## A REMARK ON THE ESSENTIAL SPECTRA OF QUASI-SIMILAR DOMINANT CONTRACTIONS

by B. P. DUGGAL

(Received 18 November, 1987)

Introduction. We consider operators, i.e. bounded linear transformations, on an infinite dimensional separable complex Hilbert space H into itself. The operator A is said to be dominant if for each complex number  $\lambda$  there exists a number  $M_{\lambda}(\geq 1)$  such that  $\|(A-\lambda)^*x\| \leq M_{\lambda} \|(A-\lambda)x\|$  for each  $x \in H$ . If there exists a number  $M \geq M_{\lambda}$  for all  $\lambda$ , then the dominant operator A is said to be M-hyponormal. The class of dominant (and M-hyponormal) operators was introduced by J. G. Stampfli during the seventies, and has since been considered in a number of papers, amongst then [7], [11]. It is clear that a 1-hyponormal is hyponormal. The operator A is said to be quasi-normal if A commutes with  $A^*A$ , and we say that A is subnormal if A has a normal extension. It is known that the classes consisting of these operators satisfy the following strict inclusion relation:

quasi-normal  $\subset$  subnormal  $\subset$  hyponormal  $\subset$  M-hyponormal  $\subset$  dominant.

We say that the operator X is a *quasi-affinity* if both X and  $X^*$  have dense range. Given operators A, B and X, let C(A, B)X = AX - XB. The operators A and B are said to be *quasi-similar*, denoted  $A \sim B$ , if there exist quasi-affinities X and Y such that C(A, B)X = C(B, A)Y = 0, and we say that  $A \stackrel{d}{\sim} B$  if there exist operators X and Y with dense range such that C(A, B)X = C(B, A)Y = 0. Given the operator A, let  $\sigma(A)$  and  $\sigma_{\sigma}(A)$  denote, respectively, the spectrum and the essential spectrum of A.

The problem of the equality of the spectra, and the essential spectra, of quasi-similar operators has been considered by a number of authors in the recent past (see [1], [2], [5], [8], [9], [10], [11]). Recall that each operator A has a direct sum decomposition  $A = A_1 \oplus A_2$ , where  $A_1$  is normal and  $A_2$  is pure. (The operator  $A_2$  is said to be pure if there exists no non-trivial reducing subspace M of  $A_2$  such that  $A_2 \mid M$ , the restriction of  $A_2$  to M, is normal. It is to be noted here that either component in the direct sum  $A = A_1 \oplus A_2$  may be absent.) Given quasi-similar dominant operators A and B such that  $A = A_1 \oplus A_2$  and  $B = B_1 \oplus B_2$ , it is fairly easily seen that  $A_1$  and  $B_1$  are unitarily equivalent, and that  $A_2 \stackrel{d}{\sim} B_2$  [11, Theorem 1.1]. The problem of determining whether  $\sigma_{\epsilon}(A) = \sigma_{\epsilon}(B)$  (or,  $\sigma(A) = \sigma(B)$ ) then reduces to that of determining whether  $\sigma_{\epsilon}(A_2) = \sigma(A_2)$  $\sigma_{\epsilon}(B_2)$  (respectively,  $\sigma(A_2) = \sigma(B_2)$ ). It is to be noted here that the operators (with dense ranges) intertwining  $A_2$  and  $B_2$  need not be quasi-affinities, even in the case in which  $A_2$ and  $B_2$  are quasi-normal [9]. However, the fact that these intertwining operators lack injectivity seems to play but a minor role. It is known that if  $A_2$  and  $B_2$  are quasi-normal, then  $\sigma_e(A_2) = \sigma_e(B_2)$  [9] (and that if  $A_2$  and  $B_2$  are hyponormal, then  $\sigma(A_2) = \sigma(B_2)$  [1], [8]): the problem, however, remains unsolved for subnormal  $A_2$  and  $B_2$ . Assuming additional hypotheses, such as that one of the quasi-affinities intertwining A and B is compact, L. R. Williams [10] has shown that  $\sigma_e(A) = \sigma_e(B)$  if A and B are hyponormal.

