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DILATIONS OF POSITIVE CONTRACTIONS
ON L. SPACES*

BY

M. A. AKCOGLU AND L. SUCHESTON

1. Introduction. Throughout this article p denotes a fixed number such that
1=p<. The definition of a real L, space associated with a measure space is
well known. These spaces are Banach Spaces and, with the usual partial
ordering of (equivalence classes of) functions, also Banach Lattices. A (linear)
operator between them is called positive if it preserves the order, or, equival-
ently, if it maps non-negative functions into non-negative functions. A contrac-
tion is an operator whose norm is not more than one. Finally, a projection P is
an idempotent contraction. Our purpose in this article is to prove the following
theorem.

(1.1) TueoreM. Let T:L — L be a positive contraction on an L, Space L. Then
there exists another L, Space B and a positive invertible isometry Q:B — B so
that DT" = PQ"D for all n=0, 1, 2, . . . , where D:L — B is a positive
isometric imbedding of L into B and P:B — B is a positive projection.

In the next section we will prove this theorem in the case where L is a finite
dimensional L, space. Then we will show, following an observation of W. B.
Johnson [7], that this special case implies the general proof.

The proof of the finite dimensional case follows from the more general
results obtained in [5]. We will, however, give here a simpler proof that applies
only in the finite dimensional case. This proof is similar to the one given in [1]
for a more special case. We will describe the constructions of B, Q, D, P in
detail, which is somewhat different from the construction in [1], but we will
leave the verification of DT" = PQ"D to the reader, which can be done along
the same lines as in [1].

The proof in the general case, as observed by W. B. Johnson, is a direct
consequence of some general techniques in Banach Spaces, mainly developed
by D. Dacunha-Castelle and J. L. Krivine in [6]. We need, however, only very
few definitions and results from this theory and we will give a self-contained
account of them. We note that the original definitions in [6] use ultrafilters;
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here we will use the Stone-Cech compactification instead, as discussed e.g. in
Royden [9], which may be a more common background for the readers in
Analysis.

Finally, the proof of Theorem (1.1) in the general case is a non-constructive
proof, as should be obvious from its dependence on the Stone-Cech compactifi-
cation. A constructive proof is given in [3] for the special case where L is a
separable L, Space. Other constructive proofs for more specialized cases were
given in [2] and [4].

The authors are very grateful to Professor W. B. Johnson for his remarks on
this problem.

2. Finite dimensional case. We start with a few general remarks. Let (X, &,
p) be a measure space and L, = L,(X, %, n). We let L, be the class of non
negative functions in L, and we identify the adjoint of L, with L, =L,(X, %,
@) in the usual manner, where q=p(p—1)"" if p>1 and q = if p=1; hence
g€ L, represent the functional that maps fe L, into (f, g)={fgdu. We need
the Holder’s Inequality. If feL) and geL; then [fg=||fl,lgll, with
equality if and only if g is a multiple of f*~', assuming ||f||, >0 and p>1. Also
note that if fe Ly then fP~'e L} and ||f*~|, = |fle4=|flp~".

We now consider a positive contraction T:L, — L, and also its adjoint
T*:L, = L, In terms of these operators we define a non-linear operator
M:L; — L} as Mf=T* (Tf)*"', fe L;, which will play a central role in this
section. Note that (f, Mf) = (Tf, (Tf)*"") = || Tf|5.

(2.1) Lemma. If A =sup {Tf|fe L}, |fll, = 1} then A =||T|.

Proof. It is clear that A <||T|. Also, if fe L, then ||Tf], =||Tf* - Tf |, =
NTf*+ Tf 7ll, = Allf*+ £ 71l = Allfll,- Hence || T|=A.

(2.2) LemMA. Let p>1 and let f € L, satisfy | Tf|l, = ||T|||f|l, > 0. Then Mf =
ITiPee="

Proof. First note that | Mfl, <[ T*|I(TH)* "Il =TI TS = | TIPlIfll~". Also,
I TIPIAE = A = (Tf, (TH"~") = (f, Mf) which shows that

) IMfll, = 1TIP N7~

and also that we have the equality case in Holder’s inequality. Therefore
Mf=kf*"! and (*) implies that k =||T|]’. This completes the proof.

