A GENERALIZATION OF THE INEQUALITY OF THE ARITHMETIC-GEOMETRIC MEANS

by John Hunter

(Received 14th December, 1954)

1. Introduction. The main result in this paper, contained in Theorem 1, is a generalisation of the inequality of the arithmetic-geometric means. A result of a similar character has been proved by Siegel (2). The present result gives an improvement in the inequality in the case when the variables involved are not all distinct, whereas Siegel's result does not. The theorem is used in §3 to obtain a result in connection with totally real and positive algebraic integers.

§ 2. The main result. Let x_1, \ldots, x_n be real and positive and write

$$A = \sum_{i < j} (x_i - x_j)^2, \ ns = \sum_{i=1}^n x_i,$$

and $p = \prod_{i=1}^{n} x_i$. Then A = 0 if and only if $x_1 = x_2 = \dots = x_n$, and then $\frac{s^n}{p} = 1$, since we have assumed each $x_i > 0$. In what follows we exclude the case A = 0.

THEOREM 1. If β denotes the root in the interval $0 < \beta < 1$ of the equation

We note :

then

1. Since $A = (n-1)(\Sigma x_i)^2 - 2n\Sigma x_i x_j = (n-1)(ns)^2 - 2n\Sigma x_i x_j$, we have

$$0 < \frac{A}{(n-1)(ns)^2} < 1$$

so that β is uniquely determined in the interval $0 < \beta < 1$.

2. If
$$f(\beta) = \frac{1}{\{1 + \beta (n-1)\}(1-\beta)^{n-1}},$$

then, in $0 < \beta < 1$, for $n \ge 2$, $f(\beta)$ is a steadily increasing function of β . For,

$$\frac{df}{d\beta} = \frac{\beta n (n-1)}{\{1 + \beta (n-1)\}^2 (1-\beta)^n} > 0, \text{ for } 0 < \beta < 1.$$

Also f(0) = 1, so that $f(\beta) > 1$ for $0 < \beta < 1$.

3. For n=2, (1) becomes $\beta^2 = \frac{(x_1 - x_2)^2}{(2s)^2} = \frac{(x_1 - x_2)^2}{(x_1 + x_2)^2}$, and the right-hand side of (2) equals

$$\frac{1}{1-\beta^2} = \frac{1}{1-\frac{(x_1-x_2)^2}{(x_1+x_2)^2}} = \frac{\left(\frac{x_1+x_2}{2}\right)^2}{x_1x_2} = \frac{s^2}{p},$$

so that the result is true with equality for n=2. We can thus assume that $n \ge 3$.

For the proof we use the following lemma :

L

G.M.▲.

LEMMA 1. If

and

and
$$x_i > 0$$
 $(i = 1, ..., n),$ (5)
then $A \leq n^2 (n-1) \alpha^2 s^2$,

where
$$\{1 + \alpha (n-1)\}(1 - \alpha)^{n-1} = \frac{p}{s^n}, and 0 < \alpha < 1.$$

For a given set of positive values of x_3, \ldots, x_n , the equations

$$x_1 + x_2 = ns - (\sum_{i=3}^n x_i), \quad x_1 x_2 = p (\prod_{i=3}^n x_i)^{-1}$$

completely determine x_1, x_2 as the roots of the equation

$$y^{2} - \{ns - \sum_{i=3}^{n} x_{i}\}y + p(\prod_{i=3}^{n} x_{i})^{-1} = 0.$$

The values of x_1, x_2 are both positive if and only if the following two conditions are satisfied

$$\sum_{i=3}^{n} x_{i} < ns, \quad \{ns - \sum_{i=3}^{n} x_{i}\}^{2} \ge 4p \left(\prod_{i=3}^{n} x_{i}\right)^{-1};$$

also x_1, x_2 are unequal, except when equality arises in the second condition. The two conditions define a closed domain D in R_{n-2} , its points having positive co-ordinates x_3, \ldots, x_n . The boundary of D is given by $x_1 = x_2$.

