is given by O: P(V) —> u* 

U(X)v\v) 

(v|v) 

REMARK 2.6. 0([v]) = -aO([v]). • 
Remark 2.6 shows that the image of G/P under O and O^ consists of purely imaginary 

elements of u* and u^ respectively. If we identify u* with u then u jj gets identified with 
u(] = î) H f + i(p H fj) so that 0(1 restricts to a map Ofl: G/P —> /(p n if). 

3. Strongly orthogonal roots. Consider the c-dual gc = Fj + iq of q. Then (c^c, r) is 
a symmetric pair of Hermitian type (cf. [01a91]). The complex conjugation rj of c\c with 
respect to cf is given by ar — TO and a Cartan decomposition of c\c compatible with r is 
qc = fc + pc, where 

fc := î j n f + / (qnp) 

and 
p c : = ^ n p + /(qnf) . 

We denote the corresponding Cartan involution by 6C. Note here that the complexifica-
tions of fc and go agree so that this notation is compatible with the one from Section 2. 
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Let *F be a maximal system of strongly orthogonal roots in Ai(Qc» *C) which is in­
variant under — r {cf. [01a91, §3]). We can choose root vectors E^ for \i G Aj(gc, t c) 
satisfying 

Set 
Eyi if -Tfl = M 17 

^ \ £M + TE-H if -r/x ^ //, 

X^ = E^ + r\E[h and X̂ . = £^ + 7/Ê .̂ Then according to [01a91, Lemma 3.3], the set 

is a maximal abelian subspace in pc and 

//G^F 

is maximal abelian in rj D p. 

LEMMA 3.1. Let 11 e Ai(gc,*c) tf*e« 

PROOF. This is an immediate calculation using rjE^ — £_M and 7r(p+)vo = {0}. • 

LEMMA 3.2. Let R be the group generated by *¥ in it* then R D A+(gc, tc) = H*. 

PROOF. This is clear, since the elements of *F are long roots and orthogonal. • 

PROPOSITION 3.3. o(p(U(b^)vQ)) C ib{). 

PROOF. Let 

V{1 : = £ ^A()+M, 

where the V^' are the weight spaces, then Uib^vo Q V^ since b{l Ç E^H>(9C
 + 9cM)-

Lemma 3.2 implies 7r(X)V^ _L V̂  for all X G g^, /x <̂  ¥ U — *¥ because weight vectors 
for different weights are orthogonal. This in turn shows that 

o ( P ( v * ) ) ç ( i i n £ (G'C + SC") = *'&c + t. 
/iGA+(ac,tc)\vIi 

On the other hand we have *(p((/(t)ft)vo)j Ç 0(P(VR)) Ç /p, which proves the claim. 
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LEMMA 3.4. Let p: u* —» ib^ be the canonical projection then 

(i) poO([v 0 ] ) = 0. 

(ii) p o JO( [VQ]) is surjective. 

PROOF, (i) 

( p o « ( [ v o ] ) i , 

(ii) 

(podO([v0])(7T(XM)vo),^) - / | 

( T T ^ H I V O ) 
t — — = u. 

(vo|vo) 

( T T ^ X V O + r7r(X/i)v0)| v0 + ^ ( X ^ V Q ) 

o (v0 + /7r(Z^)v01 v0 + tniX^vo) 

= 2i(7r(XMOvo|7r(X/i)vo) 

0 if M ? V 
2/||7r(XM)v0||

2 if/i = jz'. 

This proves the claim since p_ Pi 2fc = {0} a n d hence 7r(X/i)vo does not vanish. • 

4. Torus actions and projections. Let tjj be a maximal abelian subalgebra of u 

containing ibc. Consider the torus T§ corresponding to tjj and the associated moment 

map 0{j: G€/Pc —* t*- Let Wtt be the Weyl group of the root system A% := A(g c , (tjj)c) 

and AJJ an extremal weight of 7r with respect to (tjj)c then [GeSe87, §5], implies that 

O J J ( G C / P C ) = conv(Wjj • Ajj), where conv(Wjj • AJJ) is the (closed) convex hull of the Weyl 

group orbit W% • Ajj. Let now T§ be the torus belonging to ib^ and O^: Gc/Pc —* &\ the 

corresponding moment map, then 0^ = p o O j j = p o O . 

Note that a\ib = —id. Moreover a replaces the Kahler form on P(V) by its conjugate. 

Therefore a is antisymplectic and we may apply [Du83, Theorem 2.5], to G/P with the 

torus action Tb x Gc/Pc —> G C /P C - The result is that <3>b(Gc/Pc) = Ob(G/P). Let Bh 

be the analytic subgroup of G associated to b^ then [Du83, Proposition 4.2], implies 

Ob(G/P) = <$>b{Bh • [v0]) 

since Lemma 3.4(ii) says that [vo] is a regular point of O^ (Note that B{) • [vo] is the 

closure of B^ • [VQ]). Combining these facts with Proposition 3.3 we obtain 

PROPOSITION 4.1. <D(^ • [v0]) = O ^ • [v0]) = = <&b(Bh • [v0]) = ®b(G/P) = 

®b(Gc I Pc) and this set is the convex hull of the images under O^ of the Tb-fixed points 

in G/P. 