If E€¥ is a measurable set, let L,(E) be the class of L, functions with
support in E.

(2.3) Lemma. Let p>1 and let Ag =sup{|Tf|||fe L, (E), |Ifll,=1}. If ue
L; (E) with || Tull, = Ag|lull, >0 then xzMu =A% u”~', where xg is the charac-
teristic function of E.
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Proof. Let Tz:L, — L, be defined as Tgf= T xef, f€ L,. Then (Tg)*g=
xeT*g, g€ L, from the definitions. Also, ||Te||= Az by Lemma (2.1). Hence
the proof follows from Lemma (2.2) applied to Tg, by noticing that Tu = Tgu.

(2.4) Lemma. Let f, geL,, f-g=0 and Mf<f""'. Then fMg=0 and
M(f+g)= Mf + Mg,

Proof. To see that fMg =0, we note that (f, Mg) = (Tf, (Tg)*~")=0. In fact,
this is equivalent to the fact that Tf and (Tg)”~" have disjoint supports, or that
(Tf)°* and Tg have disjoint supports. But this is true, since 0=<(Tg, (Tf)*" ") =
(g, Mf)=(g, f*"")=0. Therefore fMg=0. Now [T(f+ g)P ' =(Tf+ Tg)* '=
(Tf)> "+ (Tg)* ", since Tf and Tg have disjoint supports. Hence M(f+g)=

Mf+ Mg.
We now restrict ourselves to the finite dimensional case. Hence we assume
that X={1, . . . , n} consists of n points with masses m; >0. We denote

functions on X as n-dimensional vectors r=(r;) and represent T:L, — L, by
an n X n matrix T=(t;) so that (Tr); =X, T;r. Note that (T™s), =3,mm;"' T;s;

(2.5) THEOREM. Thereexistsavectoru = (u;) € L, with strictly positive coordinates
so that Mu=<u®™".

Proof. If p=1 then we may let y;=1foralli=1,..., n. If p>1 then the
theorem follows from a finite number of applications of the following lemma,
starting, for example, with the vector a =0.

(2.6) Lemma. Let ae€ L, satisfy Ma<a®~' and assume that some coordi-
nates of a are zero. Then there exists an &€ L,, whose support is strictly
larger than the support of a, so that Ma < a®*.

Proof. Let E={i|i€ X, &; =0} and B={r| re L}(E), |||, = 1}. Since we are
in a finite dimensional space, B is a compact set. Hence if Ag=
sup{||Tr|l, | r € B}, as also defined in the statement of Lemma (2.3), then there
exists a BeB so that |TB8|, = Ag ||Bll, = Ae. Therefore, by Lemma (2.3),
xeMB = A%B° 1= B"'. But, applying Lemma (2.4) with f=a and g= B, we
first see that aMB =0, i.e. that xzMB = M, and then also that

M(a+B)=Ma+MB=a® '+8° '=(a+B) ",

where the last equality follows from the fact that o = 0. Hence & = a + B gives
the required vector.

We will now prove Theorem (1.1) in the finite dimensional case. Hence we
assume that L=L,(X, %, u), where, as we have already defined, X =
{1,..., n} consists of n points. We will construct B, Q, D and P explicitly and
then show that they have the properties stated in Theorem (1.1). We fix a
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vector u € L™ as obtained in Theorem (2.5) and let v = Tu. the construction we
are about to give is similar to the one given in [1] and reduces exactly to that
construction if v has also strictly positive coordinates and if Mu =u®"".

We first construct a measure space (Z, 94, v) and then define B as B=L,(Z,
9, v). The set Z will be a subset of the two dimensional cartesian plane Oxy,
the o-algebra ¢ and the measure v will be the restriction of the ordinary two
dimensional Lebesgue measure to Z. We denote the one and two dimensional
Lebesgue measures as ¢ and ¢, with the corresponding differentials dx and
dx dy, respectively.

