A GENERALIZATION OF THE INEQUALITY OF THE ARITHMETIC-GEOMETRIC MEANS

by John Hunter

(Received 14th December, 1954)
§1. Introduction. The main result in this paper, contained in Theorem 1, is a generalisation of the inequality of the arithmetic-geometric means. A result of a similar character has been proved by Siegel (2). The present result gives an improvement in the inequality in the case when the variables involved are not all distinct, whereas Siegel's result does not. The theorem is used in § 3 to obtain a result in connection with totally real and positive algebraic integers.
§ 2. The main result. Let x_{1}, \ldots, x_{n} be real and positive and write

$$
A=\sum_{i<j}\left(x_{i}-x_{j}\right)^{2}, n s=\sum_{i=1}^{n} x_{i},
$$

and $p=\prod_{i=1}^{n} x_{i}$. Then $A=0$ if and only if $x_{1}=x_{2}=\ldots=x_{n}$, and then $\frac{s^{n}}{p}=1$, since we have assumed each $x_{i}>0$. In what follows we exclude the case $A=0$.

Theorem 1. If β denotes the root in the interval $0<\beta<1$ of the equation

$$
\begin{equation*}
\frac{s^{n}}{p} \geqslant \frac{A=\beta^{2}(n-1)(n s)^{2}, \ldots}{\{1+\beta(n-1)\}(1-\beta)^{n-1}} . \tag{l}
\end{equation*}
$$

then
We note:

1. Since $A=(n-1)\left(\Sigma x_{i}\right)^{2}-2 n \Sigma x_{i} x_{j}=(n-1)(n s)^{2}-2 n \Sigma x_{i} x_{j}$, we have

$$
0<\frac{A}{(n-1)(n s)^{2}}<1
$$

so that β is uniquely determined in the interval $0<\beta<1$.
2. If

$$
f(\beta)=\frac{1}{\{1+\beta(n-1)\}(1-\beta)^{n-1}},
$$

then, in $0<\beta<1$, for $n \geqslant 2, f(\beta)$ is a steadily increasing function of β. For,

$$
\frac{d f}{d \beta}=\frac{\beta n(n-1)}{\{1+\beta(n-1)\}^{2}(1-\beta)^{n}}>0, \text { for } 0<\beta<1 .
$$

Also $f(0)=1$, so that $f(\beta)>1$ for $0<\beta<1$.
3. For $n=2$, (1) becomes $\beta^{2}=\frac{\left(x_{1}-x_{2}\right)^{2}}{(2 s)^{2}}=\frac{\left(x_{1}-x_{2}\right)^{2}}{\left(x_{1}+x_{2}\right)^{2}}$, and the right-hand side of (2) equals

$$
\frac{1}{1-\beta^{2}}=\frac{1}{1-\frac{\left(x_{1}-x_{2}\right)^{2}}{\left(x_{1}+x_{2}\right)^{2}}}=\frac{\left(\frac{x_{1}+x_{2}}{2}\right)^{2}}{x_{1} x_{2}}=\frac{s^{2}}{p}
$$

so that the result is true with equality for $n=2$. We can thus assume that $n \geqslant 3$.
For the proof we use the following lemma:

Lemma 1. If
where

$$
\begin{gather*}
A=\sum_{i<j}\left(x_{i}-x_{j}\right)^{2}, \\
\sum_{i=1}^{n} x_{i}=n s, \ldots \ldots . \tag{3}\\
\prod_{i=1}^{n} x_{i}=p, \ldots \ldots \ldots \tag{4}
\end{gather*}
$$

with

$$
\begin{gather*}
\frac{s^{n}}{p}>1 \\
x_{i}>0 \quad(i=1, \ldots, n) \tag{5}\\
A \leqslant n^{2}(n-1) \alpha^{2} s^{2}
\end{gather*}
$$

then

$$
\{1+\alpha(n-1)\}(1-\alpha)^{n-1}=\frac{p}{s^{n}}, \quad \text { and } \quad 0<\alpha<1 .
$$

For a given set of positive values of x_{3}, \ldots, x_{n}, the equations

$$
x_{1}+x_{2}=n s-\left(\sum_{i=3}^{n} x_{i}\right), \quad x_{1} x_{2}=p\left(\prod_{i=3}^{n} x_{i}\right)^{-1}
$$

completely determine x_{1}, x_{2} as the roots of the equation

$$
y^{2}-\left\{n s-\sum_{i=3}^{n} x_{i}\right\} y+p\left(\prod_{i=3}^{n} x_{i}\right)^{-1}=0
$$