PROOF. All that remains to be noted is B^ • [v0] Ç P(£/(fef,)vo). • 

Note that determining the Tb-fixed points in P( V) is the same as determining the weight 

decomposition of n with respect to Tb. 

Consider the action of r\ on Ajj Ç it* = it^ given by 

rn(X) = y(riX) VXG(t t t), uc 
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(cf. [Wa72, p.25]). Then (Ajj,r/) is a normal a- system of roots (cf. [Wa72, 
Lemma 1.1.3.6]). 

REMARK 4.2. Let 7 G AJJ. Then the following statements are equivalent 
(1) rp = -1. 
(2) bc Ç kerl. • 
For 7 G AJJ with 777 ^ — 7 set 7 = \(1 + 777). Then, according to Araki's Theorem 

(c/: [Wa72, Proposition 1.1.3.1]), the set 

AJJ : = { 7 : 7 e A f t , 7 7 7 ^ - 7 } 

is a root system (in fact a system of restricted roots) in (bc)*, whose Weyl group W§ is 
generated by the reflections at the hyperplanes ker 7Hbc = ker 7Hbc. Moreover Satake's 
Theorem (cf. [Wa72, Proposition 1.1.3.3]) shows that 

WJJ = {w\(bcy : w G Whw(bc) Ç bc}. 

If now pjj: /tu —» (bcy is the canonical projection then [Ne91, Theorem 11.15], shows 

Pjj(conv(Wjj • /J)) = conv(Wjj • /x) 

if \x G (t)c)*- In fact, more is true 

PROPOSITION 4.3. Let \i G /tj then pjj(conv(Wjj • /j)) = conv(Wjj • pjj(/i)). 

PROOF. Let w e W| and w G WJJ be such that w((bc)*) = (bc)* and w\(bcr = w. 
Then the orthogonality of w shows that also i(tc Pi tjj)* is stable under w and hence w 
commutes with 77. But this shows 

pjj(w(/i)) = w(-(/ i + w)) = w(/x). 

Now the proof of [Ne91, Theorem II. 15] yields the desired formula. • 
We will use [Ne91, Theorem 11.15], once more. Note first that bc is ^-maximal in 

the sense of [Sch84, §7]. But then [Sch84, Proposition 7.2.1], shows that Ab := {/j,\b : 
[i G Ap /x|{, ^ 0} is a root system in b^ whose Weyl group Wt, is naturally identified 
with iV^c(b{,)/Z^c(b^). Moreover it is shown in loc. cit. that each element of Wb can be 
obtained from an element of W§ via restriction. This means that we may apply [Ne91, 
Theorem 11.15], to obtain 

p(conv(Wjj • //)) = conv(Wb • /1) 

for j[iG 1)!. Note that on (bc)* the projection p is given by /J 1—> i(/i + T^I). But then 

the same argument as in the proof of Proposition 4.3 shows that p(conv(Wjj • /i)) — 

conv(Wb -p(/i)). 
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THEOREM 4.4. Let \$ G /t* be an extremal weight for TT. Then <3>b{G / P) = 

conv{wb - p(Att))-

PROOF. 
Ob(G/P) = <t>b(Gc/Pc) 

= p o O^Gc/Pc) = p(conv(Wtt • A,)) 

= p^conv(Wrptt(A„))) 

= conv(W^ • p(Ajj)), 

since p o pjj = p. • 
Note that any element of Â  may be viewed as a restricted root in A(rj, b[}) since f), be­

ing ad b^ -invariant, consists of a sum of joint ad fj^-eigenspaces. Thus Wb is contained in 
the Weyl group W§ of A(fj, b^) which in turn can be identified with A^w)0(I^)/Z(/^)0(fjf]), 
where KH := K C\ H is the maximal compact subgroup of H contained in U and (KH)O is 
its connected component. This proves 

LEMMA 4.5. Wb = Wf)= N{KH)o(bh)/Z{KH)o(bh). • 

5. The convexity theorem. Consider the Cartan decomposition H = KHB{](KH)o 
of H and note that (KH)o Ç P so that the L^-equivariance of O implies 

<&(//. [vo]) = 0 ( ^ • [v0]) = A d * ^ / / ) * ^ • [v0]). 

Analogously, we have 

<t>h(H • [v0]) = Ad*(^)O f t (^ • [vo]) - A d * 0 ^ ) 0 ^ • [v0]). 

