ON σ -QUASINORMAL SUBGROUPS OF FINITE GROUPS

BIN HU, JIANHONG HUANG[™] and ALEXANDER N. SKIBA

(Received 30 August 2018; accepted 21 September 2018; first published online 12 November 2018)

Abstract

Let *G* be a finite group and $\sigma = \{\sigma_i \mid i \in I\}$ some partition of the set of all primes \mathbb{P} , that is, $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$. We say that *G* is σ -primary if *G* is a σ_i -group for some *i*. A subgroup *A* of *G* is said to be: σ -subnormal in *G* if there is a subgroup chain $A = A_0 \leq A_1 \leq \cdots \leq A_n = G$ such that either $A_{i-1} \leq A_i$ or $A_i/(A_{i-1})_{A_i}$ is σ -primary for all $i = 1, \dots, n$; modular in *G* if the following conditions hold: (i) $\langle X, A \cap Z \rangle = \langle X, A \rangle \cap Z$ for all $X \leq G, Z \leq G$ such that $X \leq Z$ and (ii) $\langle A, Y \cap Z \rangle = \langle A, Y \rangle \cap Z$ for all $Y \leq G, Z \leq G$ such that $A \leq Z$; and σ -quasinormal in *G* if *A* is modular and σ -subnormal in *G*. We study σ -quasinormal subgroups of *G*. In particular, we prove that if a subgroup *H* of *G* is σ -quasinormal in *G*, then every chief factor *H/K* of *G* between H^G and H_G is σ -central in *G*, that is, the semidirect product $(H/K) \rtimes (G/C_G(H/K))$ is σ -primary.

2010 Mathematics subject classification: primary 20D10; secondary 20D15.

Keywords and phrases: finite group, σ -nilpotent group, σ -subnormal subgroup, modular subgroup, σ -quasinormal subgroup.

1. Introduction

Throughout this paper, all groups are finite and *G* always denotes a finite group. Moreover, \mathbb{P} is the set of all primes, $\pi = \{p_1, \ldots, p_n\} \subseteq \mathbb{P}$ and $\pi' = \mathbb{P} \setminus \pi$. If *n* is an integer, the symbol $\pi(n)$ denotes the set of all primes dividing *n*; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of *G*.

A subgroup A of G is said to be *modular in* G if it is a modular element (in the sense of Kurosh [9, page 43]) of the lattice of all subgroups of G, that is, the following conditions hold:

- (i) $\langle X, A \cap Z \rangle = \langle X, A \rangle \cap Z$ for all $X \le G, Z \le G$ such that $X \le Z$; and
- (ii) $\langle A, Y \cap Z \rangle = \langle A, Y \rangle \cap Z$ for all $Y \leq G, Z \leq G$ such that $A \leq Z$.

In what follows, σ is some partition of \mathbb{P} , that is, $\sigma = \{\sigma_i \mid i \in I\}$, where $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$. By analogy with the notation $\pi(n)$, we write $\sigma(n)$ to denote the set $\{\sigma_i \mid \sigma_i \cap \pi(n) \neq \emptyset\}$ and $\sigma(G) = \sigma(|G|)$. The group *G* is said to be σ -primary [10] if $|\sigma(G)| \leq 1$, that is, *G* is a σ_i -group for some *i*.

Research is supported by an NNSF grant of China (Grant No. 11401264) and a TAPP of Jiangsu Higher Education Institutions (PPZY 2015A013).

^{© 2018} Australian Mathematical Publishing Association Inc.

If $K \leq H$ are normal subgroups of G and $C \leq C_G(H/K)$, then we can form the semidirect product $(H/K) \rtimes (G/C)$ putting $(hK)^{gC} = g^{-1}hgK$ for all $hK \in H/K$ and $gC \in G/C$. A chief factor H/K of G is said to be σ -central in G (as defined in [10]) if $(H/K) \rtimes (G/C_G(H/K))$ is σ -primary; G is called σ -nilpotent [10] if every chief factor of G is σ -central. In view of [3, Proposition 2.7], G is σ -nilpotent if and only if $G = G_1 \times \cdots \times G_t$ for some σ -primary groups G_1, \ldots, G_t . We use \Re_{σ} to denote the class of all σ -nilpotent groups.