The values of x_{1}, x_{2} are both positive if.and only if the following two conditions are satisfied

$$
\sum_{i=3}^{n} x_{i}<n s, \quad\left\{n s-\sum_{i=3}^{n} x_{i}\right\}^{2} \geqslant 4 p\left(\prod_{i=3}^{n} x_{i}\right)^{-1}
$$

also x_{1}, x_{2} are unequal, except when equality arises in the second condition. The two conditions define a closed domain D in R_{n-2}, its points having positive co-ordinates x_{3}, \ldots, x_{n}. The boundary of D is given by $x_{1}=x_{2}$.

Now A attains its maximum in D, and $A=0$ if and only if $x_{1}=x_{2}=\ldots=x_{n}$, so that at the maximum not all of the x_{i} are equal. Hence, by symmetry, we can suppose that A attains its maximum in D at an inner point of D. The values of x_{i} at this maximum must satisfy the equations

$$
\frac{\partial A}{\partial x_{i}}+\lambda+\frac{\mu}{x_{i}}=0 \quad(i=1, \ldots, n)
$$

for some λ, μ;
that is

$$
\begin{gathered}
2 n\left(x_{i}-s\right)+\lambda+\frac{\mu}{x_{i}}=0 \quad(i=1, \ldots, n) \\
x_{i}^{2}+\left(\frac{\lambda}{2 n}-s\right) x_{i}+\frac{\mu}{2 n}=0 \quad(i=1, \ldots, n),
\end{gathered}
$$

and so the x_{i} satisfy a quadratic equation. Hence at the maximum we have k of the x_{i} equal in value to x, say, and the remaining $n-k$ of the x_{i} equal to a second number y, say, where, by symmetry, k is one of the integers $0,1, \ldots \ldots,\left[\begin{array}{l}n \\ \frac{2}{2}\end{array}\right]$, and where, from (3) and (4),

$$
\begin{align*}
k x+(n-k) y & =n s, \tag{6}\\
x^{k} y^{n-k} & =p . \tag{7}
\end{align*}
$$

and

$$
\begin{equation*}
A=k(n-k)(x-y)^{2} . \tag{8}
\end{equation*}
$$

For $k=0, A=0$ and we require $y=s=p^{\frac{1}{n}}$, i.e. $\frac{s^{n}}{p}=1$, which we have excluded. Thus we have to consider only $k \geqslant 1$. From (6),

$$
k(x-y)=n(s-y) .
$$

Thus (8) becomes

$$
\begin{align*}
A & =k(n-k) \frac{n^{2}}{k^{2}}(s-y)^{2} \\
& =n^{2} s^{2}\left(\frac{n}{k}-1\right)(1-u)^{2}, \quad \text { where } y=u s, \\
& =n^{2} s^{2} \alpha^{2}\left(\frac{n}{k}-1\right), \quad \text { where } \alpha=1-u, \quad . . \tag{9}
\end{align*}
$$

so that $y=(1-\alpha) s$.
Now, from (6) and (5),

$$
0<y<\frac{n}{n-k} s
$$

Thus

$$
0<1-\alpha<\frac{n}{n-k}
$$

and so

$$
\begin{equation*}
\frac{-k}{n-k}<\alpha<1 \tag{10}
\end{equation*}
$$

From (6),

$$
x=s\left\{\frac{n}{k}-\left(\frac{n}{k}-1\right) u\right\}
$$

Thus, from (7),

$$
\left\{\frac{n}{k}-\left(\frac{n}{k}-1\right) u\right\}^{k} u^{n-k}=\frac{p}{s^{n}}
$$

and so

$$
\left\{1+\alpha\left(\frac{n}{k}-1\right)\right\}^{k}(1-\alpha)^{n-k}=\frac{p}{s^{n}}
$$

where, by (10), we have to consider the roots of this polynomial in α in the interval

$$
-1 \leqslant \frac{-k}{n-k}<\alpha<1
$$

the -1 arising when n is even, and $k=\left[\frac{n}{2}\right]$.
Let $g(\alpha)=\left\{1+\alpha\left(\frac{n}{k}-1\right)\right\}^{k}(1-\alpha)^{n-k}-\frac{p}{s^{n}}$, and consider this function in the interval $\left[\frac{-k}{n-k}, 1\right]$. We have $g(1)=g\left(\frac{-k}{n-k}\right)=\frac{-p}{s^{n}}$, so that

$$
0>\left\{\begin{array}{c}
g(1) \\
g\left(\frac{-k}{n-k}\right)
\end{array}\right\}>-1
$$

