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Abstract

Qualified difference sets (QDS) composed of unions of cyclotomic classes are discussed. An exhaustive
computer search for such QDS and modified QDS that also possess the zero residue has been conducted
for all powers n = 4, 6, 8 and 10. Two new families were discovered in the case n = 8 and some new
isolated systems were discovered for n = 6 and n = 10.
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1. Introduction

We define a qualified difference set (QDS) as follows.

DEFINITION 1.1. Let R = {r1, r2, r3, . . . , rk} be a k-element set of distinct nonzero
residues modulo an integer v. We call R a qualified difference set (QDS) if there exists
some nonzero integer m /∈ R which is such that if we form all the nonzero differences

ri − mr j (mod v), 1≤ i, j ≤ k (1.1)

we obtain every positive integer less than or equal to v − 1 exactly λ times. We call m
a qualifier of multiplicity λ for the set R.

If zero is counted as a residue, then further such sets are possible. These are called
modified qualified difference sets, (MQDS) by virtue of the modification introduced
by the inclusion of the zero element. We define these sets as follows.

DEFINITION 1.2. Let R∗ = {r0, r1, r2, . . . , rk} be a (k + 1)-element set of residues
of an integer v, where r0 = 0. We call R∗ a modified qualified difference set (MQDS)
if there exists some nonzero integer m /∈ R∗ which is such that if we form all the
differences

ri − mr j (mod v), 0≤ i, j ≤ k (1.2)
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we obtain every positive integer less than or equal to v − 1 exactly λ times and zero
exactly once. We call m a qualifier of multiplicity λ for the set R∗.

When QDS and MQDS are generated from nth-power residues of a prime v =
p = nk + 1 with n a positive integer, we obtain the special cases of qualified residue
difference sets (QRDS) and modified qualified residue difference sets (MQRDS)
respectively. These sets were introduced by Jennings and Byard [10, 11].

QDS and MQDS have similar properties to the residue difference sets and modified
residue difference sets respectively, which were discussed in detail in 1953 by
Lehmer [13]. All four classes of set possess similarly attractive properties. In
particular when mapped onto a binary (0, 1) array, they possess a two-valued
correlation function (see Equations (A.1)–(A.3) in the appendix). This property
suggests potential applications in areas such as image formation [4, 5, 17], signal
processing [15] and aperture synthesis [12].

In his subsequent extensive survey, Hall [7] extended the notion of ‘residue
difference sets’ and discovered a new family of difference set that can be created from
a union of sixth-power cyclotomic classes, where we define the nth-power cyclotomic
class C(ci ) for the prime p, by

C(ci )≡ {g
un+ci (mod p) | 0≤ u ≤ f − 1} (1.3)

where p = n f + 1 and g is a primitive root of p. Hall discovered that the union of
those sixth-power cyclotomic classes with indices congruent to 0, 1 and 3 modulo
6 form a difference set when p is of the form p = 4α2

+ 27 (integer α), for an
appropriate choice of primitive root g, such that indg3= 1. In this paper we
demonstrate the existence of QDS and MQDS that are similarly composed of unions
of cyclotomic classes. These sets are defined as follows.

DEFINITION 1.3. Let p = n f + 1 be a prime and k = t f . Let C = {c1, c2, . . . , ct }

be a set of t residue classes that are all distinct modulo n. Now let R be the k-element
set consisting of the union of nth-power cyclotomic classes derived from the set C as

R = {ri | 1≤ i ≤ k} = C(c1) ∪ C(c2) ∪ · · · ∪ C(ct ) (1.4)

and let R∗ be the (k + 1)-element set, defined by

R∗ = {ri | 0≤ i ≤ k} = R ∪ {0}, r0 = 0 (1.5)

where C(ci ) is defined by congruence (1.3). Then R is a QDS if, for a suitable choice
of qualifier m, the conditions in Definition 1.1 are satisfied, and R∗ is a MQDS if, for
a suitable choice of qualifier m, the conditions of Definition 1.2 are satisfied.

