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Endomorphisms of Kronecker Modules
Regulated by Quadratic Algebra
Extensions of a Function Field

F. Okoh and F. Zorzitto

Abstract. The Kronecker modules V(m, h, α), where m is a positive integer, h is a height function, and

α is a K-linear functional on the space K(X) of rational functions in one variable X over an algebraically

closed field K, are models for the family of all torsion-free rank-2 modules that are extensions of finite-

dimensional rank-1 modules. Every such module comes with a regulating polynomial f in K(X)[Y ].

When the endomorphism algebra of V(m, h, α) is commutative and non-trivial, the regulator f must

be quadratic in Y . If f has one repeated root in K(X), the endomorphism algebra is the trivial extension

K⋉S for some vector space S. If f has distinct roots in K(X), then the endomorphisms form a structure

that we call a bridge. These include the coordinate rings of some curves. Regardless of the number of

roots in the regulator, those End V(m, h, α) that are domains have zero radical. In addition, each

semi-local End V(m, h, α) must be either a trivial extension K ⋉ S or the product K × K.

Introduction

We work with an algebraically closed field K and an indeterminate X. The K[X]-sub-

modules of K(X) are tractable models for the torsion-free, rank-one K[X]-modules.
The creation of workable models for K[X]-modules of rank greater than one has not
enjoyed similar success. The measure of complexity of these higher rank modules is
discussed in [27] using the parallel context of abelian groups. By a Kronecker module

we mean a right module over the four-dimensional Kronecker algebra
[

K K2

0 K

]

. Every
K[X]-module can be viewed as a Kronecker module with rank preserved. Thus the
problem of classifying the Kronecker modules of rank more than one is at least as
hard as that of K[X]-modules. However, the Kronecker modules form the testing

ground for the study of representations of associative algebras that are not of finite
type, see [1, 6, 7, 9, 21–26].

Just as with K[X]-modules, the construction of all possible rank two Kronecker
modules is not an issue, see [11]. Unlike the case of K[X]-modules, there do exist

non-zero, finite-dimensional, torsion-free Kronecker modules. Thus torsion-free,
rank-two Kronecker modules that are extensions of non-zero, finite-dimensional
modules are possible. These form a class of Kronecker modules with potential for
results that are quite different from any that come up in the K[X]-module theory.

For instance, some of these rank-two Kronecker modules embed in modules of rank-
one, see [13, 14]. The endomorphism algebras of these rank-two Kronecker modules
offer an abundance of surprises. Most notably, the endomorphism algebras for one
class of such modules comprise the coordinate rings of all elliptic curves, see [16].
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These rank-two extensions of finite-dimensional modules can be constructed us-
ing a triple (m, h, α), where m is a positive integer, h is a height function, and α is

a K-linear functional on the space of all rational functions in X. This construction,
denoted by V(m, h, α), will be reviewed in detail below.

To each pair (h, α) we attach a polynomial f in K(X)[Y ], either monic or zero,
called the regulator of (h, α). The endomorphisms of V(m, h, α) form a K-algebra.

It is known that unless f is linear or quadratic in Y , the algebra End V(m, h, α) is
just K, what we call the trivial algebra, see [17]. If the regulator is linear, the mod-
ule V(m, h, α) has a finite-dimensional direct summand, and End V(m, h, α) is non-
commutative but well understood, see [17, p. 1568].

When the regulator is quadratic the story gets interesting. In this case the en-
domorphism algebra End V(m, h, α) must be commutative, and may well be non-
trivial, see [15] for instance. The quadratic regulator f (Y ) may have no roots, two
roots, or one repeated root in K(X). Each possibility impinges on the structure of

End V(m, h, α).
If the regulator has a single, repeated root, End V(m, h, α) is shown to be the trivial

extension K⋉S for some K-linear space S. We recall from [5] that the trivial extension
K ⋉ S is the vector space K ⊕ S endowed with the multiplication

(λ, s)(µ, t) = (λµ, λt + µs) for all (λ, s), (µ, t) in K ⊕ S.

In the case of distinct roots we show that End V(m, h, α) is embedded in the product
of two subalgebras of K(X) as a structure that we call a bridge. We also classify the

bridges that are so realized as endomorphism algebras. Thus, when the quadratic
regulator has roots, the endomorphism algebras are fully understood.

When the regulator has no roots, it is known that End V(m, h, α) is a domain.
Here we show that this domain has zero radical. This, along with our classification of

realizable bridges, yields that the only possible semi-local endomorphism algebras of
V(m, h, α) are K ⋉ S and K × K.

We end this introduction by summarizing the role that the height function plays
in these endomorphism algebras which we have been studying over several papers. In

[18, 19] we saw that an indecomposable V(m, h, α) with non-trivial endomorphism
algebra is constructible if and only if h assumes a finite value at least once while at the
same time h ≥ 2 infinitely often. In [20] we showed that a purely simple V(m, h, α)
with non-trivial endomorphisms is constructible if and only if h assumes the value

∞ at least once but also assumes finite values at least twice. For a review of purely
simple modules and some of their properties, see [12]. In [16] we built purely simple
modules whose endomorphism algebras are the coordinate rings of elliptic curves,
but an explicit construction of all possible endomorphism algebras of purely simple

modules remains in the dark. However their endomorphism algebras in the case
when the pole algebra is affine tie Kronecker mmodules to affine curves, see [10, 16].

1 Preliminaries

This stand-alone section introduces the synergistic mix of derivers on K(X), the reg-
ulator as a polynomial over K(X), two-by-two matrices over K(X), and height func-
tions. They provide the definition of the modules studied here in a way that makes
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them approachable by linear algebra. Throughout, K stands for an algebraically
closed field, whose elements will be called scalars.

The Valuations ordθ and ord∞

Let K(X) be the field of rational functions in an indeterminate X. For each scalar θ
we adopt the shorthand Xθ = (X − θ)−1. Every non-zero t in K(X) has a unique

factorization

t = λ
∏

θ∈K

X
jθ
θ ,

where λ ∈ K, jθ ∈ Z, and all but finitely many jθ are 0. For each θ in K, the integer jθ
is denoted by ordθ(t), and the integer −

∑

θ∈K jθ is denoted by ord∞(t). If we agree
that ordθ(0) = −∞ for all θ in K ∪ {∞}, and s, t are rational functions, the familiar
valuation properties hold:

ordθ(st) = ordθ(s) + ordθ(t), ordθ(s + t) ≤ max{ordθ(s), ordθ(t)},

ordθ(s + t) = ordθ(t) when ordθ(s) < ordθ(t).

If θ ∈ K ∪ {∞} and ordθ(t) > 0, the rational function t has a pole at θ and its order

is ordθ(t). The functions Xn and Xn+1
θ , where θ ∈ K and 0 ≤ n, form the standard

basis of K(X) over K. The expansion of a rational function in terms of the standard
basis is known as its partial fraction expansion. For θ in K, a positive power of Xθ

appears in the partial fraction expansion of t if and only if t has a pole at θ. In that
case the highest power of Xθ appearing is Xordθ(t)

θ . A positive power of X appears in
the partial fraction expansion of t if and only if t has a pole at ∞. Then the highest
power of X that appears is Xord∞(t).

Height Functions and Pole Spaces

Any function h : K ∪ {∞} → {∞, 0, 1, 2, . . .} is known as a height function. The
attached K-linear space

Rh = {s ∈ K(X) : ordθ(s) ≤ h(θ) for all θ in K ∪ {∞}}

is called a pole space. Pole spaces have an intrinsic definition as well. They are the
non-zero subspaces R of K(X) with the property that whenever t ∈ R, every function
s, such that ordθ(s) ≤ max{0, ordθ(t)} for all θ in K ∪ {∞}, is also in R. Every pole
space contains K, which is the smallest possible pole space. The biggest pole space is

K(X). Pole spaces form a lattice. The sum of two pole spaces Rh and Rℓ is the pole
space corresponding to the height function max{h, ℓ}. The intersection of Rh and Rℓ
corresponds to the height function min{h, ℓ}. Pole spaces have been crucial to the
description of torsion-free, rank-one, Kronecker modules, see [3].
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The Pole Algebra

Given a pole space Rh, the pole algebra for h is the algebra of functions in Rh having

poles only at those θ in K ∪ {∞} where h(θ) = ∞. We denote the pole algebra by Ah.
Of course, Ah is a pole space in its own right coming from the height function that

agrees with h, when h takes the value ∞, but is 0 otherwise. If θ ∈ K, we let K[Xθ] be
the algebra of polynomials in Xθ. We can view Ah as the sum of all K[Xθ] taken over

those θ where h(θ) = ∞, plus possibly the space K[X] of ordinary polynomials in
X should it happen that h(∞) = ∞. Another viewpoint is that Ah is the K-algebra
inside Rh that contains all K-algebras inside Rh.

The pole algebra equals K(X) when the height function always assumes the value

∞. The pole algebra Ah will equal K exactly when h never assumes the value ∞. The
latter height functions have been treated in [17] under the name of singular height
functions.

We should also note that a rational function t belongs to Ah if and only tRh ⊆ Rh.

Thus Rh is a module over the algebra Ah under the action of multiplication of rational
functions.

Every ideal of a pole algebra is principal because a pole algebra properly containing
K is the localization, using a suitable multiplicative set, of either K[X] if K[X] is in

Ah, or of some K[Xθ] inside Ah. The non-zero ideals zAh have finite codimension in
Ah. Furthermore they have codimension one if and only if the generator z is a prime
in Ah.

The Spur of a Pole Space

A pole space Rh is the sum of two pole subspaces. We have the pole algebra Ah, and
what we might call the spur:

Sh = {u ∈ Rh : ordθ(u) ≤ 0 when h(θ) = ∞}.

In other words, Sh is the pole space corresponding to the height function that agrees

with h where h is finite valued, but is 0 where h takes the value ∞. The pole algebra
Ah and the spur Sh are complementary in Rh, in the sense that

(1.1) Ah ∩ Fh = K while Ah + Sh = Rh.

Equivalent Height Functions

Suppose that h is a height function and that t is a non-zero function in the pole space

Rh. Since ordθ(t) ≤ h(θ), for all θ in K ∪ {∞}, the function ℓ given by

(1.2) ℓ(θ) = h(θ) − ordθ(t), for all K ∪ {∞},

is again a height function. Should the symbol ∞− ordθ(t) come up, it is taken to be
∞. A bit of reflection reveals that tRℓ = Rh. Both h and ℓ assume the value ∞ on
the same subset of K ∪ {∞}. Thus Ah = Aℓ. In particular h is singular if and only
if ℓ is singular. When two height functions h, ℓ are equivalent in this way, their pole
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spaces Rh,Rℓ are both of finite co-dimension in Rh + Rℓ. This equivalence of height
functions gives the isomorphism types of all rank-one Kronecker modules, see [3].

We will henceforth denote this equivalent ℓ by h − ord(t), which suggests how it was
obtained.

The Pole Space of a Rational Function

A pole space is finite-dimensional over K if and only if its height function assumes
positive values on only a finite set and never assumes the value ∞. The objects of
our attention will arise from infinite-dimensional pole spaces, yet we shall encounter
finite-dimensional ones as follows. Given a rational function s, let Ps be the pole space

coming from the height function h given by

h(θ) = max{0, ordθ(s)} for every θ in K ∪ {∞}.

This finite-dimensional Ps is called the pole space of the function s. It is the smallest
pole space containing s. A function belongs to Ps if and only if its partial fraction
expansion extends no further than the partial fraction expansion of s. If s is a scalar,

then its pole space is K.

