ON THE CONSISTENCY OF THE TWO-SAMPLE EMPTY CELL TEST

M. Csorgo * and Irwin Guttman

(received August 15, 1962)

1. Introduction. This paper considers the consistency of the two-sample empty cell test suggested by S. S. Wilks [2]. A description of this test is as follows: Let a sample of \mathbf{n}_1 independent observations be taken from a population whose cumulative distribution function $\mathbf{F}_1(\mathbf{x})$ is continuous, but otherwise unknown. Let $\mathbf{X}_{(1)} < \mathbf{X}_{(2)} < \ldots < \mathbf{X}_{(n_1)}$ be their order statistics. Let a second sample of \mathbf{n}_2 observations be taken from a population whose cumulative distribution function is $\mathbf{F}_2(\mathbf{x})$, assumed continuous, but otherwise unknown.

Define cells
$$I_1, \ldots, I_{n_1+1}$$
 by

(1.1)
$$I_{i} = (X_{(i-1)}, X_{(i)}], i = 1, ..., n_{1} + 1,$$

where
$$X_{(0)} = -\infty$$
 and $X_{(n_4+1)} = +\infty$.

Let r_1, \ldots, r_{n_1+1} be the number of observations of the second sample that lie in I_1, \ldots, I_{n_1+1} respectively.

Let S_0 be the number of I_1 , $i=1,\ldots,n_1+1$ which are

Canad. Math. Bull. vol. 7, no. 1, January 1964

^{*} Work supported by a National Research Council of Canada Studentship.

such that $r_i = 0$, that is, the number of empty cells. Under the hypothesis that $F_1 = F_2$, Wilks in [2] and [3] gives a somewhat complicated analytic derivation of the probability function of S_0 and obtains the result

(1.2)
$$P(S_{o} = S_{o}) = \frac{\binom{n_{1} + 1}{s_{o}} \binom{n_{2} - 1}{n_{1} - s_{o}}}{\binom{n_{1} + n_{2}}{s_{o}}} = p(S_{o})$$

where the sample space of S_{o} is given by

$$\mathcal{S} = [k, k+1, ..., n_1]$$
 and $k = \max[0, n_1+1 - n_2]$.

A simplified proof of (1.2) may be found in [4].

Using (1.2), it can be easily shown that

$$E(S_0) = \frac{n_1(n_1 + 1)}{n_1 + n_2}$$

(1.3)
$$\sigma^{2}(S_{0}) = \frac{n_{1}^{2}(n_{1}^{2} - 1)}{(n_{1}^{+}n_{2}^{-})(n_{1}^{+}n_{2}^{-}1)} + \frac{n_{1}^{2}(n_{1}^{+}1)}{n_{1}^{+}n_{2}^{-}} - \frac{n_{1}^{2}(n_{1}^{+}1)^{2}}{(n_{1}^{+}n_{2}^{-})^{2}}$$

(For these results see Wilks [2] and [3] where the method of factorial moments is used to obtain them.)

If we let $n_2 = \rho n_1 + O(1)$, $\rho > 0$, these reduce to

$$E(S_o) = n_1 \left(\frac{1}{1+\rho} \right) + O(\frac{1}{n_1})$$

$$\sigma^2(S_o) = n_1 \left(\frac{\rho^2}{(1+\rho)^3} + O(\frac{1}{n_1}) \right)$$

which in turn imply that

$$E\left(\frac{S_0}{n_1+1}\right) \to \frac{1}{1+\rho}$$

and

$$\sigma^2\left(\frac{S_0}{n_1+1}\right) \to 0$$

as n_1 , $n_2 \to \infty$, and by Tchebychev's inequality, these results imply that S_0/n_1+1 converges in probability to $\frac{1}{1+\rho}$, if $F_1=F_2$.

We can use these results to make a test of the hypothesis $F_4 = F_2$ at the approximate 100α % level. This is given by

(1.5)
$$\begin{cases} \text{Reject if } s \geq b \\ \text{O } \end{cases}$$
 Accept otherwise

where b is such that

$$P(S_o \ge b) = \sum_{\substack{s_o = b \\ s_o = b}} P(s_o) \le \alpha$$

$$(1.6)$$

$$P(S_o \ge b-1) = \sum_{\substack{s_o = b-1 \\ s_o = b-1}} P(s_o) > \alpha.$$

Tables of (1.6) have been tabulated by the authors for $\alpha = .01$ and .05 and published in Technometrics [4].

2. Consistency. The form of the test (1.5) follows from the following considerations. Let G be the class of pairs of

continuous cumulative density functions $(F_1(x), F_2(x))$ such that $F_1(x) = F_2(x)$. Let $F_1^{-1}(u)$ be the inverse of the c.d.f. $F_1(x)$ and let G_1 be the class of pairs of continuous c.d.f.'s $(F_1(x), F_2(x))$ satisfying:

- (i) $F_2(F_1^{-1}(u))$ has a derivative, say g(u), for all u on (0, 1) except possibly for a set of probability measure zero.
- (ii) The derivatives of $F_2(F_1^{-1}(u))$ and $F_1(F_1^{-1}(u)) = u$ with respect to u on (0, 1) differ over a set of positive probability.