Let I’s be n disjoint intervals on the x-axis with €(I;) = m; and J;’s n disjoint
intervals on the y-axis with €(J))=1. We let E, =L xJ, Z,= |/~ E; and
complete this set Z, to a doubly infinite disjoint sequence of sets Z;, k=0, 1,
+2,..., by choosing the other Z’s arbitrarily with £*(Z,)>0. We then let
Z =) wck<w Zp.

This defines (Z, %, v) and also B. To define Q:B — B we will first define a
transformation 7:Z— Z as follows.

Let Xo={j|je X, v;>0}, where v=Tu, and let P=XxX,. For each (j,
j)e P we let &; = Tyufv;, ny; = T; (07" /u?™") mym; and note that for each je X,
we have Y& =1, since v = Tu, and also that for each i € X we have },cx, n; =<
1, because of Mu=<u""'. Hence we can divide each I, j € X, into n disjoint
subintervals I; with €(I;) = &;m; and for each i € X we can find subintervals Jj;
j€X,, in J; so that €(j;)=n;. We then let S;=I;xJ, R;=ILxJ; (i,j)€P,
and S= U S;, R= UR;, where both unions are taken over (i, j) € P.

For each (i, j)€ P, R; and S; are two rectangles with non-zero £>measures.
Hence one can find an affine transformation 7;:R; — S; of the form

Tij(xa y)= (aijx + by, iy + dii‘) )

with constants a;, by, ¢y, dy, so that 7;R; =S, up to ¢’-null sets. We then
define 7 on R as 7; on each R;. Hence 7 transforms R onto S. If £%(Z,~R)=0
then we define 7 as the identify transformation on %~ Z. If €*(Z,— R)>0
we define 7 to map Z,— R onto Z, and to map Z, onto Z,,, k = 1. Similarly, if
€*(Z,— S)=0 then we define 7 as the identity on k-1 Z_i. If €*(Zo,—S)>0
we then define 7 to map Z_; onto Z_,,,, k=2, and to map Z_, onto Z,—S.
Hence 7:Z — Z is defined and it is clear that we can make 7 invertible and
measurable and non-singular in both directions.

Let 7 transport the measure v to o, defined as o(G)=v(77'G), Ge % Let
p=doldv and define Q:B — B as (Qf)(x, y)=(o(x, y))"?f(7'(x, y)), (x,y)e
Z, fe B. It is then well known (and very easy to verify) that Q is a positive
invertible isometry of B.

The definition of D:L — B is simple. If xg is the characteristic function of
E;=1I,xJ; and r=(r)€ L then Dr=Yi-1 iXe- Finally, P:B — B is defined as
Pf= E(x.,,f) where E is the conditional expectation operator with respect to
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the partition {E,, ..., E,} of Z,. More explicitly, Pf=Y!_; xg 1/m; [g, fdv. A
routine generalization of the arguments given in (2.10), (2.12), (2.13) of [1]
shows that DT" = PQ"D for all n=0,1, . ... As already mentioned, this will be
left to the reader.

3. Ultraproducts of Banach Spaces. Let A be a directed set and let { be the
class of all bounded real valued functions z: A — . These functions are called
bounded nets and also identified by the collection of their values as z ={z,} or
as {Z,}aca. Note that ¢ is an algebra of functions with the usual pointwise
definitions of linear operations and multiplication. We also let lim inf,z, =
SUPa,calinfy,=a, z,,] and limsup,z, =—liminf,(—z,). Finally note that if
u: R —>Ris continuous and if z € { then (u°z), = u(z,) defines a bounded net.

(3.1) LeMMA. There exists a homomorphism (i.e. a linear and multiplicative
function) LIM:{—R so that if ze{ then liminf,Z,<LIM z=limsup,z,
and if u:R— R is continuous then LIM(u°z) = u(LIM z2).

Proof. Consider A as a topological space with its discrete topology (i.e. each
subset of A is open). Then A is a locally compact Hausdorff space. Let A* be
the Stone-Cech compactification of A. Then, by definition, A* is a compact
Hausdorff space and A is imbedded homeomorphically as a dense open subset
of A* so that any bounded (automatically continuous) function z: A — R has a
(necessarily unique) extension to a continuous function z*: A* — R. For each
a €A, let C, be the closure of {B| B€ A, B=a}in A*. Since A is a directed
set, the family {C,}.c4 has the finite intersection property. Therefore (Naca Ca
contains a point a*. We then let LIM z = z*(a™®). It is easy to see that this
satisfies the requirements of the lemma.