Functionals and Derivers

We shall need to work with K-linear functionals α : K(X) → K. If α is such a func-

tional and r ∈ K(X), let 〈α, r〉 denote the value in K that α takes at r. Given a
functional α and a rational function r, it is shown in [8, Proposition 3.4] that there is
a unique rational function ∂α(r) so that ∂α(r)(θ) is defined at all θ in K where r(θ) is
defined, and for all such θ

(1.3) ∂α(r)(θ) = 〈α, (r − r(θ))Xθ〉.

From this it is easy to see that the mapping (α, r) 7→ ∂α(r) is K-linear in both α and r.
The K-linear map ∂α : K(X) → K(X) will be called a deriver. For a functional α and
a rational function r, the functional given by t 7→ 〈α, rt〉 will be denoted by α ∗ r.
The name deriver is motivated by the following derivation-like property which can

be deduced from (1.3):

(1.4) ∂α(st) = s∂α(t) + ∂α∗t (s) for any functional α and rational functions s, t.

The explicit calculation of ∂α on the standard basis of K(X) is as follows:

(1.5)
∂α(1) = 0, ∂α(Xn) = 〈α,Xn−1〉 + 〈α,Xn−2〉X + · · · + 〈α, 1〉Xn−1,

∂α(Xn
θ ) = −〈α,Xn

θ 〉Xθ − 〈α,Xn−1
θ 〉X2

θ − · · · − 〈α,Xθ〉X
n
θ ,

for all θ in K and all n ≥ 1. The formulas (1.5) will be used often. In conjunction
with the partial fraction expansion of r, they reveal that

ordθ(∂α(r)) ≤ max{0, ordθ(r)} for all θ in K,(1.6)

ord∞(∂α(r)) < max{0, ord∞(r)}.(1.7)
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Consequently every pole of ∂α(r) is a pole of r. Furthermore, if Rh is a pole space,
then ∂α(Rh) ⊆ Rh, i.e., derivers leave pole spaces invariant.

Some Deriver Identities

In [19, Proposition 2.3] it is proved that the composition of derivers is a commutative
operation, and furthermore that the composite of two derivers is again a deriver.

Thus the space of derivers is a commutative algebra without an identity element. Here
we exploit this commutativity, in conjunction with (1.4), to develop some deriver
identities for use in Section 2.

Lemma 1.1 For any functional α and any rational functions y, z,

∂α(∂α(yz)) = ∂α(∂α(y)z + y∂α(z)) − ∂α(y)∂α(z).

Proof On the left of the identity we have

∂α(∂α(yz)) =∂α(y∂α(z) + ∂α∗z(y)) using (1.4)

=∂α(y∂α(z)) + ∂α(∂α∗z(y)).

On the right we have

∂α(∂α(y)z + y∂α(z)) − ∂α(y)∂α(z)

=∂α(y)∂α(z) + ∂α∗z(∂α(y)) + ∂α(y∂α(z)) − ∂α(y)∂α(z) using (1.4)

=∂α∗z(∂α(y)) + ∂α(y∂α(z)).

Because derivers commute under composition, the left- and right-sides of the desired
identity have come down to the same thing.

Lemma 1.2 For any functional α and any rational functions t, s, r,

∂α(∂α(t)sr + t∂α(sr)) − ∂α(t)∂α(sr) =∂α(∂α(tsr))

=∂α(∂α(ts)r + ts∂α(r)) − ∂α(ts)∂α(r).

Proof The first equality follows from Lemma 1.1 by putting y = t, z = sr. To get
the second equality, put y = ts, z = r.

The Regulator of a Pair (h, α)

Take a height function h with infinite-dimensional pole space Rh, and a functional

α : K(X) → K. The deriver ∂α is a K-linear operator on the space K(X). Every ratio-
nal function t acts on K(X) as the multiplier s 7→ ts. We identify t with its multiplier.
The deriver ∂α leaves Rh invariant, but a multilpier t need not. Nevertheless, the
space tRh lies inside the finite-dimensional extension Rh + Pt of Rh. Let A denote the

subalgebra of EndK K(X) that is generated by ∂α and by all multipliers. Put

I = {σ ∈ A : σ(Rh) is finite-dimensional over K}.
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The operators in I are said to have finite rank on Rh. Since the dimension of Rh is
infinite, I is a proper left ideal of A. One can check that I is also a right ideal using the

fact that, for every σ in A, the image σ(Rh) is inside a finite-dimensional extension
of Rh, see also [15, Lemma 2.1].

While A is typically a non-commutative algebra containing K(X), the quotient
algebra A/I is a commutative K(X)-algebra. For the proof see [15, Lemma 2.2].

Briefly, it suffices to check that a multiplier t commutes with ∂α modulo the ideal I.
From the deriver property (1.4) we have ∂α(tr)t − t∂α(r) = ∂α∗r(t) for all r in Rh.
Derivers leave pole spaces invariant. Thus for all r in Rh the functions ∂α∗r(t) lie in
the finite-dimensional pole space Pt , and thereby ∂α ◦ t − t ◦ ∂α ∈ I.

Clearly A/I is generated as a K(X)-algebra by the image ∂α + I of ∂α under the
canonical projection A → A/I. If K(X)[Y ] is the algebra of polynomials in Y over
K(X), we are entitled to the substitution map

(1.8) ǫ : K(X)[Y ] → A/I where Y 7→ ∂α + I.

The unique monic generator f (Y ) of ker ǫ is the polynomial in K(X)[Y ] that we call
the regulator of the pair (h, α). Given a polynomial g(Y ) in K(X)[Y ], let g(∂α) stand

for any preimage in A of g(∂α + I) under the projection A → A/I. Although this
notation is ambiguous, we have just seen that no matter what preimage g(∂α) is taken,
we always have

f (Y ) divides g(Y ) ⇔ g(∂α + I) = 0 ⇔ g(∂α) has finite rank on Rh.

Convenient preimages g(∂α) will be taken as needed. To summarize, the regulator of
(h, α) is the polynomial f (Y ) in K(X)[Y ] uniquely specified by the following prop-

erties:
• f (Y ) is monic or zero,
• f (∂α) has finite rank on Rh,
• f (Y ) divides g(Y ) in K(X)[Y ] if and only if g(∂α) has finite rank on Rh.

If ℓ is a height function equivalent to h as in (1.2), a polynomial f (Y ) regulates
(h, α) if and only if f (Y ) regulates (ℓ, α). This can be seen by observing that both Rh

and Rℓ have finite codimension in Rh + Rℓ. Thus the regulator of (h, α) is unchanged
over the equivalence class of h.

Equivalence of (h, α) Pairs

We shall say that the pair (h, α), where h is a height function and α is a functional,
is equivalent to another such pair (ℓ, β) provided that (ℓ, β) = (h − ord(t), α ∗ t)
for some non-zero rational function t . It is not hard to see that this is the same as

having (h, α) = (ℓ − ord(t−1), β ∗ t−1). We shall need the connection between the
regulators of equivalent pairs.

Proposition 1.3 Let the pair (h, α) be equivalent to the pair (h − ord(t), α ∗ t) using

some non-zero rational function t. If f (Y ) is the regulator of (h, α) in K(X)[Y ] and n

is the degree of f (Y ), then the regulator of (h − ord(t), α ∗ t) is

tn f
( Y + ∂α(t)

t

)

.
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Proof The height function h − ord(t) is equivalent to the height function h. Hence
the regulator of the pair (h − ord(t), α ∗ t) is the same as the regulator of (h, α ∗ t).

Recall the algebra A generated by all multipliers and the deriver ∂α, that is used to
define the regulator of (h, α). By using (1.4) it can be seen that

(1.9) ∂α∗t = ∂α ◦ t − ∂α(t) as operators on K(X).

Thus ∂α∗t , along with all multipliers, generates the same algebra A. Referring to the
substitution map of (1.8), we put a = ∂α + I and b = ∂α∗t + I. Using (1.9) it follows

that

b = at − ∂α(t) or equivalently a =
b + ∂α(t)

t
.

Since f (Y ) is the monic polynomial in K(X)[Y ] of least degree to vanish at a, the

monic polynomial of least degree to vanish at b is tn f
(

Y +∂α(t)
t

)

. Hence this lat-
ter polynomial is the regulator of (h, α ∗ t). That also makes it the regulator of
(h − ord(t), α ∗ t).

In due course we will need to observe that the regulator of (h, α) has no roots,
distinct roots, or repeated roots in K(X), if and only if the regulator of the equivalent

pair (h − ord(t), α ∗ t) has the same corresponding properties.

The Sum of a Deriver and a Multiplier

The operator ∂α + r, for some functional α and some multiplier r, will surface at

various points. If θ ∈ K, and t is in the pole algebra K[Xθ], then

(1.10) ∂α(t) + rt ∈ K[Xθ] + Pr

because derivers leave pole spaces invariant. Similarly if t ∈ K[X], then

∂α(t) + rt ∈ K[X] + Pr.

For ∂α + r to have finite rank on K[Xθ] it suffices that its kernel be infinite-dimen-
sional, as we now show.

Lemma 1.4 Let α be a functional and r a multiplier. If ker(∂α + r) ∩ K[Xθ] is

infinite-dimensional, then (∂α + r)K[Xθ] ⊆ Pr . Likewise if ker(∂α + r) ∩ K[X] is

infinite-dimensional, then (∂α + r)K[X] ⊆ Pr.

Proof Suppose to the contrary that ∂α(t) + rt /∈ Pr for some t in K[Xθ]. In that case
ordθ(∂α(t) + rt) > 0 by virtue of (1.10). For any non-zero s in K[Xθ] the deriver

property (1.4) reveals that (∂α + r)(st) = s(∂α(t) + rt) + ∂α∗t (s). Since

ordθ(∂α(t) + rt) > 0,

and because of (1.6), we have

ordθ(s(∂α(t) + rt)) = ordθ(s) + ordθ(∂α(t) + rt) > ordθ(s) ≥ ordθ(∂α∗t (s)).
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As s(∂α(t)+rt) and ∂α∗t (s) have poles of different order at θ, they cannot add up to 0.
Thus (∂α + r)(st) 6= 0. This shows that ∂α + r is injective on the subspace tK[Xθ].

However tK[Xθ] has finite codimension in K[Xθ], leaving only room for ker(∂α + r)
to be finite-dimensional inside K[Xθ].

The proof of the claim involving K[X] is the same with Xθ replaced by X.

Next we proceed to define the Kronecker modules of interest to us.

1.1 The Modules V(m, h, α)

A right module over the Kronecker algebra
[

K K2

0 K

]

is called a Kronecker module, but in
practice it can be viewed as a pair of linear transformations between a pair of K-linear

spaces:

U
a−→−→
b

V.

From such a perspective an endomorphism of U
a−→−→
b

V is a pair of K-linear maps

U
ψ

−→ U , V
ϕ

−→ V for which the following diagrams commute:

U
a

//

ψ

��

V

ϕ

��

U
a

// V

U
b

//

ψ

��

V

ϕ

��

U
b

// V

A general problem goes as follows: given a module U
a−→−→
b

V , find its endomorphisms

and give the structure of its endomorphism algebra. For instance, if U = V and a

is the identity mapping on V , the problem becomes to find the commutant algebra
of b.

Rank-One Modules

Given a pole space Rh, put R−

h = {r ∈ Rh : ord∞(r) < h(∞)}. We see that XR−

h ⊆
Rh, and R−

h is the biggest subspace of Rh to tolerate such inclusion. The modules

Fh = (R−

h

a−→−→
b

Rh, where a : r 7→ r and b : r 7→ Xr)

are interesting because they provide working models for the class of all torsion-free,

indecomposable, rank-one modules, see [3]. In [3] it is shown that the endomor-
phism algebra of Fh is the pole algebra Ah. It is also shown in [3] that the complete
isomorphism invariants for such rank-one modules are the equivalence classes of
height functions.