The purpose of this article is to describe the results of an exhaustive search for QDS
and MQDS created from the unions of cyclotomic classes for the cases n = 4, 6, 8
and 10.
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2. Residue classes and cyclotomic constants

Let p = n f + 1 be a prime and g a primitive root of p. An integer N is said to be
in residue class i if the following congruence holds for some integer u:

N ≡ gun+i (mod p). (2.1)

The cyclotomic constant (i, j) denotes the number of solutions to the congruence

gun+i
+ 1≡ gvn+ j (mod p) (2.2)

where 0≤ i, j ≤ n − 1 and 0≤ u, v ≤ f − 1. The following further results, due to
Dickson [6], are required too:

(i, j)= (i + γ1n, j + γ2n) (2.3)

where γ1 and γ2 are integers,

(i, j)= (n − i, j − i)= (−i, j − i) for all f, (2.4)

(i, j)= ( j, i) if f is even. (2.5)

3. Theory

In order to investigate whether QDS and MQDS can be generated from unions of
cyclotomic classes, it is necessary to determine how often the nonzero differences
occur between the elements of sets of different cyclotomic classes. This can be done
as follows, using an approach similar to that adopted by Hall [7] and a further search
for residue difference sets or order n = 10 conducted by Hayashi [9]. Following (1.1),
consider the congruence

Y − m X ≡ d (mod p) (3.1)

where Y is in residue class j , X is in residue class i , m is in residue class σ 6= 0 and d
is in residue class s. Using these conditions, we get

g An+ j
− gBn+i+σ

≡ gκn+s (mod p)

where A, B and κ are integers. Multiplying this congruence by g−κn−s and rearranging
gives

gB′n+i+σ−s
+ 1≡ g A′n+ j−s (mod p) (3.2)

where A′ and B ′ are also integers. Now by the cyclotomic constant Equation (2.2),
we see that congruence (3.2), and hence congruence (3.1), has (i + σ − s, j − s)
solutions. This enables us to calculate how often each difference d arises from
congruence (3.1), which is derived from different nth-power cyclotomic classes. For
the set of residue classes C = {c1, c2, . . . , ct }, the general equation for the number
N (s) of times the difference d in residue class s occurs is given by

N (s)=
∑
i∈C

∑
j∈C

(i + σ − s, j − s). (3.3)
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Note by (2.3) that N (s + γ n)= N (s) for integer γ . As there are n − 1 residue classes,
then there are at most n − 1 different values for N (s), although in practice some of the
values of N (s) will repeat for different values of s. If conditions can be determined
that make each value of N (s) equal, then a QDS will result. If no such conditions
exist, there will be no corresponding QDS.

In the case of a MQDS, the residue 0 is added to the union of cyclotomic classes.
Here we denote the set of residue classes by C = {c1, c2, . . . , ct }0. In this case we
need to consider the two additional differences:

Y − 0≡ d (mod p), (3.4)

0− m X ≡ d (mod p). (3.5)

For congruence (3.4) we have Y ≡ d and so d , which is in residue class s, also is in
residue class j . Therefore j = s and hence s ∈ C . This means that we need to add 1 to
the summation N (s) in (3.3) if s ∈ C . Congruence (3.5) is a little more complicated.
Here we have (−1)(m X)≡ d and m X is in residue class σ + i . Now

(−1)≡ g(p−1)/2
≡ gn f/2

≡

{
gn( f/2) if f is even,

gn( f−1)/2+n/2 if f is odd.
(3.6)

Therefore if f is even, then −1 is in residue class 0. In this case, by Equation (3.5), d ,
which is in residue class s, is also in residue class σ + i + 0 (that is the residue class
of −m X ). Therefore i = s − σ and so we must add 1 to the summation for N (s) in
Equation (3.3) if s − σ ∈ C . If f is odd, then by (3.6)−1 is in residue class n/2. Here,
by (3.5), d , which is in residue class s, is also in residue class σ + i + n/2. Therefore,
i = s − σ − n/2 and so we must add 1 to the summation for N (s) in Equation (3.3) if
s − σ − n/2 ∈ C .

