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In the present review I will discuss certain rather general aspects of the theory, and 
will leave it to other speakers to describe the results of detailed calculations. Further 
references to recent work are given in the Report of IAU Commission 14. 

1. Atomic Wave Functions and Energy Levels 

In order to calculate data of importance for ultra-violet and X-ray astronomy -
wavelengths, transition probabilities, collision cross-sections, ionization and recom­
bination rates, and line-broadening parameters - it is necessary to begin with the 
calculation of atomic wave functions. The interest is mainly in highly ionized systems. 

The non-relativistic Schroedinger equation for an atom with N electrons and 
nuclear charge Z is 

(1) i - i . I ^ + vm + vee\w = EW 

where E is the energy in atomic units (27.2 eV), 

Ke=~ y zr.
 (2) 

i = l 

is the potential energy of the electrons in the field of the nucleus, and 
iV J V - 1 

v--llvu
 <3) 

j = i+l > = 1 

is the potential energy of the electron-electron interactions. The summation in Vne 

contains N terms and the double summation in Vee contains %N(N— 1) terms. In 
order of magnitude the importance of Vee relative to V„e is therefore 

(N-l) 

2Z 
(4) 

For highly ionized systems, Z^>N, Vee may be treated as a small perturbation. The 
zero-order equation, neglecting Vee altogether, is 

{-±IV? + Vne}V0 = E0VQ. (5) 
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This equation has solutions 

»'o = n < w (6) 
where x; is the space and spin coordinate of electron /, (r;, o?), and a; stands for the 
set of one-electron quantum numbers, («j/,/wsi7w,j). The \j/ai are one-electron hydro-
genic functions, satisfying the equation 

- iV2 - Z l ^ = 8^„ (7) 

where 
r 

1Z 2 

si = ~,-2- (8) 2 « 

The total zero-order energy in (5) is 

p z 2 r i 2 

(9) 

The contribution of Vee to the energy can be calculated using perturbation theory: 

E1=E0 + (W0\V„\W0). (10) 

The complication immediately arises that the zero-order problem can be highly 
degenerate, that is to say there can be many quantum states V0 with the same energy 
E0. Following Layzer (1959), two states are said to belong to the same complex if 
they have the same set of principal quantum numbers n; and the same parity. In 
applying (10) it is necessary to consider all states f0 which belong to the same com­
plex, and which therefore have the same zero-order energy, and to diagonalize the 
matrix of Vee with respect to these states. The states V0 must, of course, be properly 
anti-symmetrized, so as to satisfy the Pauli exclusion principle. 

Extensive calculations have been made by Godfredsen (1966) using hydrogenic zero-
order functions. An improvement can be obtained on making an approximate allow­
ance for Vee in the zero-order problem. Eissner and Nussbaumer (1969) use a central-
field potential 

Vct = Ylva(rl) (11) 
i 

and solve the zero-order problem 

{ - i Z V 2 + Fcf}'P0 = £ 0 n - (12) 
i 

The first-order energy is calculated as 

E^OPo l t f l lPo ) (13) 

where H is the Hamiltonian operator in Equation (1). In this approach one includes 
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all states f 0 which have energies E0 close together, and diagonalizes the matrix of H 
with respect to these states. 

Let us consider an iso-electronic sequence (N fixed, Z variable). As Z increases 
one will obtain an improved agreement between the calculated energies E1 and the 
exact energies E for the non-relativistic Schroedinger problem (1). This is a conse­
quence of (4). However, on comparing calculated energies with observed energies it 
is found that the agreement is generally good for systems a few times ionized, but less 
good for highly ionized systems. This is clearly due to neglect of relativistic effects 
in the calculations. 

Recent work has led to some major improvements in the calculation of relativistic 
corrections. One approach has been to include relativistic terms in the calculation 
of the zero-order wave functions; thus, for example, the one-electron Schroedinger 
equation (7) could be replaced by the one-electron Dirac equation. This approach 
should give good results for systems which are very highly ionized (it is exact for ions 
containing only one electron). Another approach is to obtain fairly accurate solutions 
of the N-electron non-relativistic problem, and to allow for relativistic corrections to 
the energy using perturbation theory. Other speakers will describe results obtained 
using these methods. 

2. Radiative Transition Probabilities 

Extensive tabulations of transition probabilities are available (Wiese et ah, 1966) and 
a Data Center on Transition Probabilities is operated by the National Bureau of 
Standards, Washington. 

Calculations are fairly simple for transitions which may be considered to involve 
a single outer electron. One may use the Coulomb approximation of Bates and 
Damgaard (1949) or more refined calculations in which a central potential is adjusted 
in such a way as to give agreement between calculated and observed one-electron 
binding energies (see, for example, Stewart and Rotenberg, 1965). 

For more complicated cases the problem of calculating transition probabilities 
must be considered as an extension of the problem of calculating wave functions; 
once the wave functions are known the transition probabilities can be computed 
without much effort. The general theory is reviewed by Layzer and Garstang (1968). 

For many transition probability calculations it is necessary to include spin and 
other relativistic effects. This is essential, for example, if one wishes to obtain correct 
relative intensities for the components of multiplets, or if one is concerned with 
forbidden transitions. 