Also $g(0)=1-\frac{p}{s^{n}}$, so that $0<g(0)<1$. Further

$$
g^{\prime}(\alpha)=(n-k)\left\{1+\alpha\left(\frac{n}{k}-1\right)\right\}^{k-1}(1-\alpha)^{n-k-1}\left(-\frac{n}{k} \alpha\right) .
$$

Thus $g^{\prime}(\alpha)=0$ at $\alpha=0, \alpha=1$ (if $n \geqslant 3$), and $\alpha=-k /(n-k)$ if $k \geqslant 2$. Also

$$
g^{\prime}(\alpha)\left\{\begin{array}{l}
>0 \text { at } \alpha=\frac{-k}{n-k} \text { if } k=1, \\
>0 \text { for } \frac{-k}{n-k}<\alpha<0, \\
<0 \text { for } 0<\alpha<1,
\end{array}\right.
$$

since $k=1,2, \ldots,\left[\frac{n}{2}\right]$. Hence $g(\alpha)$ increases steadily from $g\left(\frac{-k}{n-k}\right)<0$ to $g(0)>0$ as α increases from $\frac{-k}{n-k}$ to 0 , and decreases steadily from $g(0)>0$ to $g(1)<0$ as α increases from 0 to 1 . Thus $g(\alpha)=0$ has one root $-\alpha_{1}$, say, where $\alpha_{1}>0$, in $\frac{-k}{n-k}<\alpha<0$ and one root α_{2}, say, in $0<\alpha<1$. We show, by the following lemma, that we need consider only α_{2} in finding the maximum of A.

Lemma 2. If $-\alpha_{1}$ and α_{2} are the roots of the equation

$$
\left\{1+\alpha\left(\frac{n}{k}-1\right)\right\}^{k}(1-\alpha)^{n-k}=\frac{p}{s^{n}}
$$

in the intervals $\frac{-k}{n-k}<\alpha<0$ and $0<\alpha<1$, respectively, where $k=1,2, \ldots,\left[\frac{n}{2}\right]$, then
We have

$$
\alpha_{2} \geqslant \alpha_{1}
$$

$$
\left\{1-\alpha_{1}\left(\frac{n}{k}-1\right)\right\}^{k}\left(1+\alpha_{1}\right)^{n-k}=\frac{p}{s^{n}}=\left\{1+\alpha_{2}\left(\frac{n}{k}-1\right)\right\}^{k}\left(1-\alpha_{2}\right)^{n-k}
$$

Since, by above, $g^{\prime}(\alpha)<0$ for $0<\alpha<1$,

$$
\left\{1+\alpha\left(\frac{n}{k}-1\right)\right\}^{k}(1-\alpha)^{n-k}-\frac{p}{s^{n}}>0 \text { for } 0<\alpha<\alpha_{2}
$$

Thus, to show that $\alpha_{2} \geqslant \alpha_{1}$, it is sufficient to show that

$$
\left\{1+\alpha_{1}\left(\frac{n}{k}-1\right)\right\}^{k}\left(1-\alpha_{1}\right)^{n-k} \geqslant\left\{1+\alpha_{2}\left(\frac{n}{k}-1\right)\right\}^{k}\left(1-\alpha_{2}\right)^{n-k}=\left\{1-\alpha_{1}\left(\frac{n}{k}-1\right)\right\}^{k}\left(1+\alpha_{1}\right)^{n-k}
$$