Glasgow Math. J. 31 (1989) 165-168.

(That a similar result holds for k-quasihyponormal A and B has been shown by B. C. Gupta [5].) The result for hyponormal A and B extends to dominant A and B if A and B satisfy Dunford's Condition C [11, Theorem 2.4].

In this note we consider contractions A and B, and show that if A is injective, then the hypothesis that the dominant A and B satisfy Dunford's Condition C can be dispensed with in [11, Theorem 2.4]. Indeed we show more. It is known that the c.n.u. (= completely non-unitary) part of a dominant contraction is of the class  $C_{.0}$  of contractions [4]. We show that if A and B are quasi-similar contractions with  $C_{.0}$  c.n.u. parts, if one of the intertwining quasi-affinites is compact, and if A is injective, then A and B are hyponormal, and so  $\sigma_e(A) = \sigma_e(B)$ .

**Results.** A contraction A is said to be c.n.u. if there exists no non-trivial reducing subspace M of A such that  $A \mid M$  is unitary. Recall that every contraction A has a direct sum decomposition  $A = A_1 \oplus A_2$ , where  $A_1$  is unitary and  $A_2$  is c.n.u. (and where either of the components may be absent). We say that the contraction A belongs to the class  $C_0$  (class  $C_1$ ) of contractions if  $||A^{*n}x|| \to 0$  as  $n \to \infty$  (respectively,  $0 < \inf ||A^{*n}x||$ ) for each

non-trivial  $x \in H$ . The classes  $C_0$  and  $C_1$  are defined by considering  $A^*$  instead of A, and we say that  $A \in C_{\alpha\beta}$ , where  $\alpha$ ,  $\beta = 0$ , 1, if  $A \in C_{\alpha} \cap C_{\beta}$ . In the following we shall denote the point spectrum of A by  $\sigma_p(A)$ , the closure of the range of A by  $\overline{\operatorname{ran}} A$ , and the orthogonal complement of the kernel of A by  $\operatorname{ker}^{\perp} A$ . We now prove our result for the case in which A and B are dominant: the case of general contractions with  $C_{0}$  c.n.u. parts will be seen to follow from the proof of this case.

THEOREM 1. Let A and B be dominant contractions such that  $0 \notin \sigma_p(A)$  and  $A \sim B$ . If one of the quasi-affinities intertwining A and B is compact, then  $\sigma_e(A) = \sigma_e(B)$ .

**Proof.** Let X and Y be the quasi-affinities, with Y compact, such that C(A, B)X = C(B, A)Y = 0. We show that A and B are hyponormal, and this is achieved by showing that the c.n.u. parts of A and B are hyponormal. Thus, decompose A and B into their unitary and c.n.u. parts by  $A = A_1 \oplus A_0$  and  $B = B_1 \oplus B_0$ . Since A and B are dominant,  $A_0$  and  $B_0 \in C_{0}$  [4], and so have triangulations

$$\begin{bmatrix} A_2 & * \\ 0 & A_3 \end{bmatrix} \text{ and } \begin{bmatrix} B_2 & * \\ 0 & B_3 \end{bmatrix} \text{ of the type } \begin{bmatrix} C_{00} & * \\ 0 & C_{10} \end{bmatrix}$$

[6, p. 75]. Let X and Y have the corresponding matrix representations

$$X = [X_{ij}]_{i,j=1}^3$$
 and  $Y = [Y_{ij}]_{i,j=1}^3$ .