A subgroup *A* of *G* is said to be σ -subnormal in *G* [10] if it is \Re_{σ} -subnormal in *G* in the sense of Kegel [6], that is, there is a subgroup chain $A = A_0 \le A_1 \le \cdots \le A_n = G$ such that either $A_{i-1} \le A_i$ or $A_i/(A_{i-1})_{A_i}$ is σ -nilpotent for $i = 1, \ldots, n$, and it is σ seminormal in *G* (J. C. Beidleman) if $x \in N_G(A)$ for all $x \in G$ such that

$$\sigma(|x|) \cap \sigma(A) = \emptyset$$

Finally, recall that a subgroup A of G is said to be *quasinormal* [8] or *permutable* [1] in G if A permutes with every subgroup L of G, that is, AL = LA.

The quasinormal subgroups have many interesting properties. For instance, if A is quasinormal in G, then A is subnormal in G (see Ore [8]), A/A_G is nilpotent (see Ito and Szép [5]) and, in general, A/A_G is not necessarily abelian (see Thompson [12]). Every quasinormal subgroup A of G is modular in G [9]. Moreover, the following properties of quasinormal subgroups are well known.

THEOREM 1.1 (see [9, Theorem 5.1.1]). A subgroup A of G is quasinormal in G if and only if A is modular and subnormal in G.

THEOREM 1.2. If A is a quasinormal subgroup of G, then:

- (i) A^G/A_G is nilpotent (this follows from the above-mentioned results in [5, 8]);
- (ii) every chief factor H/K of G between A^G and A_G is central in G, that is, $C_G(H/K) = G$ (see Maier and Schmid [7]).

Since every subnormal subgroup of G is σ -subnormal in G, Theorems 1.1 and 1.2 make it natural to ask: What can we say about the quotient A^G/A_G provided the subgroup A is σ -quasinormal in G in the sense of the following definition?

DEFINITION 1.3. Let A be a subgroup of G. Then we say that A is σ -quasinormal in G if A is modular and σ -subnormal in G.

In this note we give the answer to this question. But before continuing, we consider the following example.

EXAMPLE 1.4. Let p > q, r, t be distinct primes, where t divides r - 1. Let Q be a simple $\mathbb{F}_q C_p$ -module which is faithful for C_p , let $C_r \rtimes C_t$ be a nonabelian group of order rt and let $A = C_t$. Finally, let $G = (Q \bowtie C_p) \times (C_r \bowtie C_t)$ and B be a subgroup of order q in Q. Then B < Q since p > q. It is not difficult to show that A is modular in G (see [9, Lemma 5.1.8]). On the other hand, A is σ -subnormal in G, where $\sigma = \{\{q, r, t\}, \{q, r, t\}'\}$. Hence, A is σ -quasinormal in G. It is clear also that A is not subnormal in G, so A is not quasinormal in G. Finally, note that B is not modular in G by Lemma 2.2 below.

Our main goal here is to prove the following theorem.

THEOREM 1.5. Let A be a σ -quasinormal subgroup of G.

- (i) If G possesses a Hall σ_i -subgroup, then A permutes with each Hall σ_i -subgroup of G.
- (ii) The quotients A^G/A_G and $G/C_G(A^G/A_G)$ are σ -nilpotent.
- (iii) Every chief factor of G between A^G and A_G is σ -central in G.
- (iv) $\sigma_i \in \sigma(A^G/A_G)$ for every *i* such that $\sigma_i \in \sigma(G/C_G(A^G/A_G))$.
- (v) A is σ -seminormal in G.

The subgroup *A* of *G* is subnormal in *G* if and only if it is σ -subnormal in *G*, where $\sigma = \sigma^1 = \{\{2\}, \{3\}, \ldots\}$ (using the notation in [11]). It is clear also that *G* is nilpotent if and only if *G* is σ^1 -nilpotent, and a chief factor *H/K* of *G* is central in *G* if and only if *H/K* is σ^1 -central in *G*. Therefore, Theorem 1.2 is a special case of Theorem 1.5 when $\sigma = \sigma^1$.

In the other classical case when $\sigma = \sigma^{\pi} = \{\pi, \pi'\}, G$ is σ^{π} -nilpotent if and only if G is π -decomposable, that is, $G = O_{\pi}(G) \times O_{\pi'}(G)$, and a subgroup A of G is σ^{π} -subnormal in G if and only if there is a subgroup chain

$$A = A_0 \le A_1 \le \dots \le A_n = G$$

such that either $A_{i-1} \leq A_i$ or $A_i/(A_{i-1})_{A_i}$ is a π_0 -group, where $\pi_0 \in \{\pi, \pi'\}$, for all i = 1, ..., n. Thus, in this case Theorem 1.5 gives the following corollary.