The Space V (m, h, α)

For a positive integer m, let Pm be the space of polynomials of degree strictly less than
m. This is nothing but the pole space PXm−1 .
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We shall be working with K-linear subspaces of the space K(X)2 of pairs of rational
functions. These pairs will be written in column notation.

Given a triplet (m, h, α) where m is a positive integer, h is a height function and α
is a functional, put

V (m, h, α) =

{

(

r

s

)

∈ K(X)2 : r ∈ Rh and ∂α(r) + s ∈ Pm

}

,(1.11)

V−(m, h, α) =

{(

r

s

)

∈ V : r ∈ R−

h and ∂α(r) + s ∈ Pm−1

}

.

We may also think of V (m, h, α) as the space of all vectors in K(X)2 that take the form

(

r

ℓ− ∂α(r)

)

where r ∈ Rh and ℓ ∈ Pm.

The computations of this paper will rely heavily on the definition of V (m, h, α).

Observe that XV−(m, h, α) ⊆ V (m, h, α). Indeed, if
(

r
s

)

∈ V−(m, h, α), then

r ∈ R−

h and ∂α(r) + s ∈ Pm−1. Therefore Xr ∈ Rh, and using (1.4) and (1.5) we get

that

∂α(Xr) + Xs = X∂α(r) + ∂α∗r(X) + Xs = X(∂α(r) + s) + 〈α, r〉 ∈ Pm.

Definition of the Module V(m, h, α)

The rank-two modules we now present comprise exactly all extensions of finite-

dimensional Fk by infinite-dimensional Fh. We introduce our modules in a way that
makes them approachable by means of linear algebra. For a demonstration that they
pick up all such extensions, see [15, Section 2].

The Kronecker module V(m, h, α) is

(1.12) V−(m, h, α)
a−→−→
b

V (m, h, α)

where

a :

(

r

s

)

7→

(

r

s

)

and b :

(

r

s

)

7→ X

(

r

s

)

for each

(

r

s

)

in V−(m, h, α).

The space Rh is infinite-dimensional over K exactly when h is positive on an in-

finite subset of K ∪ {∞} or h is infinite-valued at some θ of K ∪ {∞}. When Rh

is finite-dimensional, the modules V(m, h, α) are completely understood thanks to
Kronecker’s work, see [1, p. 302]. So, we make the blanket assumption that in defining

V(m, h, α), the pole space Rh is infinite-dimensional.
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1.2 The Algebra End V(m, h, α)

The endomorphism algebras of V(m, h, α) are the primary concern of this paper.
Our study of End V(m, h, α) is based on [17, Theorem 2.2] which facilitates the use
of linear algebra. It says that

the endomorphisms of V(m, h, α) are the K(X)-linear operators on K(X)2 which

leave the K-linear subspace V (m, h, α) invariant.

Our discussion of endomorphisms of V(m, h, α) will be based on the above point of
view. Consequently, in order to follow our proofs it will be necessary to maintain

familiarity with the definition of the space V (m, h, α) in (1.11). The definition of the
module V(m, h, α) above was for the purpose of reference only, and will not play any
further direct role.

We represent the endomorphisms of V(m, h, α) as 2×2 matrices of rational func-

tions

(1.13) ϕ =

[

s t

u v

]

acting on K(X)2 in the usual way. If I is the identity matrix and λ ∈ K, the scalar ma-

trix λI is an endomorphism, obviously. If these are the only endomorphisms, we say
that End V(m, h, α) is trivial. It is a matter of some intricacy to discern which non-
scalar matrices give endomorphisms, and subsequently to delineate the structure of
the endomorphism algebra.

Non-Trivial End V(m, h, α) with Quadratic Regulator and Generic Matrix

When End V(m, h, α) is non-commutative, the module has a finite-dimensional di-
rect summand and End V(m, h, α) is fully understood, see [15]. Thus our interest

diverts to modules V(m, h, α) whose endomorphism algebra is commutative. When-
ever such algebras are non-trivial, it is seen from [20, Propositions 2.2 and 2.3] that
the regulator of the pair (h, α) must be a quadratic in K(X)[Y ]. Explicitly,

(1.14) Y 2 + pY + q, where p and q are in K(X).

Attached to such (h, α) there is also what we call the generic matrix

(1.15) D =

[

p −1
q 0

]

,

which may or may not be an endomorphism of V(m, h, α). In Section 2 we illustrate
how the generic matrix controls End V(m, h, α) when this algebra is non-trivial and

commutative.

2 The Generic Matrix

Henceforth we operate under the understanding that there is a module V(m, h, α) as
in (1.12). An endomorphism is a 2× 2 matrix of rational functions, as in (1.13), that
leaves the space V (m, h, α) of (1.11) invariant. We assume that (h, α) has a quadratic
regulator as in (1.14) along with its generic matrix D as in (1.15).
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The Determinant and Trace of an Endomorphism

We begin this section with a look at the determinant and the trace of endomorphisms.

Proposition 2.1 If ϕ is endomorphism of V(m, h, α), then

detϕ ∈ Ah and traceϕ ∈ Ah.

Proof Let ϕ be an endomorphism expressed as in (1.13). Since
(

1
0

)

and
(

0
1

)

lie in

the space V (m, h, α), their images
(

s
u

)

and
(

t
v

)

under ϕ also lie in V (m, h, α). From
(1.11) we deduce that

s ∈ Rh, t ∈ Rh, u ∈ Rh + Pm, v ∈ Rh + Pm.

Let k be the height function given by k(θ) = 2h(θ) when θ ∈ K, and h(∞) =

m + 2h(∞). When the symbolisms 2∞ or m + ∞ come up in the definition of k, we
take that to mean just ∞ again. A little reflection makes it clear that

detϕ = sv − ut ∈ Rk.

The height functions k and h have the same pole algebra, because both h and k take

the value ∞ at exactly the same θ in K ∪ {∞}. Since ϕn is an endomorphism for all
positive integers n, and since det(ϕn) = (detϕ)n, the rational functions (detϕ)n all
lie in Rk. If detϕ has a pole at some θ in K ∪ {∞}, then the relations

0 < ordθ(detϕ) and ordθ((detϕ)n) = n ordθ(detϕ) ≤ k(θ),

for all positive integers n, reveal that k(θ) = ∞. Since detϕ only has poles where k,

and thereby h, take on the value ∞, the determinant of ϕ lies in Ah.
To see that traceϕ ∈ Ah, we must prove that h(θ) = ∞ for every pole θ of traceϕ.

Since detϕ ∈ Ah as just shown, it suffices to consider only those poles θ of traceϕ
that are not poles of detϕ. Now if x, y are the eigenvalues of ϕ in some algebraic

closure of K(X), the so-called Newton identities

xn + yn
= (x + y)(xn−1 + yn−1) − xy(xn−2 + yn−2) for n = 2, 3, . . . ,

tell us that

(2.1) trace(ϕn) = traceϕ traceϕn−1 − detϕ traceϕn−2 for n = 2, 3, . . . .

We can now argue by induction that

(2.2) ordθ(traceϕn) = n ordθ(traceϕ) for n = 1, 2, 3, . . . .

Indeed, supposing (2.2) holds for positive integers prior to n and using the fact θ is

not a pole of detϕ, we obtain

ordθ(traceϕ traceϕn−1) = n ordθ(traceϕ)

> (n − 2) ordθ(traceϕ) = ordθ(detϕ traceϕn−2),

and then from (2.1) we deduce (2.2) for n. As with the determinant, the trace of any

endomorphism lies in the pole space Rk defined above. Then (2.2) reveals that Rk

contains functions whose order at θ is arbitrarily high. Hence k(θ) = ∞ and then
h(θ) = ∞, by the definition of k.
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Why the Generic Matrix Matters

Next we explain how the generic matrix anchors the endomorphism algebra.

Proposition 2.2 If (h, α) has quadratic regulator as in (1.14) and generic matrix D

as in (1.15), then every endomorphism of V(m, h, α) takes the form

(2.3) tD + ∂α(t)I + µI, for some t in Rh and some µ in K.

Proof Let ϕ be an endomorphism as in (1.13). Since column vectors
(

0
g

)

belong to

V (m, h, α) for all polynomials g in Pm, the vectors

(

tg

vg

)

= ϕ

(

0

g

)

∈ V (m, h, α) for all polynomials g in Pm.

From the definition (1.11) of V (m, h, α) this implies that ∂α(tg) + vg ∈ Pm for all
polynomials g in Pm. By the deriver property (1.4) we get ∂α(tg) = g∂α(t) + ∂α∗t (g).
Hence g(∂α(t) + v) + ∂α∗t (g) ∈ Pm for all g in Pm. Putting g = 1, gives ∂α∗t (1) = 0
by (1.5), and thus ∂α(t) + v ∈ Pm. Since

deg∂α∗t (g) < deg g ≤ deg g + deg(∂α(t) + v) = deg g(∂α(t) + v),

it follows that

deg
(

g(∂α(t) + v) + ∂α∗t (g)
)

= deg g + deg(∂α(t) + v) < m,

for all polynomials g of degree less than m. The only way for this to happen is with
∂α(t) + v ∈ K.

According to [20, Proposition 2.4], an endomorphism ϕ of V(m, h, α) takes the
form

ϕ = tD + ∂α(t)I + gI =

[

t p + ∂α(t) + g −t

tq ∂α(t) + g

]

,

for some t in Rh and some g in Pm. From the prior argument, with
(

t
v

)

replaced by
(

−t
∂α(t)+g

)

, we get that g = ∂α(−t) + ∂α(t) + g ∈ K. Putting µ = g, all endomorphisms

take the desired form.

We caution that not every matrix taking the form (2.3) need be an endomorphism.
Even D, which arises when t = 1 and µ = 0, might not be an endomorphism.

Three Options When the Regulator Is Quadratic

Proposition 2.2 shows that in case of a quadratic regulator (1.14), with generic matrix
D as in (1.15), the algebra End V(m, h, α) embeds in K(X)[D] as a K-subalgebra. The
characteristic polynomial of D is Y 2 − pY + q, a close relative of the regulator. It is

plain to see that the regulator Y 2 + pY + q has no roots, a repeated root, or distinct
roots in K(X) if and only if the characteristic poynomial of D has the same respective
properties. The algebra K(X)[D] is isomorphic to K(X)[Y ]/(Y 2 − pY + q), and up
to isomorphism this is
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• the trivial extension K(X) ⋉ K(X) when Y 2 − pY + q has just one root,
• the product algebra K(X) × K(X) when Y 2 − pY + q has two roots,
• a quadratic field extension of K(X) when Y 2 − pY + q has no roots.

Thus the regulator anticipates what End V(m, h, α) will look like. In Sections 3
and 4 we describe End V(m, h, α) fully when the regulator has one repeated root
and two distinct roots, respectively. When the regulator has no roots, the algebra

End V(m, h, α) is a domain with subtle possibilities, see [17, 20]. We content our-
selves in Section 5 by showing in this last case that the algebra End V(m, h, α) has
zero radical.

The Ah-Module of Endomorphism Parameters: P(m, h, α)

It follows from Proposition 2.2 that V(m, h, α) has non-trivial endomorphisms if and
only if it has one of the form tD + ∂α(t)I for some non-zero t in Rh. Any t in Rh that
causes tD+∂α(t)I to be an endomorphism will be called an endomorphism parameter

of V(m, h, α). The set of endomorphism parameters is a subspace of Rh, and we shall

denote it by P(m, h, α). We recall that Rh is an Ah-module using multiplication of
rational functions. Next we show that P(m, h, α) is an Ah-submodule of Rh.