A function as obtained in this lemma will be called a limit functional. For the
rest of this paper we are going to choose and fix a limit functional. We denote
its value also as LIM,z,. If {z,} is a convergent net then LIM,z, =lim,z,. Note
that if z, z'e€ ¢ for which there is an a, so that z, =z’ for all a = a,, then

LIM_z, =LIM,zZ.,.
After these preliminaries we define the ultraproducts of Banach Spaces as

follows. Let A be a directed set and let W, be a Banach space for each a € A.
From this collection {W,} of Banach Spaces we will define a new Banach Space
W which will be called the ultraproduct of W, ’s. Points in W are collections of
the form w ={w,}, indexed by a € A, so that w, € W, for each a € A and so
that {|w.|}} is a bounded net. Linear combinations in W are defined as
av +bw ={av, + bw,} and the norm as ||w||=LIM,||w.|. Here, v, we W and
a, beR. It is clear that this is only a pseudonorm, since ||w||=0 does not imply
that w =0, i.e. that w, =0 for all a € A. We define an equivalence relation in
W as w~ w' if and only if |[w — w'[|= 0. To obtain a norm, W must be replaced,
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as usual, by the set of equivalence classes. It will be more convenient, however,
to work directly with the elements of W and distinguish between the equalities
and equivalences in B.

(3.2) TueoreM. W is a Banach Space.

Proof. It is clear that W is a (pseudo) normed vector space. As it is well
known, the completeness is equivalent to Lemma 3.4 below. Before then we
note a technical fact.

(3.3) LemMMA. For each w € W there exists a v € V so that v~ w and so that
loall=lwll(=]lvl) for all a € A.

Proof. If |w||=19 then let v, = 0. If [w||>0, then define A, = (|w|/|wlVv||we]))
and let v, =A.w, Then |v,]|<|lw| and also v~w, since LIM,A,=1 and,
consequently [[v— w||=LIM,|1 - A.||lw.]=0.

(3.4) LEMMA. Let {w"}2_, be a sequence in W so that Yn=1 ||w"||<o. Then
there is a we W so that Ln-1 w"=w in W, i.e. that lim,|| Xi=1 w'—w|=0.

Proof. For each n find a v" ~ w" so that ||v2]|<|lw"|, by the previous lemma.
Hence Zn-1 |[vf| <o for each @ € A and since W, is a Banach space and there
is a w, so that Y, jvp=w, in W, Then {w,}eW, since |w.|=

n=tlloall=Ei-ilw"|| for all aeA. Also, |[Xi,w'—w|=|Zi, 0" —w|=
LIML|E 1 va = wall = LIMa £t [lodll = LIM Xpi W= X W]l
converges to zero as n — %,

Now we will observe that if each W, is an L, space then W is isomorphic to
an L, Space. In fact, introduce a partial order into W as v = w being equivalent
to v,=w, for each a€ A. The corresponding maximum and minimum
operations arev v w ={v, V W, }, v A w ={v, A w,}, respectively, and the positive
cone of Wis w'={w|we W, w=0}. The following lemma shows that these
operations can be defined on the equivalence classes of W and that they are
continuous with respect to the norm topology. Hence it is easily seen that W
becomes a Banach Lattice with these definitions.

(3.5) LemMa. If v~v' and w~w' thenvvw~v'vw and vaw~v'Aw'. If
v" and w" converge respectively to v and w in W then v"vw" and v" Aw"
converge, respectively, to vvw and vAw in W.

Proof. We prove only the statements for the maximum operation. They will

obviously follow from

llovw—vow|=llo—ol+]lw-—wT,
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which is obtained from
[V V We = 0V WA = |v, — 04 +|wa — Wi,
first using the Minkowski’s inequality and then applying the limit functional.

(3.6) Lemma: If v, we W* and if vAw=0 then [o+w|’ =|o|P +|lw|’.
Proof. Integrate

[0 [? + [ We|? < |00 + Wae [P <[00 + (Ve A Wa)I” + [ W + (00 A WP

to get the corresponding inequalities in the norm of W, and apply the limit
functional to get

lollP +liwlP <llo+ wiP <llo+v A wlP +llw+v A wlP =[olP +[lw[°.