Equation (3.3) has been applied to the cases n = 4, 6, 8 and 10 to determine if
any QDS or MQDS composed of unions of cyclotomic classes exist. In each case,
an exhaustive computer search has been completed for the range 1≤ σ ≤ n − 1, for
f odd and f even (note that σ = 0 corresponds to difference sets, which is not the
subject of this study).

An important type of equivalence between the sets is the concept of
‘complementary’ sets. This is a familiar notion in the study of difference sets (see,
for example, Baumert [2, pp. 2–3]) and the same applies to QDS and MQDS. If R is
a QDS, then the set R∗ = {Z p} − {R} is a MQDS which is the complement of R, that
has the same qualifier m. Stated differently, if C is the set of residue classes that give
a QDS, then C∗ = {Zn} − {C} is the set of residue classes that, with the residue zero,
gives the corresponding complementary MQDS. The detailed analysis of this point is
given in the appendix. Because of this equivalence, it is only necessary to analyse
cases where t ≤ n/2.

For each value of n, there are many other equivalent cases that arise due to the
following two isomorphisms. Firstly, assume that C = {c1, c2, . . . , ct } is a set of
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residue classes that produces a QDS. Therefore, congruence (3.1) and (3.3) lead to
values of N (s) that are equal for all s. Now consider the set C ′ = {c1 + q, c2 +

q, . . . , ct + q} for some integer q . Using Equation (3.3) the summation N (s) for
the set C ′ is as follows:

N (s) =
∑
i∈C ′

∑
j∈C ′

(i + σ − s, j − s)

=

∑
i∈C

∑
j∈C

(i + q + σ − s, j + q − s)

=

∑
i∈C

∑
j∈C

(i + σ − [s − q], j − [s − q])

= N (s − q). (3.7)

Now, since each value of N (s) is equal for C then the same values for N (s − q)
will result for the set C ′. Therefore, if C = {c1, c2, . . . , ct } is a set of residue
classes that gives a QDS, then the set C ′ = {c1 + q, c2 + q, . . . , ct + q} will also
give an isomorphic QDS. In the case of MQDS, R∗, the same argument applies.
If C = {c1, c2, . . . , ct }0 is a set of residue classes that produces a MQDS then
C∗ = {Zn} − {C} will give a complementary QDS.

Secondly assume that C = {c1, c2, . . . , ct } is a set of residue classes that, using the
primitive root g, gives a QDS. Choose one of these classes, say c, and let C(c) be the
corresponding cyclotomic class. Therefore, by congruence (1.3) we have

C(c)≡ {gun+c(mod p) | 0≤ u ≤ f − 1}. (3.8)

Now, let g1 be another primitive root of p, where

gz
1 ≡ g (mod p) (3.9)

where z must be prime to p − 1= n f . Substituting this into (3.8) gives

C(c)≡ {gzun+zc
1 } ≡ {gzc

1 (g
n
1 )

uz(mod p) | 0≤ u ≤ f − 1}. (3.10)

Now, because the integers u : 0≤ u ≤ f − 1 form a complete residue system
modulo f , then because z is prime to f (which is the case, since z must be prime
to n f ), the integers uz : 0≤ u ≤ f − 1 also form the same reduced residue system.
Therefore, congruence (3.10) becomes

C(c)≡ {gzc
1 (g

n
1 )

u
} ≡ {gun+zc

1 (mod p) | 0≤ u ≤ f − 1}. (3.11)

Comparing (3.8) with (3.11) shows that a QDS derived from C = {c1, c2, . . . , ct } and
primitive root g will be the same as that derived from C = {zc1, zc2, . . . , zct } and
primitive root g1 where gz

1 ≡ g (mod p). In the case of a MQDS, the same argument
evidently applies.