For simplicity of notation put $m=\frac{n}{k}-1$. Then $k=\frac{n}{m+1}, n-k=\frac{n m}{m+1}$, and $0<\alpha_{1}<\frac{1}{m}$, $1 \leqslant m \leqslant n-1$. We have then to show that
and so that

$$
\left\{\left(1+\alpha_{1} m\right)\left(1-\alpha_{1}\right)^{m}\right\}^{\frac{n}{m+1}} \geqslant\left\{\left(1-\alpha_{1} m\right)\left(1+\alpha_{1}\right)^{\frac{n}{m+1}}\right\}^{\frac{n}{m+1}}
$$

where $-\alpha_{1}$ is the given root such that $0<\alpha_{1}<\frac{1}{m}$, and $1 \leqslant m \leqslant n-1$.
Let

$$
h(\alpha)=(1+\alpha m)(1-\alpha)^{m}-(1-\alpha m)(1+\alpha)^{m} .
$$

Then

$$
\begin{aligned}
\frac{1}{m(m+1)} h^{\prime}(\alpha) & =\alpha\left\{(1+\alpha)^{m-1}-(1-\alpha)^{m-1}\right\} \\
& >0 \text { for } 0<\alpha \leqslant 1, \text { and so for } 0<\alpha \leqslant \frac{1}{m}, \text { if } m>1, \\
& \equiv 0, \text { if } m=1 .
\end{aligned}
$$

Also $h(0)=0$. Hence $h\left(\alpha_{1}\right)>0$ if $m>1$, and $h\left(\alpha_{1}\right)=0$ if $m=1$. Thus

GENERALIZATION OF INEQUALITY OF ARITHMETIC-GEOMETRIC MEANS 153

$$
\left(1+\alpha_{1} m\right)\left(1-\alpha_{1}\right)^{m} \geqslant\left(1-\alpha_{1} m\right)\left(1+\alpha_{1}\right)^{m}
$$

with equality if and only if $m=1$, and so

$$
\begin{aligned}
\left\{1+\alpha_{1}\left(\frac{n}{k}-1\right)\right\}^{k}\left(1-\alpha_{1}\right)^{n-k}-\frac{p}{s^{n}} \geqslant\left\{1+\alpha_{2}\left(\frac{n}{k}-1\right)\right\}^{k}\left(1-\alpha_{2}\right)^{n-k}-\frac{p}{s^{n}}=0 \\
\alpha_{2} \geqslant \alpha_{1}
\end{aligned}
$$

giving
By this lemma, for each fixed n and k,

$$
n^{2} s^{2}\left(\frac{n}{k}-1\right) \alpha_{2}^{2} \geqslant n^{2} s^{2}\left(\frac{n}{k}-1\right) \alpha_{1}^{2} .
$$

Hence, by (9), in finding the maximum of A under the given conditions, we have for each possible k, for any given n, to consider for α only the unique root in the range $0<\alpha<1$ of the equation

$$
\left\{1+\alpha\left(\frac{n}{k}-1\right)\right\}^{k}(1-\alpha)^{n-k}=\frac{p}{s^{n}}
$$

We show, by the following lemma, that $k=1$ gives the maximum for each n.
Lemma 3. If

$$
u_{k}=\alpha^{2}\left(\frac{n}{k}-1\right),
$$

where α is the root in $0<\alpha<1$ of the equation

$$
\left\{1+\alpha\left(\frac{n}{k}-1\right)\right\}^{k}(1-\alpha)^{n-k}=\frac{p}{s^{n}}
$$

and $k=1,2, \ldots,\left[\frac{n}{2}\right]$, then

$$
\max \left(u_{1}, u_{2}, \ldots, u_{[n / 2]}\right)=u_{1}
$$

As in Lemma 2 we put $m=\frac{n}{k}-1$, so that $k=\frac{n}{m+1}, n-k=\frac{n m}{m+1}$. Then

$$
\begin{align*}
& (1+\alpha m)^{\frac{n}{m+1}}(1-\alpha)^{\frac{m}{m+1} n}=\frac{p}{s^{n}}, \\
& (1+\alpha m)^{\frac{1}{m+1}}(1-\alpha)^{\frac{m}{m+1}}=\left(\frac{p}{s^{n}}\right)^{\frac{1}{n}}, \tag{11}
\end{align*}
$$

and so
where $0<\alpha<1$, and $1 \leqslant m \leqslant n-1$. We have then to consider the maximum of

$$
U=\alpha^{2} m
$$

under these conditions.
Now

$$
\begin{equation*}
\frac{d U}{d m}=\alpha^{2}+2 \alpha m \frac{d \alpha}{d m}=\alpha\left\{\alpha+2 m \frac{d \alpha}{d m}\right\} \tag{12}
\end{equation*}
$$