Then, since  $A_1$  and  $B_1 \in C_{11}$ ,  $A_2$  and  $B_2 \in C_{00}$ , and  $A_3$  and  $B_3 \in C_{10}$ , it follows from the equations  $0 = C(A_1, B_2)X_{12} = C(B_1, A_2)Y_{12} = C(A_2, B_1)X_{21} = C(B_2, A_1)Y_{21} = C(A_3, B_1)X_{31} = C(B_3, A_1)_{31} = C(A_3, B_2)X_{32} = C(B_3, A_2)Y_{32}$  that  $X_{12} = Y_{12} = X_{21} = Y_{21} = X_{31} = Y_{31} = X_{32} = Y_{32} = 0$ . (Sample argument: since  $A_1$  is unitary and  $B_3 \in C_{10}$ ,  $\|Y_{31}^*x\| = \|A_1^{*n}Y_{31}^*x\| = \|Y_{31}^*B_3^{*n}x\| \le \|Y_{31}^*\| \|B_3^{*n}x\| \to 0$  as  $n \to \infty$ .) Consequently, X and Y

have the representations

$$\begin{bmatrix} X_{11} & 0 & X_{13} \\ 0 & X_{22} & X_{23} \\ 0 & 0 & X_{33} \end{bmatrix} \text{ and } \begin{bmatrix} Y_{11} & 0 & Y_{13} \\ 0 & Y_{22} & Y_{23} \\ 0 & 0 & Y_{33} \end{bmatrix},$$

where  $X_{33}$  and  $Y_{33}$  have dense range (with  $Y_{33}$  compact). We now consider the equations  $C(A_3, B_3)X_{33} = C(B_3, A_3)Y_{33} = 0$ , and show that  $A_3$  and  $B_3$  are in fact non-existent.

Set  $X_{33}Y_{33} = S_1$ ; then  $S_1$  is a compact operator with dense range such that  $C(A_3, A_3)S_1 = 0$ . Since H is separable and  $A_3 \in C_{10}$ , there exists an isometry V and a quasi-affinity  $S_0$  such that  $C(V, A_3)S_0 = 0$  [6, Proposition II.3.5]. Set  $S_0S_1 = S$ ; then S is a compact operator with dense range such that  $C(V, A_3)S = 0$ , and hence that  $A_3^*S^*SA_3 = S^*S$ . This implies that  $\overline{\operatorname{ran}} S^*S = \ker^{\perp} S$  reduces  $A_3$  and  $A_3/\ker^{\perp} S$  is unitary (see [3, Theorem 8 and Corollary 6.5]). Since  $A_3$  is c.n.u., we conclude that  $A_3$  is non-existent. By symmetry,  $B_3$  is also non-existent. Consequently,  $X_{13} = Y_{13} = 0$ .

The preceding argument shows that  $C(A_0, B_0)X_0 = C(B_0, A_0)Y_0 = 0$ , where

$$X_0 = \begin{bmatrix} X_{22} & X_{23} \\ 0 & X_{33} \end{bmatrix}$$
 and  $Y_0 = \begin{bmatrix} Y_{22} & Y_{23} \\ 0 & Y_{33} \end{bmatrix}$ 

are quasi-affinities (with  $Y_0$  compact). Set  $X_0Y_0=T$ ; then  $(:H'\to H', \text{ say})$  is a compact quasi-affinity such that  $C(A_0,A_0)T=0$ . Clearly,  $0\notin\sigma_p(A_0)$  and  $0\notin\sigma_p(B_0)$ . Since  $A_0\in C_0$ , the sequence  $\{A_0^nTT^*A_0^{*n}\}$  converges strongly to 0, and so, since  $A_0TT^*A_0^{*n}=TA_0A_0^*T^*\leq TT^*$ ,  $TT^*$  is a 'pure solution' (in the sense of [3, p. 24]) of  $A_0TT^*A_0^*\leq TT^*$ . Hence there exists a unilateral shift U (on a Hilbert space  $\mathcal{H}$ ) and an operator C (on  $H'\to\mathcal{H}$ ) such that  $CA_0^*=U^*C$  and  $TT^*=C^*C$  [3, Theorem 5]. Clearly, there exists an isometry  $V:\mathcal{H}\to H'$  (indeed, V is a unitary on  $\overline{\operatorname{ran}} C\to H'$ ) such that  $T^*=VC$ , and so that

$$A_0^*T^* = T^*A_0^* = VCA_0^* = VU^*V^*VC = VU^*V^*T^*.$$

Since  $T^*$  is a quasi-affinity, this implies that  $A_0^* = VU^*V^*$ , and hence that  $A_0$  is hyponormal. Consequently, A is hyponormal. By symmetry, B is also hyponormal.