The results below are given up to equivalence, either by complementary sets or
isomorphism. A major positive result was revealed in the case n = 8, This, therefore,
is where we begin.
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4. Results for n = 8

In this section we prove the following theorem.

THEOREM 4.1. Qualified difference sets created from the union of eighth-power
cyclotomic classes C = {0, 1} exist for all primes of the form p = 64z4

+ 128z3
+

144z2
+ 80z + 17 and p = 64z4

+ 48z2
+ 1 where z is an integer. All other unions

of eighth-power cyclotomic classes are isomorphic to either of these cases or to
previously known QDS, MQDS or residue difference sets.

PROOF. For the case n = 8, we need to consider the additional condition of whether 2
is either a biquadratic (that is fourth-power) residue or a biquadratic nonresidue of p.
In order to demonstrate the computational methods used, a detailed analysis follows,
for the case when f is even, t = 2, C = {0, 1}, σ = 4 and 2 is a biquadratic nonresidue
of p.

For C = {0, 1} and σ = 4, Equation (3.3), along with Equations (2.3), (2.4)
and (2.5), gives the following condition for the number of differences N (s):

s = 0 : N (0)= (4, 0)+ (4, 1)+ (5, 0)+ (5, 1),
s = 1 : N (1)= (3, 7)+ (3, 0)+ (4, 7)+ (4, 0),
s = 2 : N (2)= (2, 6)+ (2, 7)+ (3, 6)+ (3, 7),
s = 3 : N (3)= (1, 5)+ (1, 6)+ (2, 5)+ (2, 6).

(4.1)

In this case the values for s = 4, 5, 6, 7 repeat those for s = 0, 1, 2, 3. Following
Dickson’s work [6, Theorem 11], Berndt et al. demonstrated that the cyclotomic
constants for n = 8 are determined uniquely by the quadratic partition

p = a2
4 + b2

4 = a2
8 + 2b2

8 (4.2)

where, for our case p = 8 f + 1, we have

a4 ≡−1 (mod 4), b4 ≡ a4g(p−1)/4 (mod p) (4.3)

[3, p. 78], and

a8 ≡−1 (mod 4), 2b8 ≡ a8(g
f
+ g3 f ) (mod p) (4.4)

[3, p. 109] where a4, b4, a8 and b8 are integers in the nomenclature of Berndt et al.
The actual cyclotomic constants for n = 8 have been calculated, using Dickson’s
results [6], by Lehmer, who lists them in the appendix of her paper for the cases
p = 16α + 1 and p = 16α + 9 (integer α) [14]. Since we now have p = 8 f + 1 and f
is even, we require her list for p = 16α + 1 [14, p. 116]. Substituting these cyclotomic
constants for the case when 2 is a biquadratic nonresidue of p into Equations (4.1)
gives

s = 0 : 64N (0)= 4p − 12+ 4a4 + 4a8,

s = 1 : 64N (1)= 4p − 12+ 4a4 + 4a8,

s = 2 : 64N (2)= 4p + 4− 4a4 − 4a8 + 8b4 − 16b8,

s = 3 : 64N (3)= 4p + 4− 4a4 − 4a8 + 16b8 − 8b4.

(4.5)
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(Note that in her paper, Lehmer instead uses the symbols x, y, a, b, where x =−a4,
a =−a8, 2y = b4 and b = b8.) Now, if all values N (s) are equal then a QDS will
result. Putting this restriction on the equations in (4.5) gives

b4 = 2b8,

a4 + a8 = 2.
(4.6)

Combining (4.6) and (4.2), and setting x =−a4 and 2y = b4 for ease of notation, gives

p = x2
+ 8x + 8 x ≡ 1 (mod 4),

y2
= 2+ 2x

(4.7)

and hence p = 64z4
+ 128z3

+ 144z2
+ 80z + 17 as in the statement of Theorem 4.1.