In [3] Wilks states the following

THEOREM. The test defined by (1.5) and (1.6) is consistent for testing any $(F_1, F_2) \in G_0$ against any $(F_1, F_2) \in G_1$ as $n_1, n_2 \to \infty$ so that $n_2 = n_1 \rho + O(1)$, where $\rho > 0$.

To prove this theorem it is sufficient to show that if $(F_1, F_2) \in G_1$, $S_0/(n_1+1)$ converges in probability to a number greater than $1/(1+\rho)$ as n_1 , $n_2 \to \infty$ with $\frac{n_2}{n_1} \to \rho > 0$, for it will be recalled from (1.4) that $1/(1+\rho)$ is the quantity to which $S_0/(n_1+1)$ converges in probability if $(F_1, F_2) \in G_0$.

We recall that r_1, \ldots, r_{n_1+1} denote the number of observations of the second sample that lie in the n_1+1 cells I_1, \ldots, I_{n_1+1} respectively. For each non-negative integer r, let $Q_1(r)$ be the proportion of values among r_1, \ldots, r_{n_1+1} which are equal to r. Then, in particular, we have $Q_{n_1}(0) = \frac{S}{n_1+1}, \text{ the proportion of empty cells.}$

Under the conditions (i) and (ii) of this section, J. R. Blum and L. Weiss in [1] prove that

(2.1)
$$P\left[\lim_{(n_1, n_2; \rho)} \sup_{r \ge 0} |Q_n(r) - Q(r)| = 0\right] = 1$$

where $\lim_{(n_4,n_2;p)}$ denotes the limit as $n_4 \to \infty$, $n_2 \to \infty$ in such

a way that $n_2/n_1 \rightarrow \rho$, $\rho > 0$, and

(2.2)
$$Q(r) = \rho^{r} \int_{0}^{1} \frac{g^{2}(u)}{[\rho + g(u)]^{r+1}} du$$

where g(u) is the derivative of $F_2(F_1^{-1}(u))$, satisfying conditions (i) and (ii) of this section.

As a special case of (2.1) we have that

(2.3)
$$P\left[\lim_{(n_{1}, n_{2}; \rho)} \left| Q_{n_{1}}(0) - Q(0) \right| = 0\right] = 1$$

if $(F_4, F_2) \in G_4$, where we have now that

(2.4)
$$Q(0) = \int_{0}^{1} \frac{g^{2}(u)}{[\rho + g(u)]} du.$$

It is also implied by (2.3) that

(2.5)
$$\lim_{\substack{(n_1, n_2; \rho)}} P(|Q_n(0) - Q(0)| \ge \epsilon) = 0$$

for any $\epsilon > 0$, however small, if $(F_1, F_2) \in G_1$; that is

$$Q_{n_1}(0) = \frac{s_0}{n_1+1} \text{ converges in probability to } Q(0) \text{ (expression (2.4))}.$$

Therefore, the test defined by (1.5) and (1.6) is consistent for testing any $(F_1, F_2) \in G_0$ against any $(F_1, F_2) \in G_1$ if

(2.6)
$$\int_{0}^{1} \frac{g^{2}(u)}{[\rho + g(u)]} du > \frac{1}{1+\rho},$$

where we recall from (1.4) that $1/1+\rho$ is the quantity to which $S \\ Q_{n_4}(0) = \frac{o}{n_4+1}$ converges in probability if $(F_1, F_2) \in G_o$.

The inequality of (2.6) is proved as follows. We have by Schwarz's inequality that

$$(2.7) \int_{0}^{1} \frac{g^{2}(u)d u}{\rho + g(u)} \int_{0}^{1} (\rho + g(u)) d u > \left\{ \int_{0}^{1} \frac{g(u)}{\sqrt{\rho + g(u)}} \sqrt{\rho + g(u)} d u \right\}^{2}$$

that is

$$\left(\int_{0}^{1} \frac{g^{2}(u)d u}{\rho + g(u)}\right) (\rho + 1) > 1$$

which gives

$$\int_{0}^{1} \frac{g^{2}(u)d u}{\rho + g(u)} > \frac{1}{1 + \rho} ,$$

if g(u) differs from unity over a set of positive probability. This condition obtains if $(F_1, F_2) \in G_1$, since the derivatives of $F_2(F_1^{-1}(u)) = g(u)$ and u are assumed to differ over a set of positive probability on (0,1), and under this condition the above strict Schwarz inequality (2.7) holds. This completes the proof of the above theorem.

REFERENCES

- J. R. Blum and L. Weiss, Consistency of Certain Two-Sample Tests. Ann. Math. Stat., Vol. 28 (1957), pp. 242-246.
- S. S. Wilks, A Combinatorial Test for the Problem of Two Samples from Continuous Distributions.
 Proceedings of the Fourth Berkeley Symposium, Vol. I (1961), pp. 707-717.
- 3. S. S. Wilks, Mathematical Statistics. (Wiley, 1962).
- 4. M. Csorgo and Irwin Guttman, On the Empty Cell Test. Technometrics, Vol. 4, (1962), pp. 235-247.

McGill University and University of Wisconsin