COROLLARY 1.6. Suppose that A is a modular subgroup of G and there is a subgroup chain

$$A = A_0 \le A_1 \le \dots \le A_n = G$$

such that either $A_{i-1} \leq A_i$ or $A_i/(A_{i-1})_{A_i}$ is a π_0 -group, where $\pi_0 \in \{\pi, \pi'\}$, for all i = 1, ..., n. Then the following statements hold.

- (i) If G possesses a Hall π_0 -subgroup, where $\pi_0 \in \{\pi, \pi'\}$, then A permutes with each Hall π_0 -subgroup of G.
- (ii) The quotients A^G/A_G and $G/C_G(A^G/A_G)$ are π -decomposable.
- (iii) For every chief factor H/K of G between A^G and A_G , the semidirect product $(H/K) \rtimes (G/C_G(H/K))$ is either a π -group or a π' -group.

In fact, in the theory of π -soluble groups ($\pi = \{p_1, \ldots, p_n\}$), we deal with the partition $\sigma = \sigma^{1\pi} = \{\{p_1\}, \ldots, \{p_n\}, \pi'\}$ of \mathbb{P} . Note that *G* is $\sigma^{1\pi}$ -nilpotent if and only if *G* is π -special [2], that is, $G = O_{p_1}(G) \times \cdots \times O_{p_n}(G) \times O_{\pi'}(G)$. A subgroup *A* of *G* is $\sigma^{1\pi}$ -subnormal in *G* if and only if it is \mathfrak{F} -subnormal in *G* in the sense of Kegel [6], where \mathfrak{F} is the class of all π' -groups. Therefore, in this case Theorem 1.5 gives the following corollary.

COROLLARY 1.7. Suppose that A is a modular subgroup of G and there is a subgroup chain

$$A = A_0 \le A_1 \le \dots \le A_n = G$$

such that either $A_{i-1} \leq A_i$ or $A_i/(A_{i-1})_{A_i}$ is a π' -group. Then the following statements hold.

- (i) A permutes with every Sylow p-subgroup of G for all $p \in \pi$ and, if G possesses a Hall π' -subgroup, then A permutes with each Hall π' -subgroup of G.
- (ii) The quotients A^G/A_G and $G/C_G(A^G/A_G)$ are π -special.
- (iii) Every element of G induces a π' -automorphism on every noncentral chief factor of G between A^G and A_G .

2. Proof of Theorem 1.5

Recall that *G* is a nonabelian *P*-group if $G = A \rtimes \langle t \rangle$, where *A* is an elementary abelian *p*-group and an element *t* of prime order $q \neq p$ induces a nontrivial power automorphism on *A* (see [9, page 49]). In this case we say that *G* is a *P*-group of type (p, q).

LEMMA 2.1 (see [9, Lemma 2.2.2(d)]). If $G = A \rtimes \langle t \rangle$ is a P-group of type (p, q), then $\langle t \rangle^G = G$.

The following remarkable result of Schmidt plays a key role in the proof of Theorem 1.5.

LEMMA 2.2 (see [9, Theorem 5.1.14]). Let M be a modular subgroup of G with $M_G = 1$. Then $G = S_1 \times \cdots \times S_r \times K$, where $0 \le r \in \mathbb{Z}$ and, for all $i, j \in \{1, \ldots, r\}$:

- (a) S_i is a nonabelian P-group;
- (b) $(|S_i|, |S_j|) = 1 = (|S_i|, |K|)$ for all $i \neq j$;
- (c) $M = Q_1 \times \cdots \times Q_r \times (M \cap K)$ and Q_i is a nonnormal Sylow subgroup of S_i ;
- (d) $M \cap K$ is quasinormal in G.

The following lemma is a corollary of general properties of modular subgroups [9, page 201] and σ -subnormal subgroups [10, Lemma 2.6].

LEMMA 2.3. Let A, B and N be subgroups of G, where A is σ -quasinormal and N is normal in G.

- (1) The subgroup $A \cap B$ is σ -quasinormal in B.
- (2) The subgroup AN/N is σ -quasinormal in G/N.
- (3) If $N \leq B$ and B/N is σ -quasinormal in G/N, then B is σ -quasinormal in G.

PROOF OF THEOREM 1.5. Suppose that this theorem is false and let *G* be a counterexample of minimal order. Then 1 < A < G. We can assume without loss of generality that $\sigma(A) = \{\sigma_1, \dots, \sigma_m\}$.