Now A attains its maximum in D, and A = 0 if and only if $x_1 = x_2 = \ldots = x_n$, so that at the maximum not all of the x_i are equal. Hence, by symmetry, we can suppose that A attains its maximum in D at an inner point of D. The values of x_i at this maximum must satisfy the equations

$$\frac{\partial A}{\partial x_i} + \lambda + \frac{\mu}{x_i} = 0 \quad (i = 1, \ldots, n),$$

for some λ , μ ;

$$2n(x_i - s) + \lambda + \frac{\mu}{x_i} = 0$$
 $(i = 1, ..., n)$

 $x_i^2 + \left(\frac{\lambda}{2n} - s\right)x_i + \frac{\mu}{2n} = 0$ (i = 1, ..., n),

that is

that is

and so the
$$x_i$$
 satisfy a quadratic equation. Hence at the maximum we have k of the x_i equal
in value to x, say, and the remaining $n - k$ of the x_i equal to a second number y, say, where,
by symmetry, k is one of the integers 0, 1,, $\left[\frac{n}{2}\right]$, and where, from (3) and (4),

$$kx + (n - k)y = ns,$$
(6)
 $x^{k}y^{n-k} = p.$ (7)

and

The corresponding value of A is

$$A = k (n-k) (x-y)^2. \qquad (8)$$

For k=0, A=0 and we require $y=s=p^{\frac{1}{n}}$, i.e. $\frac{s^n}{p}=1$, which we have excluded. Thus we have to consider only $k \ge 1$. From (6),

$$k(x-y) = n(s-y)$$

Thus (8) becomes

$$A = k (n - k) \frac{n^2}{k^2} (s - y)^2$$

= $n^2 s^2 \left(\frac{n}{k} - 1\right) (1 - u)^2$, where $y = us$,
= $n^2 s^2 \alpha^2 \left(\frac{n}{k} - 1\right)$, where $\alpha = 1 - u$,(9)

so that $y = (1 - \alpha)s$.

Now, from (6) and (5),
$$0 < y < \frac{n}{n-k}s$$
.
Thus $0 < 1 - \alpha < \frac{n}{n-k}$,

Thus

and so

From (6).

Thus, from (7),
$$\left\{\frac{1}{k} - \left(\frac{n}{k} - 1\right)u\right\} \quad u^{n-k} = \frac{r}{s^n},$$
and so
$$\left\{1 + \sigma \left(\frac{n}{k} - 1\right)\right\}^k (1 - \sigma)^{n-k} = \frac{1}{s^n}$$

 $\left\{1+\alpha\left(\frac{n}{k}-1\right)\right\}^{n}(1-\alpha)^{n-k}=\frac{p}{s^{n}},$ and sc

where, by (10), we have to consider the roots of this polynomial in α in the interval

$$-1 \leqslant \frac{-k}{n-k} < \alpha < 1,$$

the -1 arising when *n* is even, and $k = \left\lceil \frac{n}{2} \right\rceil$.

Let $g(\alpha) = \left\{1 + \alpha \left(\frac{n}{k} - 1\right)\right\}^k (1 - \alpha)^{n-k} - \frac{p}{s^n}$, and consider this function in the interval $\left[\frac{-k}{n-k}, 1\right]$. We have $g(1) = g\left(\frac{-k}{n-k}\right) = \frac{-p}{s^n}$, so that $0 > \left\{ \begin{array}{c} g(1) \\ g\left(\frac{-k}{n-k}\right) \\ \end{array} \right\} > -1.$

Also $g(0) = 1 - \frac{p}{s^n}$, so that 0 < g(0) < 1. Further

$$g'(\alpha) = (n-k)\left\{1 + \alpha\left(\frac{n}{k}-1\right)\right\}^{k-1}(1-\alpha)^{n-k-1}\left(-\frac{n}{k}\alpha\right).$$

