The Brocard Points and the Brocard Angle.

By R. F Davis, M.A.

FIGURE 6.

I. Construction for the Brocard points.

Let ABC be a triangle. Describe a circle touching AB in A and passing through C; draw the chord AP parallel to BC. Join BP meeting this circle in Ω .

Join $\Lambda\Omega$, $C\Omega$.

Then

$$\angle \Omega AB = \angle \Omega CA$$
,

 $= \angle \Omega PA$

 $= \angle \Omega BC$.

Similarly for Ω' .

II. Characteristic property of the Brocard angle.

Draw AX, PR perpendicular to BC.

Since AP, CQ are parallel chords,

the triangles ACX, PQR are congruent by symmetry;

therefore

$$AX = PR$$
, $CX = QR$.

Now

$$BR = BX + CX + CR$$
$$= BX + CX + QX;$$

therefore, dividing each of the terms by the equals AX or PR,

$$\cot \omega = \cot B + \cot C + \cot AQC$$

= $\cot B + \cot C + \cot A$.

On the Solitary Permanent Wave: A continuation.

By J. M. COWAN, M.A., D.Sc.