We set 
D := Ad\KH)®b(G/P) C i(f) H p)*. 

LEMMA 5.1. Let n e D then conv(Ad*(X//)/x) Ç D. 

PROOF. Let \i' G conv( Ad*(AT//)/i) then /z' corresponds to an element of /(f) Pi p) so 
that there exists an element k G KH such that Ad*(k)fif G /bjj. Let [v] G G/P be such 
that [i = 0([v]) then 

p(conv(Ad*(^)/x)) = c o n v ( p ( 0 ( ^ • [v0]))) 

Ç conv(Ofe(G/P)) 

= 0*(G/P) Ç D 

and hence Ad* (£)//' = p(Ad*(fc)/i') G D. Thus we have /i' G Ad*(KH)D = D. u 

PROPOSITION 5.2. O^G/P) = %(H • [v0]) = D. 

PROOF. We have seen already that D = 0^(7/- [v0]) Ç O^G/P). Conversely let 
[i G O^G/P) Ç /(lj n p)*, then there exists ak e KH such that Ad*(&)/i G ib^. But then 

Ad*(*)fi G ibl H%(G/P) Ç Ob(G/P) Ç D 

and hence // G Ad* (k)D CD. • 
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THEOREM 5.3. D is convex. 

PROOF. We know from Theorem 4.4 and Lemma 4.5 that <3>b(G/P) = conv(W^ • /i0), 
where ^o = p(A#) for a suitable \% G it*. But then Lemma 5.1 implies 

D = Ad*(KH)<t>b(G/P) 

= Ad*(KH)conv(Wfi'tio) 

Ç conv(Ad*(^//) • /i0) 

CD. 

THEOREM 5.4. 77ie map Of,: HP jP —> /(!) H p)* w a diffeomorphism onto the image 
which is open and coincides with the interior of 0>§(G/P) in i(f) D p)*. 

PROOF. A simple computation like that in Lemma 3.4(H) shows that the map <ïy. B§ • 
[vo] —» /bjj has a bijective differential everywhere. The image of this map is convex hence 
simply connected. Therefore the map has to be surjective and thus a diffeomorphism. • 

We note at this point that one can now use the arguments of [Wo72, Section 4], to 
write O^G/P) as the unit ball with respect to a suitable operator norm. 

6. Examples. We illustrate our results with the simplest family of examples, the 
ones which have the Graftmannians Gp(R

n) as flag varieties G /P. In this case the group 
G is Sl(rc, R). We assume without loss of generality that n < 2p and view the elements of 
G and its Lie algebra as blockmatrices with blocksize according to the partition (p,n—p) 
of n. Let Bo be the (p) x (n — /?)-matrix with entries 

b—\l fori=j 

b» | 0 for/ ±j. 

Then the image of O/, is a cube which one obtains from T 0 upon the action of 

the respective Weyl group and consequently 

0„(G/P) = j [h-XgTg-x
 8lk) • 8 e 0(p),h G 0(q),B G 0,(G/P)} 

which is linearly isomorphic to the set of linear contractive mappings from Cq to Cp with 
the usual norm. For more details see the seminar report [Hi92]. 

A prominent class of examples for spaces of regular type is the class of spaces Hc/H, 
where H is the group of symmetries of a Hermitian symmetric domain and Hc a complex-
ification of H. In this case our results can be viewed as a symplectic interpretation (and 
proof) of Herman's convexity theorem which says that Hermitian symmetric spaces of 
non-compact type can be realized as convex domains. We leave the details to the reader 
(cf [Wo72]). 

We conclude with a counterexample which indicates the role of the ordering for the 
convexity of the moment map. Consider again spaces of type Hc/H but this time we 
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don't insist on H being the group of symmetries of a Hermitian symmetric space. In fact, 
we restrict our attention to the case H — G\{n + 1, IR), and Hc = G\(n + 1, C) embedded 
as the diagonal in Gc = Gl(rc + 1, C) x G\(n + 1, C). As maximal parabolic we choose 

(P=[{o V ^ ) ^ g 1 ( w + l , C ) : f l G C , v G C w j . 

Then G/P = P(Cn) and Gc/Pc =.P(Cn) x P(CW) and a compact form of Hc is U(w + 1). 
The moment map O^: Gc/Pc —* u(/i + 1) associated with this action is 

0 , ( ( z o : - - - : ^ ( w o : - - - : v v „ ) ) = i ( - ^ + - ^ ) 
2VE/UoK*l £*=o|vt>*|2/./,*=o,...,/i 

and when restricted to G/P 

^ ( ( z o : • • • : z„)) - v „ ' ^ (Rez^ ) . 

Whereas the image is a disk for n = 1 (Hermitian!), it is non-convex for n = 2. This can 
be seen from a somewhat tedious computation using affine coordinates on the projective 
plane. 
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