Thus $g'(\alpha) = 0$ at $\alpha = 0$, $\alpha = 1$ (if $n \ge 3$), and $\alpha = -k/(n-k)$ if $k \ge 2$. Also

$$g'(\alpha) \begin{cases} >0 \quad \text{at} \quad \alpha = \frac{-k}{n-k} \quad \text{if } k = 1, \\ >0 \quad \text{for} \quad \frac{-k}{n-k} < \alpha < 0, \\ <0 \quad \text{for} \quad 0 < \alpha < 1, \end{cases}$$

since $k = 1, 2, ..., \left[\frac{n}{2}\right]$. Hence $g(\alpha)$ increases steadily from $g\left(\frac{-k}{n-k}\right) < 0$ to g(0) > 0 as α increases from $\frac{-k}{n-k}$ to 0, and decreases steadily from g(0) > 0 to g(1) < 0 as α increases from 0 to 1. Thus $g(\alpha) = 0$ has one root $-\alpha_1$, say, where $\alpha_1 > 0$, in $\frac{-k}{n-k} < \alpha < 0$ and one root α_2 , say, in $0 < \alpha < 1$. We show, by the following lemma, that we need consider only α_2 in finding the maximum of A.

LEMMA 2. If $-\alpha_1$ and α_2 are the roots of the equation

$$\left\{1+\alpha\left(\frac{n}{k}-1\right)\right\}^k(1-\alpha)^{n-k}=\frac{p}{s^n}$$

in the intervals $\frac{-k}{n-k} < \alpha < 0$ and $0 < \alpha < 1$, respectively, where $k = 1, 2, ..., \left[\frac{n}{2}\right]$, then $\alpha_2 \ge \alpha_1$.

We have

$$\left\{1-\alpha_1\left(\frac{n}{k}-1\right)\right\}^k(1+\alpha_1)^{n-k}=\frac{p}{s^n}=\left\{1+\alpha_2\left(\frac{n}{k}-1\right)\right\}^k(1-\alpha_2)^{n-k}.$$

Since, by above, $g'(\alpha) < 0$ for $0 < \alpha < 1$,

$$\left\{1+\alpha\left(\frac{n}{k}-1\right)\right\}^{k}(1-\alpha)^{n-k}-\frac{p}{s^{n}}>0 \quad \text{for} \quad 0<\alpha<\alpha_{2}.$$

Thus, to show that $\alpha_2 \ge \alpha_1$, it is sufficient to show that

$$\left\{1+\alpha_1\left(\frac{n}{k}-1\right)\right\}^k (1-\alpha_1)^{n-k} \ge \left\{1+\alpha_2\left(\frac{n}{k}-1\right)\right\}^k (1-\alpha_2)^{n-k} = \left\{1-\alpha_1\left(\frac{n}{k}-1\right)\right\}^k (1+\alpha_1)^{n-k}.$$

For simplicity of notation put $m = \frac{n}{k} - 1$. Then $k = \frac{n}{m+1}$, $n - k = \frac{nm}{m+1}$, and $0 < \alpha_1 < \frac{1}{m}$, $1 \le m \le n-1$. We have then to show that

$$\{(1+\alpha_1 m)(1-\alpha_1)^m\}^{\frac{n}{m+1}} \ge \{(1-\alpha_1 m)(1+\alpha_1)^m\}^{\frac{n}{m+1}}, \\ (1+\alpha_1 m)(1-\alpha_1)^m \ge (1-\alpha_1 m)(1+\alpha_1)^m,$$

and so that

Let

where $-\alpha_1$ is the given root such that $0 < \alpha_1 < \frac{1}{m}$, and $1 \le m \le n-1$.

$$h(\alpha) = (1 + \alpha m)(1 - \alpha)^m - (1 - \alpha m)(1 + \alpha)^m.$$

Then

$$\frac{1}{m(m+1)}h'(\alpha) = \alpha\{(1+\alpha)^{m-1} - (1-\alpha)^{m-1}\}$$

>0 for $0 < \alpha \le 1$, and so for $0 < \alpha \le \frac{1}{m}$,
 $\equiv 0$, if $m = 1$.

if m > 1,

Also
$$h(0) = 0$$
. Hence $h(\alpha_1) > 0$ if $m > 1$, and $h(\alpha_1) = 0$ if $m = 1$. Thus

$$(1+\alpha_1 m)(1-\alpha_1)^m \ge (1-\alpha_1 m)(1+\alpha_1)^m,$$

with equality if and only if m = 1, and so

$$\left\{ 1 + \alpha_1 \left(\frac{n}{k} - 1 \right) \right\}^k (1 - \alpha_1)^{n-k} - \frac{p}{s^n} \ge \left\{ 1 + \alpha_2 \left(\frac{n}{k} - 1 \right) \right\}^k (1 - \alpha_2)^{n-k} - \frac{p}{s^n} = 0,$$

$$\alpha_2 \ge \alpha_1.$$

giving

By this lemma, for each fixed n and k,

$$n^2s^2\left(rac{n}{\overline{k}}-1
ight)lpha_2^2 \geqslant n^2s^2\left(rac{n}{\overline{k}}-1
ight)lpha_1^2.$$