3. Electron-Ion Collision Cross-Sections 

Classical theory (see Burgess and Percival, 1968) may be used to estimate cross-
sections for collisional ionization and for transitions between highly excited states 
of hydrogenic ions. For the calculation of cross-sections for optically allowed 
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transitions in positive ions extensive use has been made of results based on semi-
classical impact parameter theories (the ion is treated quantum mechanically but the 
colliding electron is assumed to follow a classical path). These theories give expres­
sions such that the cross-section is proportional to the optical oscillator strength. 
The formula involving a factor g should give results correct to a factor of 2 or so for 
transitions having reasonably large oscillator strengths (Van Regemorter, 1962). An 
improved, but more elaborate, semi-classical theory is discussed by Burgess et al. 
(1970). 

All classical and semi-classical cross-section approximations have severe limitations. 
Astronomers often ask for some simple approximate formula for the calculation of 
collision cross-sections. I think the short answer is that there is no simple formula 
which is adequate for the interpretation of the large amount of good observational 
data which is now available. For collision cross sections, as for transition probabilities, 
it is necessary to make much more accurate quantum mechanical calculations. For­
tunately, such calculations are easier for positive ions than for neutral atoms. 

The wave function f for the electron-atom system can be expanded in the form 

V = J/ZVA<PA (14) 

where: 
s# is an anti-symmetrization operator (anti-symmetrization implies allowance 
for electron exchange, which can give transitions involving a change in ion 
spin) 
£ is a summation over states of the target system 
TA is a wave function for the target system 
<pA is an orbital function for the colliding electron. 

Using a variational theory for the determination of the 'best' cross-sections one ob­
tains a set of coupled integro-differential equations for the functions <pA - this is the 
so-called 'close-coupling' approximation. For many near-threshold transitions in 
neutral atoms no approximation significantly simpler than the close coupling method 
can be expected to give accurate results, but for highly ionized systems some simpli­
fication can be made. It is essential that the functions <pA should be calculated using 
a potential with correct asymptotic form. If these functions are calculated neglecting 
coupling between the target states, we have equations of the form 

{-F2 + v(r)}<pA = irkA<pA (15) 
where 

v(r) z\r (16) 
r->oo 

and where z = {Z—N) is the charge on the ion. In (15), \k\ is the kinetic energy of 
the colliding electron when the target system is in state A. In the Coulomb-Born 
approximation one uses the potential v=—z/r and in the distorted wave approxi­
mation one uses a central-field potential which has the behaviour (16) for r large and 
which behaves like — Z/r for r small. Some refinements in the distorted wave method 
are discussed by Saraph et al. (1969). 
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Using solutions of (15) one constructs wave functions IP;, "Py for the electron-ion 
system in the initial state and the final state. The collision cross-section Q(i^f) is 
proportional to 

K^IH-Elf,.)!2 (17) 

where H is the total Hamiltonian and E the total energy. Results are often expressed 
in terms of collision strengths Q: 

Q ( ' " • / ) = - 7 1 na0 (18) 
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Fig. 1. Collision strengths for \s-2p transitions in hydrogenic ions calculated by Belling (1970) in 
the 'close-coupling' approximation and in distorted wave and 

Coulomb-Born approximations, including exchange. 

https://doi.org/10.1017/S1539299600000496 Published online by Cambridge University Press

file:///s-2p
https://doi.org/10.1017/S1539299600000496


508 M.J.SEATON 

where: 
Q is the cross-section 
\k\ is the initial kinetic energy of the colliding electron, in atomic units 
co i is the statistical weight of the initial level of the target system 
a0 is the Bohr radius. 

The collision strength has the following properties: (i) Q(i,f)=Q(f, i); (ii) for posi­
tive ions Q remains finite at the excitation threshold; (iii) Z2Q remains finite in the 
limit of Z->oo. In an iso-electronic sequence one may plot Z2Q, for a fixed value of 
(kJZ)2, as a function of 1/Z. Figure 1 gives some recent results obtained by Belling 
(1970); for N=l, Z2Q(ls, 2p) is plotted as a function of 1/Z for (kJZ)2 = 1.0. The 
distorted wave method is seen to give good agreement with the close-coupling calcula­
tions for all positive ions in the sequence. The Coulomb-Born method is not quite 
so good but still gives reasonable results. In other sequences it is sometimes found 
that the distorted wave method may give results in error by a factor of 2 or so for 
singly-ionized positive ions, but better accuracy for more highly ionized systems. 

To summarize, I would say that it is now possible to obtain reasonably accurate 
cross-sections for excitation of positive ions, although a fair amount of computation 
may be involved. It is possible to make some allowance for relativistic effects in the 
ion wave functions used in atomic collision calculations, but little work has so far 
been done on the possible importance of relativistic eifects in the collision process 
itself. 
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DISCUSSION 

L. H. Aller: Is it possible to calculate collision strengths for equivalent rf-electrons, relevant for 
ions in various stages of ionization, e.g. (Fevn)? If there are difficulties, do these arise from computa­
tional or from conceptual difficulties? That is, do we need some new physics? 

M. J. Seaton: No new physics is needed. No calculations have yet been made for systems with 
equivalent rf-electrons, but I think that we are now reaching the stage at which such calculations could 
be attempted. 

Note added in proof. Calculations for Fevn have now been made by W. Eissner and H. Nussbaumer. 
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