Proposition 2.3 The space P(m, h, α) of endomorphism parameters is a module

over Ah.

Proof The proof is routine but requires close and repeated attention to the definition
of the space V (m, h, α) given in (1.11).

If t ∈ P(m, h, α) and s ∈ Ah, we need to show that ts is in P(m, h, α). That is,
assuming the matrix

ϕ = tD + ∂α(t)I =

[

t p + ∂α(t) −t

tq ∂α(t)

]

is an endomorphism, we need to prove the matrix

ψ = tsD + ∂α(ts)I =

[

tsp + ∂α(ts) −ts

tsq ∂α(ts)

]

is an endomorphism.
An endomorphism is a matrix that leaves V (m, h, α) invariant. Accordingly we

have ϕV (m, h, α) ⊆ V (m, h, α) and we need ψV (m, h, α) ⊆ V (m, h, α). Given the
definition of V (m, h, α) it is enough to check that

(2.4) ψ

(

0

g

)

∈ V (m, h, α) for all g in Pm,

and also

(2.5) ψ

(

r

−∂α(r)

)

∈ V (m, h, α) for all r in Rh.
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By direct calculation

ψ

(

0

g

)

=

(

−tsg

∂α(ts)g

)

.

Since ϕ leaves V (m, h, α) invariant,

ϕ

(

0

g

)

=

(

−tg

∂α(t)g

)

∈ V (m, h, α).

Thus −tg ∈ Rh, and using the fact s ∈ Ah, we get −tsg ∈ Rh. Furthermore by (1.4)
and then (1.7):

∂α(−tsg) + ∂α(ts)g = −∂α(ts)g − ∂α∗ts(g) + ∂α(ts)g = −∂α∗ts(g) ∈ Pm.

In light of definition (1.11) the information just derived yields (2.4).
Since

ψ

(

r

−∂α(r)

)

=

(

tsrp + ∂α(ts)r + ts∂α(r)

tsrq − ∂α(ts)∂α(r)

)

,

the requirement (2.5) comes down to proving

(2.6) tsrp + ∂α(ts)r + ts∂α(r) ∈ Rh,

as well as

(2.7) ∂α(tsrp + ∂α(ts)r + ts∂α(r)) + tsrq − ∂α(ts)∂α(r) ∈ Pm

for each r in Rh.

To work on (2.6), recall that ϕ leaves V (m, h, α) invariant, and so

ϕ

(

r

−∂α(r)

)

=

(

trp + ∂α(t)r + t∂α(r)

trq − ∂α(t)∂α(r)

)

∈ V (m, h, α).

Definition (1.11) then yields trp + ∂α(t)r + t∂α(r) ∈ Rh. Using (1.4) we have

tsrp + ∂α(ts)r + ts∂α(r) = tsrp + ∂α(t)sr + ∂α∗t (s)r + ts∂α(r)

= s(trp + ∂α(t)r + t∂α(r)) + ∂α∗t (s)r.

Since s ∈ Ah and derivers leave pole spaces invariant we get ∂α∗t (s) ∈ Ah. Because r

and trp + ∂α(t)r + t∂α(r) belong to the Ah-module Rh, the combination

s(t pr + ∂α(t)r + t∂α(r)) + ∂α∗t (s)r is in Rh.

From the calculation preceding just above we get (2.6).
To work on (2.7) notice that if r ∈ Rh, then sr ∈ Rh because s ∈ Ah. Hence

(

sr
−∂α(sr)

)

∈ V (m, h, α). Since ϕ leaves V (m, h, α) invariant, a direct calculation re-

veals that

ϕ

(

sr

−∂α(sr)

)

=

(

tsrp + ∂α(t)sr + t∂α(sr)

tsrq − ∂α(t)∂α(sr)

)

∈ V (m, h, α).
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From (1.11) this gives

∂α(tsrp + ∂α(t)sr + t∂α(sr)) + tsrq − ∂α(t)∂α(sr) ∈ Pm.

An inspection of the identity in Lemma 1.2 gives

∂α(tsrp + ∂α(ts)r + ts∂α(r)) + tsrq − ∂α(ts)∂α(r)

= ∂α(tsrp + ∂α(t)sr + t∂α(sr)) + tsrq − ∂α(t)∂α(sr).

Thus (2.7) follows as desired.

We shall also refer to P(m, h, α) as the parameter module.

Arranging for the Generic Matrix to Be an Endomorphism

A desirable situation would be to have D itself be an endomorphism. This need not
happen. However, we now check that if V(m, h, α) has non-trivial endomorphisms,
then V(m, h, α) has an isomorphic copy whose generic matrix is an endomorphism

of the copy.
An isomorphism between V(m, h, α) and another V(m, ℓ, β) comes down to a

K(X)-linear operator on K(X)2 that restricts to a K-linear isomorphism between the
space V (m, h, α) and the space V (m, ℓ, β). Next we show how equivalent functional-

height pairs lead to isomorphic Kronecker modules.

Proposition 2.4 If t ∈ Rh and t 6= 0, then the matrix

(2.8) ψ =

[

t 0

−∂α(t) 1

]

implements an isomorphism from V(m, h − ord(t), α ∗ t) to V(m, h, α).

Proof Let
(

u
v

)

∈ V (m, h − ord(t), α ∗ t). Since

ψ

(

u

v

)

=

[

t 0
−∂α(t) 1

](

u

v

)

=

(

tu

v − ∂α(t)u

)

,

we must prove that
(

tu

v − ∂α(t)u

)

∈ V (m, h, α).

By (1.11) we have u ∈ Rh−ord(t) and ∂α∗t (u) + v ∈ Pm, and by (1.11) we want

tu ∈ Rh and ∂α(tu) + v − ∂α(t)u ∈ Pm.

The statement u ∈ Rh−ord(t) gives ordθ(u) ≤ h(θ) − ordθ(t) for all θ in K ∪ {∞}.
Thus ordθ(tu) = ordθ(t) + ordθ(u) ≤ h(θ), which means tu ∈ Rh. Next using (1.4)
we get

∂α(tu) + v − ∂α(t)u = ∂α(t)u + ∂α∗t (u) + v − ∂α(t)u = ∂α∗t (u) + v ∈ Pm.
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Therefore ψ maps V (m, h − ord(t), α ∗ t) into V (m, h, α).
The deriver property (1.4) along with (1.5) show that

0 = ∂α(1) = ∂α(tt−1) = t−1∂α(t) + ∂α∗t (t
−1),

and thus t−1∂α(t) = −∂α∗t (t
−1). Therefore the inverse of ψ is the matrix

ψ−1
=

[

t−1 0
t−1∂α(t) 1

]

=

[

t−1 0
−∂α∗t (t

−1) 1

]

.

Using this understanding of ψ−1 we can verify, as was done with ψ, that ψ−1 maps

V (m, h, α) back into V (m, h − ord(t), α ∗ t).

We remind ourselves from Proposition 2.2 that End V(m, h, α) is trivial if and only
if V(m, h, α) has 0 as its only endomorphism parameter.

Proposition 2.5 For a given V(m, h, α) suppose that t is a non-zero function in the

parameter module yielding the endomorphism ϕ = tD+∂α(t)I. If ψ is the matrix given

in (2.8), and

E =

[

traceϕ −1
detϕ 0

]

,

then

• E is the generic matrix for the pair (h − ord(t), α ∗ t) which is regulated by the

polynomial Y 2 + traceϕY + detϕ,
• End V(m, h − ord(t), α ∗ t) = ψ−1(End V(m, h, α))ψ,
• E = ψ−1ϕψ and E is an endomorphism of V(m, h − ord(t), α ∗ t).

Proof By straightforward calculation we see that traceϕ = pt + 2∂α(t) and detϕ =

qt2 + pt∂α(t)+∂α(t)2. According to Proposition 1.3, the regulator of (h−ord(t), α∗t)
is

t2
[( Y + ∂α(t)

t

) 2

+ p
( Y + ∂α(t)

t

)

+ q
]

= Y 2 + (pt + 2∂α(t))Y + qt2 + pt∂α(t) + ∂α(t)2

= Y 2 + traceϕY + detϕ

as claimed above. The conjugacy of the endomorphism algebras follows because ψ
maps the space V (m, h − ord(t), α ∗ t) isomorphically onto V (m, h, α) as in Propo-
sition 2.4. The third fact is seen by performing the matrix multiplications indi-

cated.

The import of Proposition 2.5 is that if a module V(m, h, α) is commutative
with non-trivial endomorphisms, then V(m, h, α) is isomorphic to some module
V(m, ℓ, β) where the generic matrix for (ℓ, β) is a non-trivial endomorphism of
V(m, ℓ, β). Thus, for the purposes of studying the structure of End V(m, h, α), when

this algebra is commutative and non-trivial

it does no harm to suppose that the generic matrix D of (h, α), as given in (1.15),

is an endomorphism of V(m, h, α).
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An Advantage When D Is an Endomorphism

To say that D is an endomorphism means that 1 is an endomorphism parameter.

In that case Proposition 2.3 forces Ah ≤ P(m, h, α) ≤ Rh. Immediately we get a
significant family of known endomorphisms.

Here we record some useful constraints on D’s that are endomorphisms.

Proposition 2.6 If Y 2 + pY + q regulates (h, α) and the generic matrix D is an endo-

morphism of V(m, h, α), then p ∈ Ah, q ∈ Ah, and ∂α(p) + q ∈ K.

Proof Since p = trace D and q = det D, Proposition 2.1 gives that p, q are in Ah.

The square of D is an endomorphism, and D2
= pD − qI. By Proposition 2.2 it

follows that −q = ∂α(p) + µ for some scalar µ, so that ∂α(p) + q is a scalar.

3 When the Regulator Has One Repeated Root

In this section we obtain the structure of End V(m, h, α) when the regulator of (h, α)
is quadratic with a repeated root in K(X). Recall that P(m, h, α) is the parameter
module.

Proposition 3.1 If the regulator of (h, α) is quadratic with repeated root r in K(X)

and the generic matrix D is an endomorphism of V(m, h, α), then End V(m, h, α) is

isomorphic to the trivial extension algebra K ⋉ P(m, h, α).

Proof By (1.14) and (1.15) the regulator and generic matrix in this case are

(Y − r)2
= Y 2 − 2rY + r2 and D =

[

−2r −1

r2 0

]

.

By Proposition 2.6, ∂α(−2r) + r2 ∈ K. If r had a pole at some θ in K ∪ {∞}, then

ordθ(r2) = 2 ordθ(r) > ordθ(r) = ordθ(−2r) ≥ ordθ(∂α(−2r)),

which shows that ∂α(−2r) + r2 would still have a pole at θ in contradiction to the fact
this is a scalar. Having no poles, r must be a scalar.

Since r is a scalar, the matrix

D + rI =

[

−r −1

r2 r

]

is an endomorphism, and (D + rI)2
= 0 by just checking. Hence the endomorphism

algebra contains a nilpotent of index 2.
By Proposition 2.2, every endomorphism takes the form

(3.1) tD + ∂α(t)I + µI = t(D + rI) + (∂α(t) − rt)I + µI,

where t ∈ P(m, h, α) and µ ∈ K. We will show that

(3.2) ∂α(t) − rt ∈ K.
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After that we will be done, because every endomorphism then takes the form (3.1) of
a scalar plus a multiple of a nilpotent of index 2 by an endomorphism parameter.

We have the endomorphism

tD + ∂α(t)I =

[

−2tr + ∂α(t) −t

tr2 ∂α(t)

]

.