Hence, by (9), in finding the maximum of A under the given conditions, we have for each possible k, for any given n, to consider for α only the unique root in the range $0 < \alpha < 1$ of the equation

$$\left\{1+\alpha\left(\frac{n}{k}-1\right)\right\}^k(1-\alpha)^{n-k}=\frac{p}{s^n}.$$

We show, by the following lemma, that k = 1 gives the maximum for each n.

LEMMA 3. If

$$u_k = \alpha^2 \left(\frac{n}{k} - 1 \right),$$

where α is the root in $0 < \alpha < 1$ of the equation

$$\left\{1+\alpha\left(\frac{n}{k}-1\right)\right\}^k(1-\alpha)^{n-k}=\frac{p}{s^n},$$

and $k = 1, 2, ..., \left[\frac{n}{2}\right]$, then

As in Lemma 2 we put
$$m = \frac{n}{k} - 1$$
, so that $k = \frac{n}{m+1}$, $n - k = \frac{nm}{m+1}$. Then
 $(1 + \alpha m)^{\frac{n}{m+1}} (1 - \alpha)^{\frac{m}{m+1}n} = \frac{p}{s^n}$,
so $(1 + \alpha m)^{\frac{1}{m+1}} (1 - \alpha)^{\frac{m}{m+1}} = \left(\frac{p}{s^n}\right)^{\frac{1}{n}}$,(11)

and so

where $0 < \alpha < 1$, and $1 \le m \le n - 1$. We have then to consider the maximum of $U = \alpha^2 m$,

under these conditions.

Now
$$\frac{dU}{dm} = \alpha^2 + 2\alpha m \frac{d\alpha}{dm} = \alpha \left\{ \alpha + 2m \frac{d\alpha}{dm} \right\}$$
.(12)

Also, from (11). $\frac{1}{m+1}\log(1+\alpha m) + \frac{m}{m+1}\log(1-\alpha) = \frac{1}{n}\log\frac{p}{s^n}$,

$$\frac{-1}{(m+1)^2}\log(1+\alpha m) + \frac{\alpha}{(m+1)(1+\alpha m)} + \frac{1}{(m+1)^2}\log(1-\alpha) + \left\{\frac{1}{1+\alpha m} - \frac{1}{1-\alpha}\right\}\frac{m}{m+1}\frac{d\alpha}{dm} = 0.$$
Hence
$$2m\frac{d\alpha}{dm} = \frac{2(1+\alpha m)(1-\alpha)}{\alpha} \left\{\frac{\alpha}{(m+1)(1+\alpha m)} + \frac{1}{(m+1)^2}\log\frac{1-\alpha}{1+\alpha m}\right\}.$$

JOHN HUNTER

Therefore

Put

Consider

Then t > 1, since $0 < \alpha < 1$ and $m \ge 1$, and

$$B = B(t) = \frac{t^2 - 1}{2t} - \log t = \frac{1}{2} \left(t - \frac{1}{t} \right) - \log t.$$

$$\frac{dB}{dt} = \frac{1}{2t^2} (t - 1)^2 > 0 \quad \text{for } t > 1, \text{ and } B(1) = 0.$$

$$B > 0 \quad \text{for } t > 1.$$

Now Thus

Hence, from (13), $\alpha + 2m \frac{d\alpha}{dm} > 0$, and so, from (12), $\frac{dU}{dm} > 0$, under the given conditions. Hence $\frac{dU}{dk}$ <0 and so U is a maximum when k = 1, which completes the lemma.