Now, under the conditions in Equation (4.2), 2 is always a biquadratic nonresidue of
p of the form in Equation (4.7) by the following analysis. Equation (4.7) gives y2

=

2(x + 1), but since x ≡ 1 (mod 4) then we have y2
= 4(2η + 1)where 2η + 1 must be

an odd square. Substituting this into Equation (4.2) means that p = x2
+ [4(2η + 1)]2,

and so, since the representation of p = 8 f + 1≡ 1 (mod 4) as the sum of two squares
is unique up to order and sign, p cannot be represented in the form p = x2

+ 64η2
1 for

integer η1. Therefore 2 must be a biquadratic nonresidue of p by a known theorem
on biquadratic reciprocity (see, for example, Mollin [16, Corollary 5.71]) and as a
result we shall always obtain values for N (s) as given by the equations in (4.5). The
sequence of primes of this form starts p = 17, 433, 2801, 10 193, 60 017, . . . .

The values of those primitive roots that can be used to generate the QDS are
determined by the condition b4 = 2b8 from (4.6). Substituting the values of b4 and
b8 from (4.3) and (4.4) into (4.6) and rearranging gives

a8µ
2
− a4µ+ a8 ≡ 0 (mod p) (4.8)

where µ= g f . This quadratic congruence for µ can be demonstrated to give

(2a8µ− a4)
2
≡ a2

4 − 4a2
8 (mod p). (4.9)

Congruence (4.9) reduces to a simple calculation of the squares (2a8µ− a4)
2, which

can then be used to calculate the values of µ= g f that lead to the condition b4 = 2b8,
and hence those primitive roots g that give QDS for n = 8, σ = 4, C = {0, 1} and
p = x2

+ 8x + 8 (x ≡ 1 (mod 4)). For the converse, assume that we have a prime of
the form given in (4.7). We can write p = (x + 2)2 + 2y2 and so, by uniqueness
and (4.2), b2

= y2 and so (x + 2)2 = a2, where a =−a8. Therefore x + 2=±a,
which combined with the condition x ≡ a ≡ 1 (mod 4) means that x + a =−2 and
so the second of the equations in (4.6) is satisfied. Now since x + a + 2= 0, we have
a =−(x + 2) so we can write

x2
− 4a2

=−[x2
+ 2(x2

+ 8x + 8)] = −(x2
+ 2p)≡−x2 (mod p). (4.10)

However, (−1/p)= 1 where (−1/p) is the Legendre symbol, since p ≡ 1 (mod 4).
Combining this with (4.10) means that x2

− 4a2 (that is a2
4 − 4a2

8) is a square
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modulo p and so congruence (4.9) always has a solution and so there is always a
QDS of the current form under the conditions in (4.7).

A similar analysis for the case when 2 is a biquadratic residue of p leads to another
family of QDS. Here we have

b4 = 2b8,

a4 + a8 =−2
(4.11)

which, it can be proved, gives a QDS for all primes of the form

p = x2
− 8x + 8, x ≡ 1 (mod 4),

y2
= 2− 2x

(4.12)

and hence p = 64z4
+ 48z2

+ 1 as in the statement of Theorem 4.1. Because b4 = 2b8
from (4.11), the primitive root g is calculated exactly in the same manner as for
when 2 is a biquadratic nonresidue, using (4.9). In this case the sequence of primes
starts p = 113, 1217, 41 201, 84 673, 644 801 . . . . The proof of Theorem 4.1 is
complete. 2

The well known conjectures of Hardy and Littlewood [8] and their vast
generalization by Bateman and Horn [1] can be used to estimate the number of primes
of the form

p = f (z)= 64z4
+ 128z3

+ 144z2
+ 80z + 17 or p = 64z4

+ 48z2
+ 1

which occur in the statement of Theorem 4.1 above. In the case of the first polynomial
f (z) the conjecture takes the following explicit form:

Q(x)= #{n ≤ x | f (n) is prime},

Q(x)∼ C f /4
∫ x

2

dt

log t
where

C f =
∏

p≡1 (mod 8)

(
1−

1
p

)(
1−

4
p

)
·

∏
p 6≡1 (mod 8)

(
1−

1
p

)
.