Thus det(tD + ∂α(t)I) = (∂α(t) − rt)2, and according to Proposition 2.1 this deter-

minant lies in the pole algebra Ah. Consequently ∂α(t) − rt ∈ Ah as well.

Because of (1.1) it is enough to prove (3.2) when t is in the spur Sh and when t is
in the pole algebra Ah. Suppose the endomorphism parameter t is in Sh. We have just
seen that ∂α(t) − rt ∈ Ah. On the other hand, the pole space Sh remains invariant
under derivers, and it is certainly invariant under multiplication by the scalar r. Thus

∂α(t) − rt ∈ Sh, so that ∂α(t) − rt ∈ Ah ∩ Sh = K.

To see (3.2) when t ∈ Ah, recall that the regulator is (Y − r)2. Hence the operator
(∂α − r)2 maps Rh to a finite-dimensional space. The pole algebra Ah is the sum of
all spaces K[Xθ] where θ ∈ K and h(θ) = ∞, plus possibly the space K[X], should it

happen that h(∞) = ∞. For each such θ where h(θ) = ∞, the operator (∂α − r)2

maps K[Xθ] to a finite-dimensional space. Thus ker(∂α − r) restricted to K[Xθ] is
infinite-dimensional. By Lemma 1.4, ∂α − r maps K[Xθ] into Pr , which is K since r

is a scalar. If it should happen that h(∞) = ∞, then ∂α − r maps K[X] into K by the

same reasoning. Since ∂α − r maps spanning subspaces of Ah into K, this operator
maps all of Ah into K as desired in (3.2).

Next we remove the assumption that D be an endomorphism.

Theorem 3.2 If the quadratic regulator of (h, α) has a repeated root, then

End V(m, h, α) ∼= K ⋉ S for some K-linear space S.

Proof If the endomorphism algebra is trivial, the zero space will do the job of S. If
the endomorphism algebra is not trivial, then by Proposition 2.5, End V(m, h, α) is
isomorphic to some other End V(m, ℓ, β) which contains the generic matrix of (ℓ, β)
as an endomorphism. The regulator of (ℓ, β) as given by Proposition 1.3 still has but

one repeated root. By Proposition 3.1, this latter algebra, and thereby the former one
too, is isomorphic to K ⋉ S for some non-zero space S.

Concrete examples of such endomorphism algebras K ⋉ S have been constructed

in [18, Proposition 3.3]. Thus all endomorphism algebras that are realized by means
of a regulator with repeated root are known.

4 When the Regulator Has Distinct Roots

We now propose to examine closely endomorphisms when (h, α) is regulated by

(Y + u)(Y + v) = Y 2 + (u + v)Y + uv,
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where u, v are distinct functions in K(X). The generic matrix is

D =

[

u + v −1

uv 0

]

,

whose characteristic polynomial is Y 2−(u+v)Y +uv = (Y −u)(Y −v). Thus u and v

are the distinct eigenvalues of D as an operator on K(X)2, and we get diagonalization
of D over K(X). The K(X)-algebra K(X)[D] consists of all matrices rD + sI where
r, s ∈ K(X), and there is a K(X)-algebra isomorphism Λ : K(X)[D] → K(X) × K(X)
given by rD + sI 7→ (s + ur, s + vr). The K-algebra End V(m, h, α) sits inside K(X)[D]

as the algebra of matrices tD + ∂α(t)I + µI, where t runs over the parameter module
and µ is any scalar. Thus the mapping Λ restricted to these endomorphisms is given
as

(4.1) Λ : tD + ∂α(t)I + µI 7→ (∂α(t) + ut, ∂α(t) + vt) + (µ, µ),

where t runs through the parameter module and µ is any scalar.
Our job in this section is to determine the image of End V(m, h, α) under Λ. Given

(4.1), a clearer understanding of the parameter module P(m, h, α) and its images
under the operators ∂α + u and ∂α + v is needed.

By Proposition 2.5 it is harmless to assume that D is an endomorphism, and we do
so throughout this section unless otherwise specified. Taking D as an endomorphism,

we have noted before Proposition 2.6 the advantage that Ah ⊆ P(m, h, α) ⊆ Rh.

The Parameter Module as Fractional Ideal

Proposition 4.1 The functions u and v lie in Ah and have no pole in common.

Proof If θ in K ∪ {∞} is a common pole of u and v, then θ is a pole of uv. By
Proposition 2.6, ∂α(u + v) + uv ∈ K, and thus ordθ(uv) = ordθ(∂α(u + v)). From this
we obtain

ordθ(u) + ordθ(v) = ordθ(uv)

= ordθ(∂α(u + v)) = ordθ(∂α(u) + ∂α(v))

≤ max{ordθ(∂α(u)), ordθ(∂α(v))}

≤ max{ordθ(u), ordθ(v)}

using (1.6) and (1.7). As the above contradicts the fact that the sum of two positive
integers exceeds their maximum, u and v cannot share a pole. Furthermore, Propo-

sition 2.6 says that u + v ∈ Ah. Since u and v share no poles, both u and v must be
in Ah.

Pairs of functions u, v satisfying the properties of Proposition 4.1 arose in [19]
under the name of detached functions. There, using quite different arguments, we
showed that any quadratic regulator must have detached roots for the case where
Rh = K(X).
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Proposition 4.2 If t is in the parameter module P(m, h, α) of V(m, h, α), then

∂α(t) + ut ∈ Ah, ∂α(t) + vt ∈ Ah and (u − v)t ∈ Ah.

Proof Since derivers leave pole spaces invariant, ∂α(t) ∈ Rh for every t in Rh. Be-
cause u and v are in Ah as shown in Proposition 4.1, ut and vt lie in Rh. Hence
∂α(t) + ut and ∂α(t) + vt are in Rh for all t in Rh. As t runs over the parameter mod-
ule and µ runs over K, the embedding Λ given in (4.1) causes ∂α(t) + ut + µ and

∂α(t) + vt +µ each to exhaust a respective K-algebra inside Rh. Since Ah is the algebra
inside Rh that contains all K-algebras inside Rh, we conclude that ∂α(t) + ut +µ ∈ Ah

and ∂α(t) + vt + µ ∈ Ah. After that the scalar µ can be dropped.

By subtracting ∂α(t) + vt from ∂α(t) + ut , we get (u − v)t ∈ Ah.

It follows from Proposition 4.2 that Λ in (4.1) embeds End V(m, h, α) into Ah×Ah.
A worthwhile insight into P(m, h, α) emerges as follows.

Proposition 4.3 The parameter module P(m, h, α) is a fractional ideal of Ah taking

the form P(m, h, α) =
w

u−v
Ah for some non-zero w in Ah.

Proof We see from Proposition 4.2 that the Ah-module (u − v)P(m, h, α) is inside
Ah, and is thus an ideal of Ah. Because all ideals of Ah are principal, we obtain

(u − v)P(m, h, α) = wAh for some w in Ah. Now just divide by u − v.

Since D is an endomorphism, we can record as well that

(4.2) Ah ⊆ P(m, h, α) ⊆
1

u − v
Ah.

The Components of Ah Regulated by the Factors of the Regulator

The family of pole subalgebras C inside Ah for which (∂α + u)C ⊆ Pu certainly has

K in it, and it forms a complete lattice. Thus we can define Cu to be the biggest pole
subalgebra of Ah such that (∂α + u)Cu ⊆ Pu. Likewise define Cv to be the biggest pole
subalgebra of Ah such that (∂α+v)Cv ⊆ Pv. We prove now that Cu and Cv decompose
Ah in the sense that

(4.3) Cu + Cv = Ah and Cu ∩Cv = K.

To see that Cu ∩ Cv = K, suppose on the contrary that the pole algebra Cu ∩ Cv

properly contains K. In that case Cu∩Cv is infinite-dimensional, and both ∂α+u and

∂α + v have finite rank on Cu ∩Cv. If ℓ is the height function that defines Cu ∩Cv, we
see from the definition of regulators that both Y + u and Y + v regulate (ℓ, α). This is
impossible because u 6= v.

The fact that Cu + Cv = Ah follows directly from the next result which uses

Lemma 1.4.

Proposition 4.4 If K[Xθ] ⊆ Ah, then either K[Xθ] ⊆ Cu or K[Xθ] ⊆ Cv. Likewise,

if K[X] ⊆ Ah, then either K[X] ⊆ Cu or K[X] ⊆ Cv.
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Proof Since (Y + u)(Y + v) is the regulator, (∂α + u) ◦ (∂α + v) has finite rank on
Rh. Thus for any θ in K where K[Xθ] ⊆ Ah, the operator (∂α + u) ◦ (∂α + v) maps

K[Xθ] to a finite-dimensional space. Consequently one of ker(∂α + u) or ker(∂α +
v) restricted to K[Xθ] is infinite-dimensional. Indeed, if ker(∂α + v) restricted to
K[Xθ] is finite-dimensional, then the image (∂α + v)K[Xθ] is infinite-dimensional.
Since derivers leave pole spaces invariant, this image is inside the finite-dimensional

extension K[Xθ] + Pv of K[Xθ]. Thus (∂α + v)K[Xθ] has an infinite-dimensional
intersection with K[Xθ]. Because ∂α + u has to map this intersection to a finite-
dimensional space, the restriction of ∂α + u to K[Xθ] must have infinite-dimensional
kernel. After that, Lemma 1.4 shows that either ∂α + u maps K[Xθ] into Pu, or ∂α + v

maps K[Xθ] into Pv. In other words either K[Xθ] ⊆ Cu or K[Xθ] ⊆ Cv.
To prove the statement in case K[X] ⊆ Rh, replace Xθ by X.

Since ∂α + u, ∂α + v have finite rank on Cu,Cv, respectively we shall say that

Cu and Cv are the components of Ah regulated by Y + u and Y + v, respectively.

Proposition 4.5 The following crossover inclusions hold.

(4.4) Pv ⊆ Cu and Pu ⊆ Cv.

Proof We work on Pv ⊆ Cu. By Proposition 4.1, v ∈ Ah so that K[Xθ] ⊆ Ah for

every pole θ of v. For every such θ and for every non-zero t in K[Xθ] we use the fact
that derivers do not increase the order of poles to get

ordθ(vt) = ordθ(v) + ordθ(t) > ordθ(t) ≥ ordθ ∂α(t).

Since vt and ∂α(t) have different order at θ, they cannot add up to 0. Hence ∂α + v is
injective on K[Xθ]. Thus K[Xθ] cannot sit inside Cv. By Proposition 4.4, K[Xθ] ⊆ Cu.
The same argument applies using K[X], if ∞ is a pole of v. Thus Pv ⊆ Cu. Similarly
Pu ⊆ Cv.

Next we look at images of ∂α +u and ∂α+v acting on the portion of the parameter
module P(m, h, α) that sits in the spur Sh.

Proposition 4.6 The following inclusions hold:

(4.5) (∂α + u)(P(m, h, α) ∩ Sh) ⊆ Pu, (∂α + v)(P(m, h, α) ∩ Sh) ⊆ Pv.

Proof Let t ∈ P(m, h, α) ∩ Sh. Since derivers leave pole spaces invariant,

∂α(t) + ut ∈ Sh + Put = Sh + Pu + Pt = Sh + Pu.

The first equality above holds because u in Ah has no pole in common with t in Sh.
The second equality follows because t ∈ Sh, so that Pt ⊆ Sh. Thus ∂α(t)+ut ∈ Sh+Pu.
However ∂α(t) + ut ∈ Ah, as seen from Proposition 4.2. Since Pu ⊆ Ah, the modular

law, along with the fact that Sh ∩ Ah = K, gives

∂α(t) + ut ∈ (Sh + Pu) ∩ Ah = (Sh ∩ Ah) + Pu = K + Pu = Pu.