CLAIM 1. Statement (i) holds for G.

Suppose that this is false. Then, for some Hall σ_i -subgroup *V* of *G*, we have $AV \neq VA$. First note that $\langle A, V \rangle = G$. Indeed, *A* is σ -quasinormal in $\langle A, V \rangle$ by Lemma 2.3(1), so in the case when $\langle A, V \rangle < G$ the choice of *G* implies that AV = VA, contrary to our assumption about *V*.

Since *A* is σ -subnormal in *G*, there is a subgroup chain $A = A_0 \le A_1 \le \cdots \le A_n = G$ such that either $A_{i-1} \le A_i$ or $A_i/(A_{i-1})_{A_i}$ is σ -primary for $i = 1, \dots, n$. We can assume without loss of generality that $M = A_{n-1} < G$. Then *A* permutes with every Hall σ_i -subgroup of *M* by the choice of *G*. Moreover, the modularity of *A* in *G* implies that

$$M = M \cap \langle A, V \rangle = \langle A, M \cap V \rangle$$

since $\langle A, V \rangle = G$. On the other hand, $M \cap V$ is a Hall σ_i -subgroup of M by [10, Lemma 2.6(7)]. Hence, $M = A(M \cap V) = (M \cap V)A$.

If $V \le M_G$, then $A(M \cap V) = AV = VA$ and so $V \le M_G$. Now note that VM = MV. This is clear if M is normal in G. Otherwise, G/M_G is σ -primary and so G = MV = VM since $V \le M_G$ and V is a Hall σ_i -subgroup of G. Therefore,

$$VA = V(M \cap V)A = VM = MV = A(M \cap V)V = AV.$$

This contradiction completes the proof of Claim 1.

CLAIM 2. We have $A_G = 1$.

Suppose that $A_G \neq 1$ and let *R* be a minimal normal subgroup of *G* contained in A_G . Then the hypothesis holds for (G/R, A/R) by Lemma 2.3(2). Therefore, the choice of *G* implies that Statements (ii)–(v) hold for (G/R, A/R). Hence,

$$(A/R)^{G/R}/(A/R)_{G/R} = (A^G/R)/(A_G/R) \simeq A^G/A_G$$

and

$$(G/R)/C_{G/R}((A/R)^{G/R}/(A/R)_{G/R}) = (G/R)/(C_G(A^G/A_G)/R) \simeq G/C_G(A^G/A_G)$$

are σ -nilpotent, so Statement (ii) holds for G.

Now let T/L be any chief factor of G between A^G and A_G . Then (T/R)/(L/R) is a chief factor of G/R between $(A/R)^{G/R}$ and $(A/R)_{G/R}$ and so (T/R)/(L/R) is σ -central in G/R, that is,

$$((T/R)/(L/R)) \rtimes ((G/R)/C_{(G/R)}((T/R)/(L/R)))$$

is σ -primary. Since the factors (T/R)/(L/R) and T/L are *G*-isomorphic, it follows that $(T/L) \rtimes (G/C_G(T/L))$ is σ -primary too. Hence, T/L is σ -central in *G*. Thus, Statement (iii) holds for *G*.

If *i* is such that

$$\sigma_i \cap \pi(G/C_G(A^G/A_G)) = \sigma_i \cap \pi((G/R)/C_{G/R}((A/R)^{G/R}/(A/R)_{G/R})) \neq \emptyset,$$

then

$$\sigma_i \cap \pi(A^G/A_G) = \sigma_i \cap \pi((A/R)^{G/R}/(A/R)_{G/R}) \neq \emptyset$$

and so Statement (iv) holds for G too.

[5]

Finally, if $x \in G$ and $\sigma(A) \cap \sigma(|x|) = \emptyset$, then $\sigma(A/R) \cap \sigma(|xR|) = \emptyset$, so $xR \in$ $N_{G/R}(A/R) = N_G(A)/R$ and hence Statement (v) holds for G. Therefore, in view of

Claim 1, the conclusion of the theorem holds for G, which contradicts the choice of G. Hence, $A_G = 1$.

CLAIM 3. The inclusion $O_{\sigma_i}(A) \leq O_{\sigma_i}(G)$ holds for all *i*.