An evaluation of C f /4 using 10 000 primes gave a value 1.337 92. A more complete
set of evaluations is listed in Table 1.

Note that we have used the property, derived heuristically, that f (z) has four
solutions modulo a prime p if and only if p ≡ 1 (mod 8).

When we made an explicit count of the number of prime values p = f (n) up to
n = 105 and divided this by the number predicted by Bateman–Horn we obtained the
ratio 0.901, showing a degree of feasibility for the conjecture in this case. A set of four
evaluations is listed in Table 1.

For brevity, the rest of the results for n = 8 are given without the detailed
computational proofs. As noted in Theorem 4.1 some of these are simply redefinitions
of known QDS or MQDS. The list of QDS discovered for n = 8 is given in Table 2.
For each case in the table, except for C = {0, 1}, any primitive root g can be used to
generate the set.
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TABLE 1. Evaluation of Bateman–Horn predictions for primes of the form p = 64z4
+ 128z3

+ 144z2
+

80z + 17.

Primes Coefficient x Actual/Bateman–Horn

10 000 1.337 92 99 997 0.901 38
11 000 1.338 66 99 998 0.901 37
12 000 1.339 17 99 999 0.901 36
13 000 1.338 85 100 000 0.901 35

TABLE 2. List of parameters of QDS and MQDS composed of unions of cyclotomic classes for n = 8.

f C p σ Comments

Even {0, 1} x2
+ 8x + 8 4 New family of QDS;

x ≡ 1 (mod 4) g determined by (4.8)
y2
= 2+ 2x

Even {0, 1} x2
− 8x + 8 4 New family of QDS;

x ≡ 1 (mod 4) g determined by (4.8)
y2
= 2− 2x

Even {0, 4} 16α2
+ 1 2, 6 Isomorphic to QRDS

or odd integer α with n = 4

Even {0, 4}0 16α2
+ 9 2, 6 Isomorphic to MQRDS

or odd integer α with n = 4

Even {0, 2, 4, 6} 8α + 1 1, 3, 5, 7 Isomorphic to QRDS
or odd integer α with n = 2

Even {0, 2, 4, 6}0 8α + 1 1, 3, 5, 7 Isomorphic to MQRDS
or odd integer α with n = 2

5. Results for n = 4, n = 6 and n = 10

An exhaustive computer search for QDS created from unions of cyclotomic classes
was also completed for n = 4, 6 and 10. The results are discussed in this section. For
n = 4 and n = 6 the following theorem applies.

THEOREM 5.1. A modified difference set created from the unions of sixth-power
cyclotomic classes C = {0, 1}0 exists for p = 13. All other unions of fourth-power
and sixth-power cyclotomic classes are isomorphic to previously known QDS, MQDS
or residue difference sets.

The results for the cases n = 4 and n = 6 are given in Table 3.
In the case n = 10 we have the following theorem.
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TABLE 3. List of parameters of QDS and MQDS composed of unions of cyclotomic classes for n = 4
and n = 6.

n f C p σ Comments

4 Even {0, 2} 4α + 1 1, 3 Isomorphic to QRDS
or odd integer α with n = 2

4 Even {0, 2}0 4α + 1 1, 3 Isomorphic to MQRDS
or odd integer α with n = 2

6 Even {0, 1}0 13 3 Single case

6 Even {0, 2, 4} 12α + 1 1, 3, 5 Isomorphic to QRDS
integer α with n = 2

6 Even {0, 2, 4}0 12α + 1 1, 3, 5 Isomorphic to MQRDS
integer α with n = 2

6 Odd {0, 2, 4} 12α + 3 2, 4 Isomorphic to residue
integer α difference set with n = 2

6 Odd {0, 2, 4}0 12α + 3 2, 4 Isomorphic to modified residue
integer α difference set with n = 2

THEOREM 5.2. Modified residue difference sets created from the unions of tenth-
power cyclotomic classes C = {0, 2}0 and C = {0, 1, 2, 6}0 exist for p = 41. All other
unions of tenth-power cyclotomic classes are isomorphic to previously known QDS,
MQDS or residue difference sets.