By this lemma, $n^2s^2\left(\frac{n}{k}-1\right)\alpha^2$ is a maximum when k=1, α being the unique root in $0 < \alpha < 1$ of the equation

$$\left\{1+\alpha\left(\frac{n}{k}-1\right)\right\}^k(1-\alpha)^{n-k}=\frac{p}{s^n};$$

max $A=n^2(n-1)s^2\alpha^2,$

that is

where
$$\alpha$$
 is the unique root in $0 < \alpha < 1$ of the equation

$$\{1+\alpha(n-1)\}(1-\alpha)^{n-1}=\frac{p}{s^n}.$$

Lemma 1 now follows.

We can now prove Theorem 1. Let

$$A_0 = (ns)^2 (n-1) \alpha^2,$$

where α is the root in $0 < \alpha < 1$ of the equation

$$\frac{s^n}{p} = \frac{1}{\{1 + \alpha(n-1)\}(1-\alpha)^{n-1}} = f(\alpha).$$

Let x_1, \ldots, x_n be an arbitrary set of positive numbers such that $\Sigma x_i = ns$, and $\Pi x_i = p$. Then, by Lemma 1,

$$A = \sum_{i < j} (x_i - x_j)^2 \leq A_0.$$

As noted earlier there is a unique number β in $0 < \beta < 1$ such that

$$\frac{A}{(ns)^2(n-1)}=\beta^2.$$

But
$$\frac{A_0}{(ns)^2(n-1)} = \alpha^2$$
. Hence $\beta \leqslant \alpha$.

https://doi.org/10.1017/S2040618500033268 Published online by Cambridge University Press

Now $f(\alpha)$ is monotonic increasing in $0 < \alpha < 1$. Therefore

$$\frac{s^n}{p} \ge \frac{1}{\{1+\beta(n-1)\}(1-\beta)^{n-1}}$$

where β is the root in $0 < \beta < 1$ of the equation

$$\frac{A}{(ns)^2(n-1)}=\beta^2,$$

which is the required result.

§3. Application of Theorem 1. For the application we now suppose that x_1, \ldots, x_n are the roots of an irreducible polynomial equation $x^n + a_1 x^{n-1} + \ldots + a_n = 0$, with rational integral coefficients a_1, \ldots, a_n , so that x_1, \ldots, x_n are the conjugates of a totally real and positive algebraic integer.

Write

$$\sum_{i < j} x_i x_j = \binom{n}{2} s_2$$

Then

$$A = (n-1)(ns)^2 - 2n\sum x_i x_j = (n-1)n^2s^2 - n^2(n-1)s_2 = n^2(n-1)(s^2 - s_2)$$

Theorem 1 can be written:

$$\frac{s^n}{p} \ge \frac{1}{\{1+\beta(n-1)\}(1-\beta)^{n-1}}$$

where β is the root in $0 < \beta < 1$ of the equation

$$s_2 = (1 - \beta^2) s^2$$
.

Since $\prod_{i=1}^{n} x_i = (-1)^n a_n = p$ is a positive rational integer, $p \ge 1$, and so

$$s^{n} \ge \frac{1}{\{1+\beta(n-1)\}(1-\beta)^{n-1}} \cdot s_{2} \ge \frac{1-\beta^{2}}{\{1+\beta(n-1)\}^{\frac{2}{n}}(1-\beta)^{2-\frac{2}{n}}} = \frac{1+\beta}{\{1+\beta(n-1)\}^{\frac{2}{n}}(1-\beta)^{1-\frac{2}{n}}} = f_{1}(\beta),$$

Also

say. Now, if
$$n > 2$$
 and $0 < \beta < 1$,

$$\frac{df_1}{d\beta} = \frac{2\beta(n-2)}{\left\{1 + \beta(n-1)\right\}^{1+\frac{2}{n}}(1-\beta)^{2-\frac{2}{n}}} > 0.$$

$$f_1(0) = 1.$$

Also

Thus $s_2 > 1$ for $0 < \beta < 1$ if n > 2; and $f_1(\beta) = 1$ for n = 2. Hence $s_2 \ge 1$, which, of course, can be established in other ways.