Also, from (11). $\quad \frac{1}{m+1} \log (1+\alpha m)+\frac{m}{m+1} \log (1-\alpha)=\frac{1}{n} \log \frac{p}{s^{n}}$,
Thus

$$
\frac{-1}{(m+1)^{2}} \log (1+\alpha m)+\frac{\alpha}{(m+1)(1+\alpha m)}+\frac{1}{(m+1)^{2}} \log (1-\alpha)+\left\{\frac{1}{1+\alpha m}-\frac{1}{1-\alpha}\right\} \frac{m}{m+1} \frac{d \alpha}{d m}=0 .
$$

Hence

$$
2 m \frac{d \alpha}{d m}=\frac{2(1+\alpha m)(1-\alpha)}{\alpha}\left\{\frac{\alpha}{(m+1)(1+\alpha m)}+\frac{1}{(m+1)^{2}} \log \frac{1-\alpha}{1+\alpha m}\right\}
$$

Therefore

Consider

$$
\begin{align*}
\alpha+2 m \frac{d \alpha}{d m} & =\alpha+\frac{2(1-\alpha)}{m+1}+\frac{2(1+\alpha m)(1-\alpha)}{\alpha(m+1)^{2}} \log \frac{1-\alpha}{1+\alpha m} \\
& =\frac{2(1+\alpha m)(1-\alpha)}{\alpha(m+1)^{2}}\left\{\frac{(1+\alpha m)^{2}-(1-\alpha)^{2}}{2(1+\alpha m)(1-\alpha)^{2}}+\log \frac{1-\alpha}{1+\alpha m}\right\} . \tag{13}
\end{align*}
$$

Put

$$
B=\frac{(1+\alpha m)^{2}-(1-\alpha)^{2}}{2(1+\alpha m)(1-\alpha)}+\log \frac{1-\alpha}{1+\alpha m}
$$

$$
t=\frac{1+\alpha m}{1-\alpha} .
$$

Then $t>1$, since $0<\alpha<1$ and $m \geqslant 1$, and

$$
B=B(t)=\frac{t^{2}-1}{2 t}-\log t=\frac{1}{2}\left(t-\frac{1}{t}\right)-\log t .
$$

Now

$$
\frac{d B}{d t}=\frac{1}{2 t^{2}}(t-1)^{2}>0 \quad \text { for } t>1, \text { and } B(1)=0 .
$$

Thus

$$
B>0 \text { for } t>1
$$

Hence, from (13), $\alpha+2 m \frac{d \alpha}{d m}>0$, and so, from (12), $\frac{d U}{d m}>0$, under the given conditions. Hence $\frac{d U}{d k}<0$ and so U is a maximum when $k=1$, which completes the lemma.

By this lemma, $n^{2} s^{2}\left(\frac{n}{k}-1\right) \alpha^{2}$ is a maximum when $k=1, \alpha$ being the unique root in $0<\alpha<1$ of the equation

$$
\left\{1+\alpha\left(\frac{n}{k}-1\right)\right\}^{k}(1-\alpha)^{n-k}=\frac{p}{s^{n}}
$$

that is

$$
\max A=n^{2}(n-1) s^{2} \alpha^{2},
$$

where α is the unique root in $0<\alpha<1$ of the equation

$$
\{1+\alpha(n-1)\}(1-\alpha)^{n-1}=\frac{p}{8^{n}} .
$$

Lemmal now follows.
We can now prove Theorem 1. Let

$$
A_{0}=(n s)^{2}(n-1) \alpha^{2}
$$

where α is the root in $0<\alpha<1$ of the equation

$$
\frac{s^{n}}{p}=\frac{1}{\{1+\alpha(n-1)\}(1-\alpha)^{n-1}}=f(\alpha)
$$

Let x_{1}, \ldots, x_{n} be an arbitrary set of positive numbers such that $\Sigma x_{i}=n s$, and $\Pi x_{i}=p$. Then, by Lemma 1 ,

$$
A=\sum_{i<j}\left(x_{i}-x_{j}\right)^{2} \leqslant A_{0}
$$

As noted earlier there is a unique number β in $0<\beta<1$ such that

$$
\frac{A}{(n s)^{2}(n-\mathrm{l})}=\beta^{2}
$$

But $\frac{A_{0}}{(n s)^{2}(n-1)}=\alpha^{2}$. Hence $\beta \leqslant \alpha$.

