The Brocard Points and the Brocard Angle.

By R. F Davis, M.A.

Figure 6.
I. Construction for the Brocard points.

Let $A B C$ be a triangle. Describe a circle touching $A B$ in A and passing through C; draw the chord $A P$ parallel to $B C$. Join BP meeting this circle in Ω.

Join $\Lambda \Omega, C \Omega$.
Then $\quad \angle \Omega \mathrm{AB}=-\Omega \Omega \mathrm{CA}$,
$=-\Omega \mathrm{PA}$
$=-\Omega \mathrm{BC}$.
Similarly for Ω^{\prime}.
II. Characteristic property of the Brocard angle.

Draw AX, PR perpendicular to BC.
Since $A P, C Q$ are parallel chords, the triangles $\mathrm{ACX}, \mathrm{PQR}$ are congruent by symmetry;
therefore

$$
\mathrm{AX}=\mathrm{PR}, \quad \mathrm{CX}=\mathrm{QR}
$$

Now

$$
\begin{aligned}
\mathrm{BR} & =\mathrm{BX}+\mathrm{CX}+\mathrm{CR} \\
& =\mathrm{BX}+\mathrm{CX}+\mathrm{QX} ;
\end{aligned}
$$

therefore, dividing each of the terms by the equals $A X$ or $P R$,

$$
\begin{aligned}
\cot (\theta) & =\cot \mathrm{B}+\cot \mathrm{C}+\cot \mathrm{AQC} \\
& =\cot \mathrm{B}+\cot \mathrm{C}+\cot \mathrm{A} .
\end{aligned}
$$

On the Solitary Permanent Wave: A continuation.
By J. M.Cowan, M.A., D.s'c.