Likewise ∂α(t) + vt ∈ Pv.
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Proposition 4.7 The operator ∂α + u maps the parameter module P(m, h, α) into Cv,

and ∂α + v maps P(m, h, α) into Cu.

Proof Recall that Ah ⊆ P(m, h, α) ⊆ Rh. Since Rh = Ah + Sh, we get using (4.3)

P(m, h, α) = Ah + P(m, h, α) ∩ Sh = Cu + Cv + P(m, h, α) ∩ Sh.

By (4.5) and (4.4) we have (∂α + u)(P(m, h, α) ∩ Sh) ⊆ Cv. By the definition of Cu

and (4.4) we get (∂α + u)Cu ⊆ Cv. If t ∈ Cv, then ∂α(t) ∈ Cv because derivers
leave pole spaces invariant. Also ut ∈ Cv because u ∈ Cv according to (4.4). Thus

(∂α + u)Cv ⊆ Cv, too. Therefore ∂α + u maps all of P(m, h, α) into Cv. Similarly
∂α + v maps P(m, h, α) into Cu.

The next result follows instantly from Proposition 4.7.

Proposition 4.8 The embedding Λ of (4.1) sends End V(m, h, α) into Cv ×Cu.

What remains is to capture the image of Λ inside Cv ×Cu.

Bridges Across a Pole Algebra

Take any pole algebra A and two pole subalgebras L and M that are complementary

in A in the sense that L + M = A and L ∩ M = K. For any z in A define

(4.6) L ×z M = {(r, s) ∈ L × M : r − s ∈ zA}.

It is evident that L ×z M is a K-subalgebra of the product L × M. We call such a

construction a bridge across A. This is a special case of what is sometimes known as
a fibre product in the literature. For example, taking the component Cv as L, and Cu

as M, and z = w from Proposition 4.3, we get a good scenario for forming bridges.
Our objective, when the regulator of (h, α) has distinct roots, is to show that the

endomorphisms form the bridge Cv ×w Cu across Ah. Before getting to that, let us
record some routine aspects of bridges.

Proposition 4.9 Take a bridge L ×z M across a pole algebra A.

(i) L ×z M ∼= K if and only if z = 0.

(ii) L ×z M has proper idempotents if and only if z is a unit in A.

(iii) L ×z M is an integral domain if and only if either z = 0 or at least one of L,M
equals K with z a non-unit of A.

(iv) The bridge L ×z M is an integral domain if and only if z is a non-unit of A and

L ×z M is isomorphic to the subalgebra K + zA of A.

(v) When z is a non-zero, non-unit of A, the domain K + zA is all of A if and only if

z is a prime in A.

Proof (i) If z = 0 and (r, s) ∈ L ×z M we get r = s, and since L ∩ M = K we see that

(r, s) ∈ K(1, 1). Conversely, if z 6= 0, use the fact A = L + M to write z = r − s for
some r in L and some s in M. Then (r, s) ∈ L ×z M, but it is not in K(1, 1).

(ii) If z is a unit, then zA = A and any pair (r, s) in L × M satisfies r − s ∈ A. Thus
L ×z M = L × M which is clearly an algebra with proper idempotents. Conversely, if
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L ×z M has proper idempotents, then they would have to be (1, 0) and (0, 1). In that
case 1 = 1 − 0 ∈ zA, and z must be a unit.

(iii) The case z = 0 is handled by (i).
Suppose L = K and z is a non-unit of A. In that case M = A and the bridge

becomes K ×z A. Now (r, s) ∈ K ×z A if and only if r is a scalar and s ∈ r + zA. Hence
the map (r, s) 7→ s from K ×z A is onto K + zA. Since z is a non-unit and r is a scalar it

is easy to see this map is injective. Hence L×z M is isomorphic to the domain K + zA.
Now for the converse. If z is a unit, we do not get a domain because (ii) yields

idempotents. If both L and M contain K properly, then both

L ∩ zA 6= (0) and M ∩ zA 6= (0).

This is because the ideal zA has finite-codimension in A while the pole algebras L and
M are infinite-dimensional when they properly contain K. Hence there exist a non-

zero r in L and non-zero s in M such that (r, 0) ∈ L ×z M and (0, s) ∈ L ×z M. Now
the bridge L ×z M has ample amounts of zero divisors when both L and M properly
contain K.

(iv) One direction is trivial and the other has been shown already in (iii).

(v) Since K is algebraically closed, our non-zero, non-unit z is a prime in A if and
only if zA has co-dimension one in A. That is, if and only if K + zA = A.

Endomorphisms Make Bridges

Recall the components Cv,Cu of Ah which are regulated by the linear factors of
(Y + u)(Y + v) and the element w in Ah which specifies the parameter module
P(m, h, α) in Proposition 4.3.

Proposition 4.10 The mapping Λ of (4.1) embeds End V(m, h, α) into Cv ×w Cu.

Proof Proposition 4.8 puts End V(m, h, α) into Cv ×Cu. Now if

(r, s) = (∂α(t) + ut + µ, ∂α(t) + vt + µ)

for some t in P(m, h, α) and some µ in K, then Propositions 4.3 yields

r − s ∈ (u − v)P(m, h, α) = (u − v)
w

u − v
Ah = wAh.

Hence Λ embeds End V(m, h, α) into Cv ×w Cu.

The matter of having Λ be onto Cv ×w Cu remains.

Proposition 4.11 Suppose (r, s) ∈ Cv ×w Cu. If t =
r−s
u−v

, then t ∈ P(m, h, α) and

∂α(t) + ut − r = ∂α(t) + vt − s ∈ K.

Proof By the definition of a bridge, r − s ∈ wAh. From Proposition 4.3

t =
r − s

u − v
∈

w

u − v
Ah = P(m, h, α).
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Equality of ∂α(t) + ut − r and ∂α(t) + vt − s follows directly from the choice of t .
So it remains to see that this common function is a scalar. Since t ∈ P(m, h, α),

Proposition 4.7 yields ∂α(t) + ut ∈ Cv and ∂α(t) + vt ∈ Cu. Thus ∂α(t) + ut − r ∈ Cv

while its alter ego ∂α(t) + vt − s ∈ Cu. We deduce from (4.3) that this common
function lies in Cv ∩Cu = K.

We put all the pieces together for the following result.

Proposition 4.12 If the regulator of (h, α) is (Y + u)(Y + v) with u and v dis-

tinct, and if the generic matrix D is an endomorphism of V(m, h, α), then the algebra

End V(m, h, α) is isomorphic to the bridge Cv ×w Cu across Ah.

Proof The only thing left to check is that Λ maps End V(m, h, α) onto Cv ×w Cu.
Take (r, s) ∈ Cv ×w Cu. According to Proposition 4.11, the functions ∂α(t) + ut − r

and ∂α(t)+vt−s are equal to the same scalar, say λ. We claim that the endomorphism
tD + ∂α(t) − λI is mapped to (r, s) under Λ. Since Λ maps this endomorphism to
(∂α(t) + ut − λ, ∂α(t) + vt − λ), it suffices to check that ∂α(t) + ut − λ = r and
∂α(t) + vt − λ = s. However, that is precisely what λ achieves.

The cumulative result coming up next does not assume the generic matrix is an
endomorphism.

Theorem 4.13 If the quadratic regulator of (h, α) has distinct roots, then the algebra

End V(m, h, α) is isomorphic to a bridge across Ah.

Proof The only thing stopping us from using Proposition 4.12 is the possibility

that the generic matrix D might not be an endomorphism of V(m, h, α). But, if
End V(m, h, α) is non-trivial, then Proposition 2.5 lets us replace V(m, h, α) with
an isomorphic V(m, ℓ, β) whose generic matrix is an endomorphism of V(m, ℓ, β).
Then we can apply Proposition 4.12. If End V(m, h, α) is trivially just K, we recall

from Proposition 4.9 that a bridge formed by using w = 0 is also just K. So trivial
endomorphism algebras are bridges, too.

Realizable Bridges

Having just seen that in the presence of a quadratic regulator with distinct roots en-

domorphism algebras are isomorphic to bridges, we come to the matter of deciding
which bridges come up. Any K-algebra isomorphic to some End V(m, h, α) in which
the regulator of (h, α) is quadratic with distinct roots will be called a realizable bridge.

We now propose to identify the bridges that are realizable.

We say that a pole algebra is big when all but finitely many Xθ lie in it, and small

when infinitely many Xθ lie outside of it. We shall also say that θ in K supports Ah

when Xθ ∈ Ah.

Theorem 4.14 If L×z M is a bridge across a pole algebra A with either L or M a small

pole algebra properly containing K, and z in A is non-zero, then the bridge L ×z M is

realizable.
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Proof We may as well suppose that L is small and properly contains K. Without
losing generality we can also suppose K[X] ⊆ L, for if this did not hold, we would

have Xη ∈ L for some η in K. Using the field automorphism σ : K(X) → K(X)
given by f (X) 7→ f ( 1

X
+ η), we get that σ : Xη 7→ X. Clearly σ moves pole algebras

to pole algebras, and thus σ(L) is a pole algebra containing K[X]. Then the algebra
isomorphism on K(X) × K(X) given by

( f (X), g(X)) 7→
(

f
( 1

X
+ η

)

, g
( 1

X
+ η

))

.

restricts to an isomorphism L ×z M ∼= σ(L) ×σ(z) σ(M).
Having made the simplification that K[X] ⊆ L, we show next that we can suppose

z ∈ K[X] without loss of generality. Indeed, write z = f /g where f , g are coprime
polynomials. Since z ∈ A and A is a pole algebra, 1/g ∈ A, and since K[X] ⊆ A, it
follows that g is a unit of A. Thus the condition (r, s) ∈ zA in (4.6), telling us when a
pair (r, s) from L × M lies in L ×z M, is the same as the condition (r, s) ∈ f A. Hence

we can suppose z to be a polynomial.
We can also reduce to the case where no root of z supports A. For if θ in K were

a root of z and θ supported A, we could write z = (X − θ)r for some polynomial f ,
then observe X − θ is a unit of A to get zA = f A, and then L×z M = L× f M. In this

way we can remove all roots of z that support A.
Our job has come down to realizing L ×z M where

(4.7) 0 6= z ∈ K[X] ⊆ L with no root of z supporting A, and L is small.

We split the realization into two cases: K = M and K ( M.
Suppose K = M, in which case L = A with A small. We need (m, h, α) so that

(h, α) has a quadratic regulator with distinct roots and End V(m, h, α) ∼= A ×z K.

Take m to be any positive integer. Since A is small, the set Γ of all θ in K that support
A has an infinite complement in K. Pick ∆ to be any infinite subset of K that is
disjoint from both Γ and from the finite set of roots of z. Define the height function
h according to

h(θ) =











∞ if θ ∈ Γ or θ = ∞,

1 if θ ∈ ∆,

0 if θ ∈ K \ (∆ ∪ Γ).

For this choice of h, the pole algebra Ah is our original small A, while the pole space
is Rh = A +

∑

θ∈∆
KXθ . Choose α to be any functional such that α = 0 on A and

〈α,Xθ〉 = z(θ) for all θ in ∆.
To get the regulator of (h, α) we need the deriver on Rh. Since α = 0 on A, clearly

∂α = 0 on A. For each θ in ∆ formula (1.5) yields ∂α(Xθ) = −〈α,Xθ〉Xθ = −z(θ)Xθ .
Hence for all θ in ∆

(∂α + z)(Xθ) = (z − z(θ))Xθ =
z − z(θ)

X − θ
.