Now $f(\alpha)$ is monotonic increasing in $0<\alpha<1$. Therefore

$$
\frac{s^{n}}{p} \geqslant \frac{1}{\{1+\beta(n-1)\}(1-\beta)^{n-1}},
$$

where β is the root in $0<\beta<1$ of the equation

$$
(n s)^{2} \frac{A}{(n-1)}=\beta^{2},
$$

which is the required result.
§3. Application of Theorem 1. For the application we now suppose that x_{1}, \ldots, x_{n} are the roots of an irreducible polynomial equation $x^{n}+a_{1} x^{n-1}+\ldots+a_{n}=0$, with rational integral coefficients a_{1}, \ldots, a_{n}, so that x_{1}, \ldots, x_{n} are the conjugates of a totally real and positive algebraic integer.

Write

$$
\sum_{i<j} x_{i} x_{j}=\binom{n}{2} s_{2} .
$$

Then

$$
A=(n-1)(n s)^{2}-2 n \Sigma x_{i} x_{j}=(n-1) n^{2} s^{2}-n^{2}(n-1) s_{2}=n^{2}(n-1)\left(s^{2}-8_{2}\right) .
$$

Theorem 1 can be written :

$$
\frac{s^{n}}{p} \geqslant \frac{1}{\{1+\beta(n-1)\}(1-\beta)^{n-1}},
$$

where β is the root in $0<\beta<1$ of the equation

$$
s_{2}=\left(1-\beta^{2}\right) s^{2} .
$$

Since $\prod_{i=1}^{n} x_{i}=(-1)^{n} a_{n}=p$ is a positive rational integer, $p \geqslant 1$, and so

$$
s^{n} \geqslant \frac{1}{\{1+\beta(n-1)\}(1-\beta)^{n-1}} .
$$

Also

$$
s_{2} \geqslant \frac{1-\beta^{2}}{\{1+\beta(n-1)\}^{\frac{2}{n}}(1-\beta)^{2-\frac{2}{n}}}=\frac{1+\beta}{\{1+\beta(n-1)\}^{\frac{2}{n}}(1-\beta)^{1-\frac{2}{n}}}=f_{1}(\beta),
$$

say. Now, if $n>2$ and $0<\beta<1$,

$$
\frac{d f_{1}}{d \beta}=\frac{2 \beta(n-2)}{\{1+\beta(n-1)\}^{1+\frac{2}{n}}(1-\beta)^{2-\frac{2}{n}}}>0 .
$$

Also

$$
f_{1}(0)=1 .
$$

Thus $s_{2}>1$ for $0<\beta<1$ if $n>2$; and $f_{1}(\beta)=1$ for $n=2$. Hence $s_{2} \geqslant 1$, which, of course, can be established in other ways.

From a result for s under the present assumptions, obtained by Siegel ((2): Theorem II), we deduce the corresponding result for s_{2}. Siegel's result is :

Let θ be the positive root of the equation
and

$$
\begin{gathered}
(1+\theta) \log \left(1+\frac{1}{\theta}\right)-\frac{\log \theta}{1+\theta}=1, \\
\lambda_{0}=e\left(1+\frac{1}{\theta}\right)^{-\theta} .
\end{gathered}
$$

Then, if λ is a real number satisfying $1<\lambda<\lambda_{0}=1.7336 \ldots$, there is a positive integer $N=N(\lambda)$ such that $s>\lambda$, for all $n \geqslant N$.

We prove:
Theorem 2. If λ satisfies $1<\lambda<\lambda_{0}$, there exists a positive integer $N=N(\lambda)$ such that $s_{2}>\lambda$, for all $n \geqslant N$.
We note:

1. In each of the above we can take $\lambda>1$. For, $s \geqslant 1$ and $s_{2} \geqslant 1$, and equality arises (for $n \geqslant 2$ in the case $s=1$ and for $n>2$ in the case $s_{2}=1$) if and only if $x_{1}=x_{2}=\ldots=x_{n}$, in which case the equation $x^{n}+a_{1} x^{n-1}+\ldots+a_{n}=0$ is reducible.
2. For every odd prime $p, 4 \cos ^{2} \frac{\pi}{p}$ is a totally real and positive algebraic integer of degree $n=\frac{1}{2}(p-1)$, the corresponding equation being

$$
\begin{equation*}
x^{n}-(2 n-1) x^{n-1}+(n-1)(2 n-3) x^{n-2}-\frac{1}{3}(n-2)(2 n-3)(2 n-5) x^{n-3}+\ldots=0 . \tag{14}
\end{equation*}
$$