From a result for s under the present assumptions, obtained by Siegel ((2). Theorem II), we deduce the corresponding result for s_2 . Siegel's result is :

Let θ be the positive root of the equation

$$(1+\theta)\log\left(1+\frac{1}{\theta}\right) - \frac{\log\theta}{1+\theta} = 1,$$
$$\lambda_0 = e\left(1+\frac{1}{\theta}\right)^{-\theta}.$$

and

Then, if λ is a real number satisfying $1 < \lambda < \lambda_0 = 1.7336$..., there is a positive integer $N = N(\lambda)$ such that $s > \lambda$, for all $n \ge N$.

We prove :

THEOREM 2. If λ satisfies $1 < \lambda < \lambda_0$, there exists a positive integer $N = N(\lambda)$ such that $s_2 > \lambda$, for all $n \ge N$.

We note :

1. In each of the above we can take $\lambda > 1$. For, $s \ge 1$ and $s_2 \ge 1$, and equality arises (for $n \ge 2$ in the case s = 1 and for n > 2 in the case $s_2 = 1$) if and only if $x_1 = x_2 = \ldots = x_n$, in which case the equation $x^n + a_1 x^{n-1} + \ldots + a_n = 0$ is reducible.

2. For every odd prime p, $4 \cos^2 \frac{\pi}{p}$ is a totally real and positive algebraic integer of degree $n = \frac{1}{2}(p-1)$, the corresponding equation being

$$x^{n} - (2n-1)x^{n-1} + (n-1)(2n-3)x^{n-2} - \frac{1}{3}(n-2)(2n-3)(2n-5)x^{n-3} + \dots = 0.$$
(14)

Thus, for this particular case, $\sum x_i x_j = (n-1)(2n-3) = \binom{n}{2} 4 \left(1 - \frac{3}{2n}\right)$, so that $s_2 = 4 \left(1 - \frac{3}{2n}\right)$. Hence, if μ is the best-possible constant in Theorem 2, $\lambda_0 \leqslant \mu \leqslant 4$. It is fairly clear that $\mu > \lambda_0$. *Proof of Theorem* 2. Choose λ_1 with $\lambda < \lambda_1 < \lambda_0$ and ϵ in $0 < \epsilon < 1$ such that $\lambda = \lambda_1^{1-\epsilon}$. Now

where

Take N_1 such that $\epsilon - \frac{1+\epsilon}{n} > 0$, that is $\epsilon > \frac{1}{n-1}$, for $n \ge N_1$. For such an *n* consider $f_2(\beta)$ in $0 < \beta < 1$.

$$\frac{df_2}{d\beta} = \frac{\beta(n-1)(1-\epsilon)}{\left\{1+\beta(n-1)\right\}^{1+\frac{1+\epsilon}{n}}(1-\beta)^{1+\epsilon-\frac{1+\epsilon}{n}}} \left\{(1-\beta) + \frac{2}{1-\epsilon}\left(\epsilon-\frac{1}{n-1}\right)\right\} > 0$$

in $0 < \beta < 1$, since $\epsilon - \frac{1}{n-1} > 0$. Now $f_2(0) = 1$. Thus $f_2(\beta) > 1$ in $0 < \beta < 1$. Hence, from (15),

§4. Inequalities for $\frac{A}{n^2}$ and $\frac{\Sigma x_i^2}{n}$. An inequality for $\frac{A}{n^2} = \frac{1}{n^2} \sum_{i < j} (x_i - x_j)^2$ can be deduced from a result due to Schur (1). The inequality can be stated in the form :

If x_1, \ldots, x_n are the conjugates of a totally real algebraic integer, and if λ is such that

 $0 < \lambda < e^{\frac{1}{2}} = 1.6487 \dots$

then there is an integer $N = N(\lambda)$ such that $\frac{A}{n^2} > \lambda$ for $n \ge N$.

For completeness we include a proof of this result. The proof is based on the following lemmas :

LEMMA 4. If $\Delta(x_1, \ldots, x_n) \equiv \prod_{i < j} (x_i - x_j)^2$, where the x_i are real numbers such that $\sum_{i=1}^n x_i^2 \leq B$, then

 $\max \Delta(x_1, \dots, x_n) = R_n \left(\frac{B}{n^2 - n}\right)^{\frac{1}{2}(n^2 - n)}, \quad where \quad R_n = \prod_{m=1}^n m^m.$

This follows from Schur $(1, \S2)$.