It is enough to show that $A \leq O_{\sigma_i}(G)$ for any σ -subnormal σ_i -subgroup A of G. Assume that this is false and let G be a counterexample of minimal order. Then 1 < A < G. Let R be a minimal normal subgroup of G and let $D = O_{\sigma_i}(G)$ and $O/R = O_{\sigma_i}(G/R)$. Then the choice of G and Lemma 2.3(2) imply that $AR/R \le O/R$. Therefore, $R \leq D$, so D = 1 and $A \cap R < R$. It is clear also that $O^{\sigma_i}(R) = R$. Suppose that $L = A \cap R \neq 1$. Lemma 2.3(1) implies that L is σ -subnormal in R. If R < G, the choice of G implies that $L \leq O_{\sigma_i}(R) \leq D$ since $O_{\sigma_i}(R)$ is a characteristic subgroup of R. But then $D \neq 1$, which is a contradiction. Hence, R = G is a simple group, which is also impossible since 1 < A < G. Therefore, $R \cap A = 1$. If O < G, the choice of G implies that $A \leq O_{\sigma_i}(O) \leq D = 1$. Therefore, G/R = O/R is a σ_i -group. Hence, R is the unique minimal normal subgroup of G. It is clear also that $R \nleq \Phi(G)$, so $C_G(R) \le R$ since $C_G(R)$ is normal in G.

Now we show that G = RA. Indeed, if RA < G, then the choice of G and Lemma 2.3(1) imply that $A \leq O_{\sigma_i}(RA)$ and so $A = O_{\sigma_i}(RA)$ since $O_{\sigma_i}(R) = 1$, which implies that $RA = R \times A$. But then $A \leq C_G(R) \leq R$ and so A = 1 since $A \cap R = 1$. This contradiction shows that G = RA.

Since A is σ -subnormal in G, there is a subgroup M such that $A \leq M < G$ and either $M \leq G$ or G/M_G is σ -primary. Since R is the unique minimal normal subgroup of G and $A \le M < G = RA$, it follows that $R \le M$ and $G/M_G = G/1$ is a σ_i -group. Therefore, $A \leq O_{\sigma_i}(G) = G$. This contradiction completes the proof of Claim 3.

CLAIM 4. We have $A \leq O_{\sigma_1}(G) \times \cdots \times O_{\sigma_m}(G)$. Hence, $A^G = O_{\sigma_1}(A^G) \times \cdots \times O_{\sigma_m}(A^G)$.

By Claim 2, Theorem 1.2(i) and Lemma 2.2(c) and (d), $A = A_1 \times \cdots \times A_m$, where A_i is a Hall σ_i -subgroup of A for i = 1, ..., m. On the other hand, since A is σ -subnormal in G, we have $A_i \leq O_{\sigma_i}(G)$ by Claims 3 and 4.

CLAIM 5. Statements (ii), (iii) and (iv) hold for G.

If $A^G = G$, this follows from Claim 4. Now assume that $A^G \neq G$. By Lemma 2.2, $G = S_1 \times \cdots \times S_r \times K$, where, for $i, j \in \{1, \dots, r\}$, the following hold:

- (a) S_i is a nonabelian *P*-group;
- (b) $(|S_i|, |S_i|) = 1 = (|S_i|, |K|)$ for $i \neq j$;
- (c) $A = Q_1 \times \cdots \times Q_r \times (A \cap K)$ and Q_i is a nonnormal Sylow subgroup of S_i ;
- (d) $A \cap K$ is quasinormal in G.

In view of Lemma 2.1 and Claim 4,

$$A^{G} = Q_{1}^{G} \times \cdots \times Q_{r}^{G} \times (A \cap K)^{G} = S_{1} \times \cdots \times S_{r} \times (A \cap K)^{G}$$
$$= O_{\sigma_{1}}(A^{G}) \times \cdots \times O_{\sigma_{m}}(A^{G}),$$

where $(A \cap K)^G \leq Z_{\infty}(G)$ by Theorem 1.2(ii) since $(A \cap K)_G \leq A_G = 1$ by Claim 2.

Now note that for all *i*, *j*, either $S_i \leq O_{\sigma_j}(A^G)$ or $S_i \cap O_{\sigma_j}(A^G) = 1$. Indeed, assume that $S_i \cap O_{\sigma_j}(A^G) \neq 1$. It is clear that $Q_i \leq O_{\sigma_i}(A^G)$ for some *t*. Then $Q_i^G = S_i \leq O_{\sigma_i}(A^G)$ by Lemma 2.1. Hence, j = t since $O_{\sigma_j}(A^G) \cap O_{\sigma_i}(A^G) = 1$ for $j \neq t$. Therefore, all S_i are σ -primary. Moreover, if S_i is a σ_l -group, then $G/C_G(S_i)$ is a σ_l -group since $G = S_1 \times \cdots \times S_r \times K$.