It now follows that A and B are quasi-similar hyponormal contractions. Hence  $\sigma_c(A) = \sigma_c(B)$ , by [10], as was to be proved.

REMARKS. (1). The proof of the theorem shows that  $A_0 \sim B_0$ : this does not in any way imply that the pure parts of A and B are quasi-similar. As mentioned earlier, it can be seen using a routine argument that the pure parts of A and B, say  $A_4$  and  $B_4$ , satisfy  $A_4 \stackrel{d}{\sim} B_4$ .

- (2). The argument in the proof above leading to the conclusion that  $A_0$  is hyponormal fails for a general quasi-affinity. This is easily seen upon letting  $\{e_n\}$ ,  $-\infty < n < \infty$ , be an orthonormal basis of H, (the dominant contraction)  $A_0$  be the bilateral shift  $A_0e_n = 2^{-|n|}e_{n+1}$  and T be the quasi-affinity defined by  $Te_n = 2^{-1}e_n$ .
- (3). The hypothesis that A is injective seems to be required in Theorem 1 (just as it seems that some such hypothesis is required in [3, Theorem 5]) in the sense that the

- unilateral shift U may otherwise fail to exist. For suppose that  $A_0$  is not injective and that  $A_0 = VUV^*$ . Then there exists a non-trivial x such that  $A_0x = 0$ , and hence that  $V^*x = 0$ . Since  $T = C^*V^*$ , we have that Tx = 0, i.e., T is not injective.
- (4). A scrutiny of the proof above shows that the fact that A and B are dominant plays a part in the proof only through the fact that they have  $C_{.0}$  c.n.u. parts. Hence Theorem 1 generalises to the following result.

THEOREM 2. Let A and B be contractions with  $C_{.0}$  c.n.u. parts such that  $0 \notin \sigma_p(A)$  and  $A \sim B$ . If one of the quasi-affinities intertwining A and B is compact, then  $\sigma_e(A) = \sigma_e(B)$ .

## REFERENCES

- 1. S. Clary, Equality of spectra of quasi-similar hyponormal operators, *Proc. Amer. Math. Soc.* 53 (1975), 88-90.
  - 2. J. B. Conway, Subnormal operators (Pitman, 1981).
- 3. R. G. Douglas, On the operator equation S\*XT = X and related topics, *Acta Sci. Math.* (Szeged) 30 (1969), 19-32.
- 4. B. P. Duggal, Intertwining contractions: operator equation AXB = X and AX = XB, Proc. Int. Conf. on 'Invariant subspaces and allied topics', University of Delhi, Dec. 1986 (to appear).
- 5. B. C. Gupta, Quasi-similarity and k-quasihyponormal operators, *Math. Today* 3 (1985), 49-54.
- 6. B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, (North-Holland, 1970).
- 7. J. G. Stampfli and B. L. Wadhwa, An asymmetric Putnam-Fuglede theorem for dominant operators, *Indiana Univ. Math. J.* 25 (1976), 359-365.
- 8. J. G. Stampfli, Quasi-similarity of operators, Proc. Roy. Irish Acad. Sect. A 81 (1981), 109-119.
- **9.** L. R. Williams, Equality of essential spectra of quasi-similar quasinormal operators, *J. Operator Theory* **3** (1980), 57-69.
- 10. L. R. Williams, Equality of essential spectra of certain quasi-similar semi-normal operators, *Proc. Amer. Math. Soc.* 78 (1980), 203-209.
- 11. L. R. Williams, Quasi-similarity and hyponormal operators, J. Operator Theory 5 (1981), 127-139.

SCHOOL OF MATHEMATICAL SCIENCES UNIVERSITY OF KHARTOUM P.O. BOX 321 KHARTOUM SUDAN