The latter is a polynomial of degree less than deg z. Therefore ∂α+z maps
∑

θ∈∆
KXθ

into a finite-dimensional space. Consequently (∂α + z) ◦ ∂α maps Rh into a finite-
dimensional space. Since z 6= 0, the regulator is (Y + z)(Y + 0) = Y 2 + zY + 0.
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Theorem 4.13 says that End V(m, h, α) is a bridge across Ah. We now verify that this
endomorphism algebra is our desired A ×z K.

The generic matrix for (h, α) is D =
[

z −1
0 0

]

. A spanning set for the space
V (m, h, α) as defined in (1.11) consists of the vectors

(

0

s

)

where s ∈ Pm,

(

r

0

)

where r ∈ A,

(

Xθ

z(θ)Xθ

)

where θ ∈ ∆.

One can check routinely by using (1.11) and our computation of ∂α above that D

maps this spanning set back into V (m, h, α). Thus D is an endomorphism. Proposi-
tion 4.12 becomes fully applicable to the current construction.

Specializing the notations of Proposition 4.12 to our current construction, we
have u = z and v = 0. To compute the components Cz and C0 as defined prior
to (4.3), observe that since z 6= 0, the operator ∂α + z is injective on Ah, and that

∂α + 0 maps Ah to zero. This tells us that Cz = K while C0 = Ah. Thus Proposition
4.12 yields End V(m, h, α) ∼= Ah ×w K for some w in Ah. To find that w, we need
the parameter module P(m, h, α) so that Proposition 4.3 can be used. We know that
P(m, h, α) lies inside Rh, and by (4.2) we have Ah ⊆ P(m, h, α) ⊆ 1

z
Ah. It follows that

the poles of any endomorphism parameter must either support Ah or lie among the
roots of z. However, Rh does not have functions whose poles are roots of z, by its very
construction. Consequently P(m, h, α) = Ah. Since Ah =

z
z−0

Ah, Proposition 4.12
tells us that z itself is a suitable w. Therefore End V(m, h, α) ∼= Ah ×z K = A ×z K as

desired for the first case.

Suppose in the second case that K ( M. Here we will not need the fact L is small,
but if L were big, then M would be small because the conditions prior to (4.6) reveal
that two big algebras cannot form a bridge. We are back in the situation of (4.7), and
we want to realize L×z M. Again let m be any positive integer. For the height function

h put

h(θ) =

{

∞ if θ = ∞ or Xθ ∈ A,

0 for all other θ in K ∪ {∞}.

We see that Rh = Ah = A = L + M.

In order to define the functional α we need a little digression. For each r in K[X]

and θ in K, put

r⋆ =
r − r(θ)

X − θ
= (r − r(θ))Xθ.

Clearly r⋆ is again a polynomial of degree less than deg r. We may iterate this process
to get polynomials r,r⋆, r⋆⋆, r⋆⋆⋆ and in general the k-th iterate denoted by r⋆k. The

degrees of the iterates are strictly decreasing until r⋆k
= 0 when k is beyond deg r.

These polynomials are useful to us because of the identity

(4.8) rXn
θ = r(θ)Xn

θ + r⋆(θ)Xn−1
θ + r⋆⋆(θ)Xn−2

θ + · · · + r⋆(n−1)Xθ + r⋆n,

for each n = 1, 2, . . . . A routine inductive argument based on rXn
θ = r(θ)Xn

θ +r⋆Xn−1
θ

verifies formula (4.8).
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Now we define α. Let ∆ be the set of θ in K that support M, which is non-empty
since M properly contains K. We can observe that

A = Rh = L ⊕
∑

θ∈∆

∞
∑

n=1

KXn
θ .

On L simply put α = 0, and for each θ in ∆ and each n = 1, 2, . . . , put

〈α,Xn
θ 〉 = z⋆(n−1)(θ).

It does not matter how α is defined on the rest of the standard basis of K(X).

We now compute the deriver ∂α on each of L and M, and thence the regulator

of (h, α). Since α = 0 on L, so also is ∂α = 0 on L. For each θ ∈ ∆ and each
n = 1, 2, . . . , we use the deriver formula (1.5) to get

∂α(Xn
θ ) = −〈α,Xθ〉X

n
θ − 〈α,X2

θ〉X
n−1
θ − 〈α,X3

θ〉X
n−2
θ − · · · − 〈α,Xn

θ 〉Xθ.

= −z(θ)Xn
θ − z⋆(θ)Xn−1

θ − z⋆⋆(θ)Xn−2
θ − · · · − z⋆(n−1)(θ)Xθ.

By formula (4.8) with r = z, we see that for each θ in ∆ and each n = 1, 2, . . . ,

(∂α + z)(Xn
θ ) = z⋆n.

Since z⋆n is a polynomial of degree at most deg z, and since

M = K +
∑

θ∈∆

∞
∑

n=1

KXn
θ ,

the operator ∂α + z maps the infinite-dimensional pole algebra M into the finite-
dimensional pole space Pz. The operator ∂α + 0 maps L into the finite-dimensional
pole space P0 = K, in fact to 0. Consequently (∂α + z) ◦ (∂α + 0) maps all of Rh into

a finite-dimensional space, actually into Pz + P0 = Pz. After recalling that z 6= 0, we
can see that the regulator of (h, α) is (Y + z)(Y + 0) = Y 2 + zY + 0.

The generic matrix for (h, α) is D =
[

z −1
0 0

]

To check that D is an endomorphism,
observe that a spanning set for V (m, h, α) as defined in (1.11) consists of the vectors
(

0
s

)

where s ∈ Pm, and
(

r
−∂α(r)

)

where r ∈ Ah. Then

D

(

0

s

)

=

(

−s

0

)

and D

(

r

−∂α(r)

)

=

(

(∂α + z)(r)

0

)

.

We check that the first entries of these outputs of D lie in L. Since ∂α vanishes on L, it

will follow that these outputs of D belong to V (m, h, α). Well, s ∈ Pm ⊆ K[X] ⊆ L.
Also Ah = A = L + M. If r ∈ L, then (∂α + z)(r) = zr ∈ L since z ∈ K[X] ⊆ L.
If r ∈ M, we have seen before that (∂α + z)(r) ∈ Pz ⊆ L. Since D leaves V (m, h, α)
invariant, D is an endomorphism, and Proposition 4.12 becomes applicable.
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Specializing the notations of Proposition 4.12 to this construction we have u = z

and v = 0. As we have seen ∂α + z maps M into Pz and ∂α + 0 maps L into P0, in

fact, into the zero space. Thus Cz and C0 as defined prior to (4.3) become Cz = M

and C0 = L. Proposition 4.12 yields End V(m, h, α) ∼= L ×w M for some w in Ah. To
find that w we need the parameter module P(m, h, α) so that Proposition 4.3 can be
used. The parameter module contains Ah and lies inside Rh, but in our case these two

coincide. Consequently P(m, h, α) = Ah. Since Ah =
z

z−0
Ah, Proposition 4.12 tells

us that z itself is a suitable w. Therefore End V(m, h, α) ∼= L ×z M, as desired for the
second case.

Realizing the Bridges K and K × K

The bridges K and K×K are realizable but are not covered by the general construction
of Theorem 4.14. Although it is not transparent, the realization of K using a quadratic

regulator with distinct roots was carried out in [18, Proposition 3.6] and the remarks
that follow it. In order to realize K × K, take two disjoint, infinite subsets ∆ and Γ

of K. Use the height function h that gives the pole space Rh = K ⊕
∑

θ∈∆
KXθ ⊕

∑

η∈Γ
KXη . Take any functional α that equals 0 on the Xθ’s and 1 on the Xηs. The

regulator of (h, α) becomes (Y + 1)(Y + 0). The techniques used in the proof of
Theorem 4.14 can be imitated to show that for m = 1, End V(m, h, α) ∼= K × K.

A Realized Family of Affine Domains

We note that among the bridges realized through Theorem 4.14 are the domains
A ×z K ∼= K + zA, where z is a non-zero, non-unit of a small pole algebra A. In
particular, when A = K[X] and z ∈ K[X], the algebra K + zK[X] is affine, as can be

seen for example from [2]. When the degree of z is at least 3, these curves are singular,
non-planar curves. For instance, as we learned1, the affine rings K + XnK[X] must
be generated with no fewer than n elements. This contrasts with the affine rings we
realized in [16], which can be generated by three elements, as shown in [10].

Non-Realizable Bridges

The bridges not accounted for by Theorem 4.14 and the remarks that immediately

follow it are A ×z K where A is big and z 6= 0. It turns out these are not realizable,
and to prove it we focus on the ring isomorphism invariant of being semi-local, i.e.,

having only finitely many maximal ideals. Using the reduction at the start of the proof
of Theorem 4.14, it does no harm to suppose K[X] ⊆ A. From this it becomes clear

that when A is big, it must be semi-local, having only the maximal ideals (X − θ)A

where θ does not support A.

Proposition 4.15 A bridge L ×z M across a pole algebra A is semi-local if and only if

one of the following holds.

(i) z = 0, in which case L ×z M ∼= K.

(ii) z 6= 0 and L = M = A = K, which gives L ×z M = K × K.

1Private communication, D. McKinnon.
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(iii) z 6= 0, A is big and L = A, M = K or vice versa.

Proof The first two of the above possibilities clearly give a semi-local bridge. Sup-
pose now that L ×z K satisfies condition (iii). Say L = A and M = K. If z is a unit
of A, the bridge becomes the product A × K, which is clearly semi-local since A is

semi-local. If z is not a unit of A, then L ×z M = A ×z K ∼= K + zA. We shall check
that this latter subring of A is semi-local. From here on the argument is likely to be
well known.

First we observe that if 0 6= r ∈ K + zA and 1/r ∈ A, then 1/r is already in K + zA.
Indeed, write r = λ + zt where λ ∈ K and t ∈ A. If λ = 0, then z is a unit of A

which forces K + zA = A, leaving us with a vacuous observation. If λ 6= 0, there is
the identity

1

r
=

1

λ
− z

t

λr
,

which clearly puts 1/r in K +zA. Thus the units of K +zA are those elements of K +zA

that are units in A.
If J1, J2 are distinct maximal ideals of K + zA, there exist x1 in J1 and x2 in J2

such that x1 + x2 = 1. As x1, x2 are non-units of K + zA, they remain non-units of

A. Hence there exist maximal ideals I1, I2 of A such that x1 ∈ I1 and x2 ∈ I2. Since
x1 + x2 = 1, these maximal ideals of A must be distinct. Thus distinct maximal ideals
of K + zA breed distinct maximal ideals of A. It follows that since A has only finitely
many maximal ideals so also does K + zA.

For the converse, supposing that conditions (i)–(iii) all fail, we shall prove that
L×z M has infinitely many maximal ideals. In order for all conditions to fail it means
that z 6= 0 and one of L or M is a small pole algebra properly containing K. Say L is
the one. Because L has infinite dimension over K while zA has finite codimension in

A, the intersection zA ∩ L remains infinite-dimensional. Hence we can pick a non-
scalar r in zA ∩ L. Then (r, 0) ∈ L ×z M. Since L is small, there are infinitely many
θ for which Xθ /∈ L. For such θ the scalar values r(θ) are defined. The reciprocals
of the functions r − r(θ) have a pole at θ, and hence cannot lie in L. Thus every

such r − r(θ) is a non-unit of L. Consequently every (r − r(θ),−r(θ)) is a non-unit
of L ×z M. These non-units cannot have infinite repetition because r is not a scalar
function. The difference of any two of these infinitely many non-units is a unit, in fact
lying in K(1, 1). Thus maximal ideals respectively containing each of these infinitely

many non-units cannot repeat themselves.