The investigation for n = 10 revealed similar results to n = 6 and are shown in
Table 4. In addition to previously known systems, we have two single cases of
MQDS for n = 10, p = 41, f = 4 and σ = 5, namely t = 2, C = {0, 2}0, and t = 4,
C = {0, 1, 2, 6}0. In the configuration for t = 4 any primitive root can be used to
generate the MQDS. In the case t = 2, however, the choice of primitive root is
important. In the case C = {0, 2}0 we need to use a primitive root g such that indg2≡ 1
or 4 (mod 5).

6. Summary

This article describes an exhaustive search for QDS and MQDS composed of unions
of cyclotomic classes for powers n = 4, 6, 8 and 10. For each value of n studied,
some cases were discovered that are simply equivalent to known systems, including
QRDS, MQRDS and difference sets. In the case n = 4, no new systems were found.
However, there were positive new results for n = 6, 8 and 10. In the case n = 6 an
isolated system for p = 13 was found, and for n = 10, two MQDS, both for p = 41
were discovered, one consisting of a union of two cyclotomic classes and another of
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TABLE 4. List of parameters of QDS and MQDS composed of unions of cyclotomic classes for n = 10.

f C p σ Comments

Even {0, 2}0 41 5 Single case with g chosen such
that indg2≡ 1 or 4 (mod 5)

Even {0, 1, 2, 6}0 41 5 Single case

Even {0, 2, 4, 6, 8} 20α + 1 1, 3, 5, 7, 9 Isomorphic to QRDS
integer α with n = 2

Even {0, 2, 4, 6, 8}0 20α + 1 1, 3, 5, 7, 9 Isomorphic to MQRDS
integer α with n = 2

Odd {0, 2, 4, 6, 8} 20α + 3 2, 4, 6, 8 Isomorphic to residue
integer α difference set with n = 2

Odd {0, 2, 4, 6, 8}0 20α + 3 2, 4, 6, 8 Isomorphic to modified residue
integer α difference set with n = 2

four cyclotomic classes. In the two-class case, the choice of indg2 is important. In
the case n = 8, two entire families of QDS were discovered, the first for all primes of
the form p = 64z4

+ 128z3
+ 144z2

+ 80z + 17 and the second for all primes of the
form p = 64z4

+ 48z2
+ 1 where z is an integer in each case.
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Appendix A. Complementary QDS

Consider a QDS R composed of the union of cyclotomic classes derived from
C = {c1, c2, . . .} . Let A(i) be a binary (0, 1) array, defined such that

A(i)= 1 if i ∈ R,
A(i)= 0 if i /∈ R.

(A.1)

Now define another binary (0, 1) array, G( j) such that

G( j)= 1 if j ∈ m R,
G( j)= 0 if j /∈ m R.

(A.2)

By the properties of a QDS we have
p−1∑
i=0

A(i)G(i + j)=

{
N0 if j ≡ 0 (mod p),

λ if j 6≡ 0 (mod p)
(A.3)
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where N0 is the number of zero differences and λ is the number of nonzero differences
between the elements of the sets R and m R. (This two-valued correlation function is
useful in applications such as image formation [4, 5, 17] signal processing [15] and
aperture synthesis [12].) Now, if we let R∗ be the complement of R, we now have
R∗ = {Z p} − {R}, composed of the residue classes C∗ = {Zn} − {C} with the residue
zero. Here the corresponding sets A∗(i) and G∗( j) are simply obtained by replacing
zeroes for ones in (A.1) and (A.2), and vice versa. It can be readily seen that this
transformation has the effect of simply altering the values of the double summation
in (A.3) to give, say, N∗0 and λ∗. Therefore, we now have a MQDS R∗, which is
simply the complement of the original QDS, R.
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