Thus, for this particular case, $\Sigma x_{i} x_{j}=(n-1)(2 n-3)=\binom{n}{2} 4\left(1-\frac{3}{2 n}\right)$, so that $s_{2}=4\left(1-\frac{3}{2 n}\right)$.
Hence, if μ is the best-possible constant in Theorem $2, \lambda_{0} \leqslant \mu \leqslant 4$. It is fairly clear that $\mu>\lambda_{0}$.
Proof of Theorem 2. Choose λ_{1} with $\lambda<\lambda_{1}<\lambda_{0}$ and ϵ in $0<\epsilon<1$ such that $\lambda=\lambda_{1}{ }^{1-\epsilon}$. Now

$$
\begin{align*}
s_{2}=\left(1-\beta^{2}\right) s^{1+\epsilon} s^{1-\epsilon} & \geqslant \frac{1+\beta}{\{1+\beta(n-1)\}^{\frac{1+\epsilon}{n}}(1-\beta)^{\epsilon-\frac{1+\epsilon}{n}}} s^{1-\epsilon} \\
& =f_{2}(\beta) s^{1-\epsilon}, \ldots \tag{15}
\end{align*}
$$

where

$$
f_{2}(\beta)=\frac{1+\beta}{\{1+\beta(n-1)\}^{\frac{1+\epsilon}{n}}(1-\beta)^{\epsilon-\frac{1+\epsilon}{n}}}
$$

Take N_{1} such that $\epsilon-\frac{1+\epsilon}{n}>0$, that is $\epsilon>\frac{1}{n-1}$, for $n \geqslant N_{1}$. For such an n consider $f_{2}(\beta)$ in $0<\beta<1$.

$$
\frac{d f_{2}}{d \beta}=\frac{\beta(n-1)(1-\epsilon)}{\{1+\beta(n-1)\}^{1+\frac{1+\epsilon}{n}}(1-\beta)^{1+\epsilon-\frac{1+\epsilon}{n}}}\left\{(1-\beta)+\frac{2}{1-\epsilon}\left(\epsilon-\frac{1}{n-1}\right)\right\}>0
$$

in $0<\beta<1$, since $\epsilon-\frac{1}{n-1}>0$. Now $f_{2}(0)=1$. Thus $f_{2}(\beta)>1$ in $0<\beta<1$. Hence, from (15),

By Siegel's result,
Thus
that is

$$
s_{2}>s^{1-\epsilon}, \quad \text { for } n \geqslant N_{1} .
$$

$$
s>\lambda_{1}, \quad \text { for } n \geqslant N_{2}, \text { say. }
$$

$$
s_{2}>\lambda_{1}{ }^{1-\epsilon} \quad \text { for } n \geqslant N=\max \left(N_{1}, N_{2}\right) ;
$$

$$
s_{2}>\lambda \quad \text { for } n \geqslant N .
$$

§4. Inequalities for $\frac{A}{n^{2}}$ and $\frac{\Sigma x_{i}{ }^{2}}{n}$. An inequality for $\frac{A}{n^{2}}=\frac{1}{n^{2}} \sum_{i<j}\left(x_{i}-x_{j}\right)^{2}$ can be deduced from a result due to Schur (1). The inequality can be stated in the form : If x_{1}, \ldots, x_{n} are the conjugates of a totally real algebraic integer, and if λ is such that

$$
0<\lambda<e^{\frac{1}{2}}=1 \cdot 6487 \ldots,
$$

then there is an integer $N=N(\lambda)$ such that $\frac{A}{n^{2}}>\lambda$ for $n \geqslant N$.
For completeness we include a proof of this result. The proof is based on the following lemmas:

Lemma 4. If $\Delta\left(x_{1}, \ldots, x_{n}\right) \equiv \prod_{i<j} \Pi_{j}\left(x_{i}-x_{j}\right)^{2}$, where the x_{i} are real numbers such that $\sum_{i=1}^{n} x_{i}{ }^{2} \leqslant B$, then

$$
\max \Delta\left(x_{1}, \ldots, x_{n}\right)=R_{n}\left(\frac{B}{n^{2}-n}\right)^{\frac{1}{2}\left(n^{2}-n\right)} \text {, wherc } R_{n}=\prod_{m=1}^{n} m^{m}
$$

This follows from Schur (1, §2).
Lemma 5.