From Claim 4, $A^G = O_{\sigma_1}(A^G) \times \cdots \times O_{\sigma_m}(A^G)$. Consequently,

$$C_G(A^G) = C_G(O_{\sigma_1}(A^G)) \cap \cdots \cap C_G(O_{\sigma_m}(A^G)).$$

On the other hand, $G/C_G(O_{\sigma_i}(A^G))$ is a σ_i -group for i = 1, ..., m. Therefore, in view of [4, Ch. I, Lemma 9.6],

$$G/C_G(A^G) = G/(C_G(O_{\sigma_1}(A^G))) \cap \dots \cap C_G(O_{\sigma_m}(A^G)))$$

$$\simeq V \le (G/C_G(O_{\sigma_1}(A^G))) \times \dots \times (G/C_G(O_{\sigma_m}(A^G)))$$

is σ -nilpotent and $\sigma_i \in \sigma(A^G)$ for every *i* such that $\sigma_i \in \sigma(G/C_G(A^G))$. Hence, Statements (ii) and (iv) hold for *G*.

Finally, let T/L be any chief factor of G below A^G . Suppose that T/L is not σ -central in G. By Theorem 1.2(ii), T is not contained in $(A \cap K)^G$. Therefore, in view of the Jordan–Hölder theorem for the chief series, we can assume without loss of generality that $T \leq S_k$ for some k. But then $G/C_G(S_k)$ is a σ_l -group, where S_k is a σ_l -group and so from $C_G(S_k) \leq C_G(T/L)$ we deduce that T/L is σ -central in G, which is a contradiction. This proves Claim 5.

CLAIM 6. Statement (v) holds for G.

Suppose that $x \in G$ is such that $\sigma(A) \cap \sigma(|x|) = \emptyset$. Then the modularity of A and Claim 4 imply that $A = O_{\sigma_1}(A^G) \times \cdots \times O_{\sigma_m}(A^G) \cap \langle A, \langle x \rangle \rangle$ is normal in $\langle A, \langle x \rangle \rangle$, so $x \in N_G(A)$. This proves Claim 6.

From Claims 1, 5 and 6, it follows that the conclusion of the theorem holds for G, which contradicts the choice of G. The theorem is proved.

References

- [1] A. Ballester-Bolinches, R. Esteban-Romero and M. Asaad, *Products of Finite Groups* (Walter de Gruyter, Berlin–New York, 2010).
- [2] S. A. Chunikhin, Subgroups of Finite Groups (Nauka i Tehnika, Minsk, 1964).
- [3] W. Guo and A. N. Skiba, 'Finite groups whose *n*-maximal subgroups are *σ*-subnormal', *Sci. China Math.* 62; doi:10.1007/s11425-016-9211-9.
- [4] B. Huppert, Endliche Gruppen I (Springer, Berlin–Heidelberg, 1967).
- [5] N. Ito and J. Szép, 'Uber die Quasinormalteiler von endlichen Gruppen', Acta Sci. Math. 23 (1962), 168–170.

- [6] O. H. Kegel, 'Untergruppenverbande endlicher Gruppen, die den Subnormalteilerverband echt enthalten', *Arch. Math.* **30**(3) (1978), 225–228.
- [7] R. Maier and P. Schmid, 'The embedding of permutable subgroups in finite groups', *Math. Z.* **131** (1973), 269–272.
- [8] O. Ore, 'Contributions in the theory of groups of finite order', Duke Math. J. 5 (1939), 431-460.
- [9] R. Schmidt, Subgroup Lattices of Groups (Walter de Gruyter, Berlin, 1994).
- [10] A. N. Skiba, 'On σ -subnormal and σ -permutable subgroups of finite groups', J. Algebra 436 (2015), 1–16.
- [11] A. N. Skiba, 'Some characterizations of finite σ -soluble $P\sigma T$ -groups', J. Algebra **495** (2018), 114–129.
- [12] J. G. Thompson, 'An example of core-free quasinormal subgroup of *p*-group', *Math. Z.* 96 (1973), 226–227.

BIN HU, School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, PR China e-mail: hubin118@126.com

JIANHONG HUANG, School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, PR China e-mail: jhh320@126.com

ALEXANDER N. SKIBA, Department of Mathematics and Technologies of Programming, Francisk Skorina Gomel State University, Gomel 246019, Belarus e-mail: alexander.skiba49@gmail.com

420