A generalization of a Theorem of Kakutani (see, e.g. p. 112 of [8]) shows
that a Banach Lattice with the property stated in Lemma 3.6 is order
isomorphic to an L, Space. Hence if each W, is an L, Space then there exists
another L, Space B so that W can be identified with B by means of a positive
isometric isomorphism ¥:W — B.

4. The main proof in the general case. Let L be the L, Space associated
with an arbitrary measure space (X, %, u). By a semi-partition of X we mean a
finite disjoint collection of measurable sets with finite measures. Let A be the
set of all semi-partitions of X. Introduce a partial order into A as a=<a'
meaning that each set in « is a union of some sets in a’. Then it is clear that A
becomes a directed set. For each a« € A let E,:L — L be the conditional
expectation operator with respect to the semi-partition «, mapping functions to
their average values on the sets of a and to zero outside of these sets. Note
that for each fixed fe L the net {E,f} converges to f in the sense that
lim,||f — E.fl|=0. Finally let L, = E,L be the range of E,, which is a finite
dimensional L, Space.

Now let T:L — L be a positive contraction. We define T,:L — L, as
T, = E,TE,. A simple argument shows that lim, || T5f — T"f||=0 for each fe L,
and for integer n=1, 2, . . . . The operator T, can also be considered as acting
on L,. Hence we have a positive contraction T,:L, — L, of a finite dimen-
sional L, Space. Therefore the dilation theorem for finite dimensional spaces
shows that for each a € A there exists an L, Space W,, a positive invertible
isometry Q,:W, — W, a positive projection P,:W, — W, and a positive
isometry D, :L, = W, so that D, T.=P,Q.D, foreach n=0,1,2,....We
then construct the ultraproduct W of W,s and define Q:W — W, P:W - W
and D:L—>W as Q{w,}={Q,w,}, P{w,}={P,w,} and Df={D_E,f}, where
w={w,}e W and fe L. Now to see that PQ"D = DT", we apply both sides to
a function fe L:

PQ"Df={P,QiD.E.f},  DT"f={D.E.T"f}
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and note that P,Q.D.E.f=D,T,E.f=D,T,f and also that
\D.T:f - D.E, T"f|= | T2f — ET"f|| since D, is an isometry. But lim,|T5f-
E,T"f|=0, which shows that {D,T.f}~{D.E,T"f} or that PQ"Df~ DT"f.
Hence PQ"D = DT".

It is now clear that, in the partial ordering of W given in the previous
section, Q: W — W is a positive invertible isometry, D:L — W is a positive
isometry, and P: W — W is a positive projection. Although W is obtained as a
general Banach Lattice, the theorem of Kakutani mentioned at the end of the
previous section shows that there is an L, Space B and a positive isometric
isomorphism ¥: W — B. This ¥ can be used to transport Q, D, P to similar
operators Q', D', P’ related to B as Q'=¥YQV¥ ':B— B, D'=¥D:L — B,
P'=¥PV¥V ':B — B. Then it is clear that all the requirements of Theorem
(1.1) are satisfied.

Finally, we will mention the following point. If L and B are two L, spaces
and if D:L — B is a positive isometry then DL can be characterized as
follows. If B=L,(Z, ¥, v), then there exists a sub o-algebra 4, < 4 and a set
Zy€ %, so that DL = L,(Z,, Z, N %, vo), Where v, is the restriction of v to
ZyN %,. Hence there is a natural positive projection II:B — B so that [IB =
DL. This is defined as IIf = E(x,.f), f € B, where E is the conditional expecta-
tion with respect to %,. Although in Theorem (1.1) we have this positive
isometry D:L — B, the positive projection P:B — B (we omit the primes
from D and P to simplify the notation) obtained in the above proof is not the
natural projection II. A more careful analysis of the representation of W as an
L, Space shows that IIQ"D= PQ"D, i.e. that I can also be used as the positive
projection required in Theorem (1.1). We will, however, omit this.
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