$$
R_{n}=\left(\frac{n}{e^{\dagger}}\right)^{\ddagger\left(n^{2}-n\right)} n^{n+r^{\prime}} \leq \exp \left\{-\frac{1}{4} n+O(1)\right\} .
$$

This can be obtained by applying the Euler summation formula

$$
\sum_{m=1}^{n} f(m)=\frac{1}{2}\{f(n)-f(0)\}+\int_{0}^{n} f(x) d x+\int_{0}^{n} f^{\prime}(x)\left(x-[x]-\frac{1}{2}\right) d x
$$

to the function $f(x)=x \log x$.
Now $\frac{A}{n^{2}}=\frac{1}{n^{2}} \sum_{i<j}\left(x_{i}-x_{j}\right)^{2}=\frac{1}{n^{2}}\left\{n \Sigma x_{i}^{2}-\left(\Sigma x_{i}\right)^{2}\right\}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-s\right)^{2} . \quad$ By Lemma $4, \sum_{i=1}^{n}\left(x_{i}-s\right)^{2} \leqslant n \lambda$
 by Minkowski's discriminant inequality. Hence

$$
1 \leqslant\left(\frac{n!}{n^{n}}\right)^{2} R_{n}\left(\frac{n \lambda}{n^{2}-n}\right)^{\frac{1}{2}\left(n^{3}-n\right)} .
$$

Thus, by Lemma 5 and Stirling's approximation for $n!$,

$$
\begin{equation*}
1<C e^{-\frac{7 n}{4}} n^{n+\frac{13}{13}}\left(\frac{\lambda}{e^{\frac{1}{t}}}\right)^{\frac{1\left(n^{2}-n\right)}{}}, \tag{16}
\end{equation*}
$$

where C is a constant. Since $\frac{\lambda}{e^{\frac{1}{1}}}<1$, the right-hand side of (16) is less than 1 for sufficiently large n. Hence (16) implies that $n<N=N(\lambda)$, say. Thus

$$
\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-s\right)^{2}>\lambda \quad \text { for } n \geqslant N
$$

and so

$$
\frac{A}{n^{2}}>\lambda \quad \text { for } n \geqslant N
$$

In the earlier notation, this result can be expressed in the form
and in the form

$$
(n-1)\left(s^{2}-s_{2}\right)>\lambda \quad \text { for } n \geqslant N,
$$

We note that the result holds, in particular, when x_{1}, \ldots, x_{n} are the conjugates of a totally real and positive algebraic integer. By (14), the best-possible constant in this case is μ, where $1 \cdot 6487 \ldots \leqslant \mu \leqslant 2$.

In the totally real and positive case we deduce:
If x_{1}, \ldots, x_{n} are the conjugates of a totally real and positive algebraic integer and if λ is such that $1<\lambda<e^{\dagger}+\lambda_{0}{ }^{2}=4.654 \ldots$, then there is an integer $N=N(\lambda)$ such that $\frac{\Sigma x_{i}{ }^{2}}{n}>\lambda$ for $n \geqslant N$.

Write $\lambda=\lambda_{1}+\lambda_{2}{ }^{2}$, where $0<\lambda_{1}<e^{t}$ and $1<\lambda_{2}<\lambda_{0}$. We have

$$
\frac{\Sigma x_{i}^{2}}{n}=\frac{A}{n^{2}}+\left(\frac{\Sigma x_{i}}{n}\right)^{2} .
$$

Now

$$
\frac{A}{n^{2}}>\lambda_{1} \text { for } n \geqslant N_{1}, \text { say }
$$

and, by Siegel's result,

$$
\frac{\Sigma x_{i}}{n}>\lambda_{2} \text { for } n \geqslant N_{2}, \text { say. }
$$

Hence

$$
\frac{\sum x_{i}{ }^{2}}{n}>\lambda \quad \text { for } n \geqslant \max \left(N_{1}, N_{2}\right)
$$

Schur gave this result with $e^{\frac{1}{t}}+e=4 \cdot 367 \ldots$ in place of $4 \cdot 654 \ldots$ By (14), the best-possible constant in this case is μ, where $4 \cdot 654 \ldots \leqslant \mu \leqslant 6$.

REFERENCES

(1) I. Schur, "Über die Verteilung der Wurzoln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten," Math. Zeitschrift, 1 (1918), 377-402.
(2) C. L. Siegel, " The trace of totally positive and real algebraic integers," Annals of Math., (2) 46, (1945), 302-312.

The University
Glasgow