Lemma 5.

$$R_{n} = \left(\frac{n}{e^{\frac{1}{2}}}\right)^{\frac{1}{2}(n^{2}-n)} n^{n+\frac{1}{2}} \exp\left\{-\frac{1}{4}n + O(1)\right\}.$$

This can be obtained by applying the Euler summation formula

$$\sum_{m=1}^{n} f(m) = \frac{1}{2} \{ f(n) - f(0) \} + \int_{0}^{n} f(x) \, dx + \int_{0}^{n} f'(x) \, (x - [x] - \frac{1}{2}) \, dx$$

to the function $f(x) = x \log x$.

Now $\frac{A}{n^2} = \frac{1}{n^2} \sum_{i < j} (x_i - x_j)^2 = \frac{1}{n^2} \{ n \Sigma x_i^2 - (\Sigma x_i)^2 \} = \frac{1}{n} \sum_{i=1}^n (x_i - s)^2$. By Lemma 4, $\sum_{i=1}^n (x_i - s)^2 \leqslant n\lambda$ implies $\Delta(x_1 - s, \dots, x_n - s) \leqslant R_n \left(\frac{n\lambda}{n^2 - n}\right)^{\frac{1}{n^2 - n}}$. Now $\Delta(x_1 - s, \dots, x_n - s) = \Delta(x_1, \dots, x_n) \geqslant \left(\frac{n^n}{n!}\right)^2$, by Minkowski's discriminant inequality. Hence

$$l \leqslant \left(\frac{n!}{n^n}\right)^2 R_n \left(\frac{n\lambda}{n^2 - n}\right)^{\frac{1}{2}(n^2 - n)}.$$

Thus, by Lemma 5 and Stirling's approximation for n!,

where C is a constant. Since $\frac{\lambda}{e^{\frac{1}{2}}} < 1$, the right-hand side of (16) is less than 1 for sufficiently large n. Hence (16) implies that $n < N = N(\lambda)$, say. Thus

$$\frac{1}{n}\sum_{i=1}^{n} (x_i - s)^2 > \lambda \quad \text{for } n \ge N,$$
$$\frac{A}{n^2} > \lambda \quad \text{for } n \ge N.$$

and so

In the earlier notation, this result can be expressed in the form

$$(n-1)(s^2-s_2) > \lambda$$
 for $n \ge N$,

and in the form $(n-1)\beta^2 s^2 > \lambda$ for $n \ge N$.

We note that the result holds, in particular, when x_1, \ldots, x_n are the conjugates of a totally real and positive algebraic integer. By (14), the best-possible constant in this case is μ , where 1.6487 $\ldots \leq \mu \leq 2$.

In the totally real and positive case we deduce :

If x_1, \ldots, x_n are the conjugates of a totally real and positive algebraic integer and if λ is such that $1 < \lambda < e^{\frac{1}{2}} + \lambda_0^2 = 4.654 \ldots$, then there is an integer $N = N(\lambda)$ such that $\frac{\Sigma x_i^2}{n} > \lambda$ for $n \ge N$.

Write $\lambda = \lambda_1 + \lambda_2^2$, where $0 < \lambda_1 < e^{\frac{1}{2}}$ and $1 < \lambda_2 < \lambda_0$. We have

$$\frac{\Sigma x_i^2}{n} = \frac{A}{n^2} + \left(\frac{\Sigma x_i}{n}\right)^2.$$

N

Now
$$\frac{A}{n^2} > \lambda_1$$
 for $n \ge N_1$, say,and, by Siegel's result, $\frac{\Sigma x_i}{n} > \lambda_2$ for $n \ge N_2$, say.Hence $\frac{\Sigma x_i^2}{n} > \lambda$ for $n \ge \max(N_1, N_2)$.

Schur gave this result with $e^{\frac{1}{2}} + e = 4.367 \dots$ in place of 4.654 By (14), the best-possible constant in this case is μ , where $4.654 \dots \leq \mu \leq 6$.

REFERENCES

(1) I. Schur, "Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten," Math. Zeitschrift, 1 (1918), 377-402.

(2) C. L. Siegel, "The trace of totally positive and real algebraic integers," Annals of Math., (2) 46, (1945), 302-312.

THE UNIVERSITY GLASGOW