Proposition 4.16 If A is a big pole algebra and z in A is non-zero, then the bridge

A ×z K is not realizable.

Proof By Proposition 4.15, A×z K is semi-local, as it satisfies condition (iii). Assum-
ing that A ×z K is realizable, it must be isomorphic to some other bridge Cv ×w Cu

across a pole algebra Ah as specified in Proposition 4.12. The w comes from Proposi-
tion 4.3. This latter, isomorphic bridge Cv ×w Cu will be semi-local, and must itself

satisfy one of the three conditions in Proposition 4.15. However we note that the situ-
ation of condition (iii), namely “Ah is big, and Cv = Ah, Cu = K or vice versa,” never
happens. Indeed if this were the case, the definition of Cv just before (4.3) would
yield that ∂α + v has finite rank on Ah. Since Ah is big, the spur Sh would have to be
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finite-dimensional. Then the operator ∂α + v would have finite rank on Rh, forcing
Y + v to be the regulator instead of (Y + u)(Y + v). Since w 6= 0, condition (i) of

Proposition 4.15 does not apply to Cv ×w Cu either, forcing condition (ii) to apply.
However that would make Cv ×w Cu, and thereby A×z K isomorphic to K ×K, which
certainly cannot be since A ×z K is infinite-dimensional over K.

Realizable Domains and Their Radical

According to Proposition 4.9, a bridge across a pole algebra A is a domain if and only

if it is isomorphic to a subalgebra of A of the form K + zA for some non-unit z in A.
For z 6= 0 we have seen through Theorem 4.14 and Proposition 4.16 that K + zA is
realizable if and only if A is small. Here we simply add the observation that A is small
if and only if the Jacobson radical of K + zA is zero.

Proposition 4.17 For any non-zero, non-unit z in a pole algebra A, the radical of

K + zA is zero if and only if A is small.

Proof If A is big, then K + zA is semi-local by Proposition 4.15(iii). Since it is a
domain, K + zA is either a field or rad(K + zA) is not zero. However z, being a
nonzero, non-unit of A, remains so in K + zA. Thus rad(K + zA) is not zero.

Suppose A is small. To show that rad(K + zA) is zero, it suffices to show that every
non-zero r in K + zA has a non-zero scalar λ such that r − λ is a non-unit of K + zA.

Well, if r is a scalar itself, then λ = r does the job. If r is not a scalar, then one of
the infinitely many θ for which Xθ /∈ A will be such that r(θ) 6= 0. Then λ = r(θ)
does the job because r − r(θ) vanishes at θ. This makes r − r(θ) a non-unit of A as its
reciprocal has a pole forbidden to functions in A. Then r − r(θ) remains a non-unit

of K + zA.

Corollary 4.18 A domain isomorphic to a bridge over a pole algebra is realizable if

and only if the domain has zero radical.

5 When the Regulator Has No Root

In this final section we suppose that the regulator of (h, α) as in (1.14) is irreducible

in K(X)[Y ]. As noted in Section 2, End V(m, h, α) embeds into a quadratic field
extension of K(X). See the examples in [16] for illustrations of what can happen.
In [20] we showed that a height function h admits non-trivial End V(m, h, α) with
irreducible quadratic regulator if and only if h assumes the value ∞ at least once and

finite values at least twice. Now we shall prove, as we obtained for realizable bridges
in Corollary 4.18, that the Jacobson radical of End V(m, h, α) is zero.

Proposition 5.1 Suppose the generic matrix D is an endomorphism of V(m, h, α).

(i) If Xθ ∈ Rh and λ = 〈α,Xθ〉, then the endomorphism D − λI is not a unit of

V(m, h, α).

(ii) For infinitely many scalars λ the endomorphism D − λI is a non-unit.
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Proof (i) Suppose on the contrary that D − λI is a unit. Thus the inverse matrix

(D − λI)−1
=

1

λ2 − pλ + q

[

−λ 1
−q p − λ

]

,

leaves V (m, h, α) invariant. Using (1.5), ∂α(Xθ) = −〈α,Xθ〉Xθ = −λXθ, so that by
(1.11) the vector

(

Xθ
−∂α(Xθ)

)

=
(

Xθ
λXθ

)

belongs to V (m, h, α). However

(D − λI)−1

(

Xθ

λXθ

)

=
1

λ2 − pλ + q

[

−λ 1
−q p − λ

](

Xθ

λXθ

)

=

(

0

−Xθ

)

,

a vector definitely not in V (m, h, α). We have a contradiction.
(ii) Suppose first that there are infinitely many Xθ in Rh. The values 〈α,Xθ〉 can-

not have infinite repetition. Indeed, let J be an infinite set of θ’s for which the func-

tions Xθ belong to Rh and 〈α,Xθ〉 take one common value c, say. Let ℓ be the height
function that takes the value 1 at each θ in J and is zero elsewhere. The pole space
Rℓ = K +

∑

θ∈ J KXθ is infinite-dimensional, since J is infinite. Using (1.5) we see
that ∂α(Xθ) = −〈α,Xθ〉Xθ = −cXθ, for every θ in J. Hence the operator ∂α + c maps

Rℓ into K. This implies that Y + c regulates (ℓ, α). The regulator Y 2 + pY + q of (h, α)
also maps Rℓ to a finite-dimensional space because Rℓ is inside Rh. By the nature of
regulators Y + c divides the irreducible polynomial Y 2 + pY + q, and that is a contra-
diction. Consequently, the scalar values 〈α,Xθ〉 go through an infinite set as Xθ runs

through Rh. According to part (i) above, each of the infinitely many λ = 〈α,Xθ〉 will
cause D − λI to be a non-unit.

The other alternative is that the pole space Rh has only finitely many Xθ in it. In
this case we examine the curve defined by the polynomial Y 2 − pY + q, which is just

as irreducible as the regulator. Let

L = {θ ∈ K : θ is not a pole of p or of q and Xθ /∈ Rh}.

Clearly L is cofinite in K. For each θ in L there is a λ in K, in fact two at most, such

that λ2 − p(θ)λ + q(θ) = 0. As θ runs through L, infinitely many λ arise. Indeed if
only finitely many λ result from solving the above equation we would have one λ for
which infinitely many θ in L solve the above equation. This would imply that

λ2 − p(X)λ + q(X) = 0

identically as a polynomial in X. This leads to the impossibility that the irreducible
polynomial Y 2 − p(X)Y + q(X) in K(X)[Y ] has root λ in K. Thus we have infinitely
many λ in K for which there is θ in K where
• θ is not a pole of p nor of q;
• Xθ /∈ Rh;
• λ2 − p(θ)λ + q(θ) = 0.

Hence for infinitely many λ, the rational function λ2 − pλ+q is not a unit of the pole
algebra Ah. Moreover λ2− pλ+q = det(D−λI). By Proposition 2.1 the determinant
of a unit in End V(m, h, α) is a unit in Ah. Hence, we conclude that D − λI is not a
unit for infinitely many scalars λ.
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In the next result we do not assume that D is an endomorphism.

Theorem 5.2 If the regulator of (h, α) is an irreducible quadratic, then the radical of

End V(m, h, α) is zero.

Proof It suffices to show that for any non-zero endomorphismϕ there is a non-zero

scalar λ such that ϕ− λI is a non-unit. According to Proposition 2.2,

ϕ = tD + ∂α(t)I + µI

for some t in the parameter module and some scalar µ. If t = 0, then µ 6= 0 and the

scalar λ = µ gives ϕ− λI = 0, which is definitely a non-unit.

If t 6= 0, Proposition 2.4 ensures that the module V(m, h, α) is isomorphic to
the module V(m, h − ord(t), α ∗ t). Their respective endomorphism algebras are

conjugate as in Proposition 2.5. The generic matrix E for (h − ord(t), α ∗ t) is an
endomorphism of V(m, h− ord(t), α ∗ t) that conjugates to the endomorphism tD +
∂α(t)I of V(m, h, α). The regulator of (h − ord(t), α ∗ t) remains irreducible, as can
be seen easily using Proposition 1.3. By Proposition 5.1 there are infinitely many λ
such that E − λI is a non-unit of End V(m, h − ord(t), α ∗ t). The same applies to
the endomorphism tD + ∂α(t)I conjugate to E, and hence also to ϕ. Since there are
infinitely many λ for which ϕ − λI is a non-unit, there certainly is a non-zero λ to
do the job.

5.1 Isomorphism Invariants for Endomorphism Algebras

One of the motivations of this paper was to capture isomorphism invariants for al-
gebras that could be realized as End V(m, h, α). Our final result summarizes our

findings in this regard. It makes no assumption regarding the regulator.

Theorem 5.3 If End V(m, h, α) is a domain, then its radical is zero. Any semi-local

End V(m, h, α) is isomorphic to K ×K or a trivial extension K ⋉S for some vector space

S.

Proof Let End V(m, h, α) be a domain. If it is trivially just K, its radical is zero.
Otherwise Theorem 3.2 shows that the regulator has either distinct roots or no roots.

In the case of distinct roots we appeal to Theorem 4.13 and Corollary 4.18, and in
the case of no roots we appeal to Theorem 5.2, to conclude that domains realized as
endomorphism algebras must have zero radical.

Now let End V(m, h, α) be semi-local. If it is a domain, it must be a field. By [15,
Theorem 3.3], the only field that End V(m, h, α) could be is K, which is K ⋉ S with S

being the zero space. If End V(m, h, α) is not a domain, this algebra cannot embed in
a quadratic field extension of K(X). By the discussion following Proposition 2.2, the

regulator must have roots in K(X). If it has one repeated root, then End V(m, h, α) is
K ⋉ S by Theorem 3.2. If the regulator has two distinct roots, Propositions 4.15 and
4.16 apply making End V(m, h, α) isomorphic to K × K.
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Pole Algebras as Endomorphism Algebras

Except for K(X), a big pole algebra is a domain with non-zero radical, and therefore

it is never isomorphic to End V(m, h, α). The field K(X) itself is never one of our en-
domorphism algebras, due to [15, Theorem 3.3]. Thus no big pole algebra comes up
as one of our endomorphism algebras. In [18] small pole algebras have been realized
using a different approach. Now we can see that by taking z to be a non-zero prime

in a small pole algebra A we get A = K + zA, and Theorem 4.14 realizes this. This
situation stands in contrast with the fact proven in [3] that the endomorphism alge-
bras of torsion-free, rank-one Kronecker modules pick up exactly all pole algebras.
For K[X]-modules the latter is a classical theorem of R. Baer.

Acknowledgement We thank the referee for carefully reading our paper and for en-

couraging us to prove Theorem 4.14, which led us to describe the domains that are
realizable bridges.

References

[1] M. Auslander, I. Reiten, and S. O. Smalø, Representation Theory of Artin Algebras. Cambridge
Studies in Advanced Mathematics 36, Cambridge University Press, 1995.

[2] P. Eakin, A note on finite-dimensional subrings of polynomial rings. Proc. Amer. Math. Soc.
31(1972), 75–80.

[3] U. Fixman, On algebraic equivalence between pairs of linear transformations. Trans. Amer. Math.
Soc. 113(1964), 424–453.

[4] U. Fixman and F. Okoh, Extensions of modules characterized by finite sequences of linear functionals.
Rocky Mountain J. Math. 21 (1991), no. 4, 1235–1258.

[5] R. Fossum, P. Griffith, and I. Reiten, Trivial Extensions of Abelian Categories. Homological Algebra of
Trivial Extensions of Abelian Categories with Applications to Ring Theory. Lecture Notes in
Mathematics 456, Springer-Verlag, Berlin, 1975.
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