COMMUTING DILATIONS AND UNIFORM ALGEBRAS

TAKAHIKO NAKAZI

1. Introduction. Let X be a compact Hausdorff space, let $C(X)$ be the algebra of complex-valued continuous functions on X, and let A be a uniform algebra on X. Fix a nonzero complex homomorphism τ on A and a representing measure m for τ on X. The abstract Hardy space $H^{p}=H^{p}(m), 1 \leq p \leq \infty$, determined by A is defined to the closure of A in $L^{p}=L^{p}(m)$ when p is finite and to be the weak ${ }^{*}$-closure of A in $L^{\infty}=L^{\infty}(m)$ when $p=\infty$.

Let M be an invariant subspace of H^{2} under the multiplications of functions in A and N the orthogonal complement of M in H^{2}, that is, $N=H^{2} \ominus M$. The orthogonal projection in L^{2} with range N will be denoted by P. For f a function in H^{∞} let S_{f} denote the projection onto N of the operator M_{f} on L^{2} of multiplication by f, that is, $S_{f}=P M_{f} \mid N$. If A is a disc algebra and $\tau(f)=\tilde{f}(0)$ where \tilde{f} denotes the holomomorphic extension of f in A, then τ is a complex homomorphism on A. Let m be a normalized Lebesgue measure on the unit circle ∂U; then m is a representing measure for τ. Then H^{2} is the classical Hardy space $H^{2}(U)$.
Sarason Theorem. Let H^{2} be the classical Hardy space $H^{2}(U)$. If T is a bounded linear operator on N that commutes with $S_{f}(f \in A)$, then there is a function ϕ in H^{∞} such that

$$
\|\phi\|_{\infty}=\|T\| \quad \text { and } \quad T=S_{\phi} .
$$

The Sarason Theorem implies that $\left\|S_{\phi}\right\|=\left\|\phi+M \cap L^{\infty}\right\|$ for any ϕ in H^{∞}, and hence it is close to Nehari's theorem. The author ([10], [11]) generalized Nehari's theorem to general uniform algebras. In this paper generalizations of the Sarason Theorem to general uniform algebras will be proved using the method in the author's previous papers ([10], [11]). The proofs are different from Sarason's proof and simpler than his in the classical Hardy space $H^{2}(U)$. In Section 2, we will consider the relation between $\left\|S_{\phi}\right\|$ and $\left\|\phi+M \cap L^{\infty}\right\|$. In Section 3, we will apply the result in Section 2 to get Pick's theorem. In the special case, this gives a theorem of Abrahamse [1, Theorem 1] that implies Pick's theorem in a multiply
connected domain. In Section 4, we will study generalizations of the Sarason Theorem. This gives a dilation of the commutant of some representation of a uniform algebra, extending partially the dilation theorem of Sz-Nagy and Foiaş, ([9]), in case A is a disc algebra. In Section 5, we will give dilations of the commutants of other representations of a uniform algebra relating with Hankel operators and Toeplitz operators. In Section 6, we will give concrete examples for which we can apply theorems in previous sections. That is, a uniform algebra which consists of rational functions on a multiply connected domain, a subalgebra of a disc algebra which contains the constants and which has finite codimension, and a polydisc algebra. However the Sarason Theorem is not true in an exact meaning. It is interesting to compare a recent paper of R. G. Douglas and V. I. Paulsen [6] or an example of S. Parrott [13] with this.

Throughout this paper, we use the following definition and assume that $M^{\perp} \cap L^{\infty}$ is dense in $M^{\perp} \cap L^{1}$. This assumption is satisfied in many examples (see Section $6)$.

Definition. For an invariant subspace M in H^{2}, M^{\perp} denotes the orthogonal complement of M in L^{2}. Moreover set

$$
M^{\perp} \cap L^{\infty}=\left\{f \in L^{\infty}: \int_{X} f \bar{g} d m=0 \text { for all } g \text { in } M\right\}
$$

and

$$
M^{\perp} \cap L^{1}=\left\{f \in L^{1}: \int_{X} f \bar{g} d m=0 \text { for all } g \text { in } M \cap L^{\infty}\right\}
$$

2. Generalized Interpolation. Put $\mathcal{L}=\left\{v \in L^{\infty} ; v^{-1} \in L^{\infty}\right.$ and $\left.v \geq 0\right\}$. Let M be an invariant subspace of H^{2} and N be an orthogonal complement of M in H^{2}, that is, $N=H^{2} \ominus M$, as in the Introduction. For each v in \mathcal{L}, let $N^{v}=v H^{2} \ominus v M$ and P^{v} the orthogonal projection from L^{2} onto N^{v}. For ϕ in H^{∞} and g in N^{v}, S_{ϕ}^{v} is the operator defined by

$$
S_{\phi}^{v} g=P^{v} M_{\phi} g .
$$

If v is a constant function, then $N^{v}=N, P^{v}=P$ and $S_{\phi}^{v}=S_{\phi}$.
Denoting by (f) the coset in $\left(L^{\infty}\right)^{-1} /\left(H^{\infty}\right)^{-1}$ of an f in $\left(L^{\infty}\right)^{-1}$, define

$$
\|(f)\|=\inf \left\{\|g\|_{\infty}\left\|g^{-1}\right\|_{\infty} ; g \in(f)\right\}
$$

and

$$
\gamma_{0}=\sup \left\{\|(f)\| ;(f) \in\left(L^{\infty}\right)^{-1} /\left(H^{\infty}\right)^{-1}\right\}
$$

This constant γ_{0} was introduced in [11], and used in [11] and [12]. In the definition above, we can use $\mathcal{L} /\left|\left(H^{\infty}\right)^{-1}\right|$ instead of $\left(L^{\infty}\right)^{-1} /\left(H^{\infty}\right)^{-1}$.

Lemma 1. If h is in L^{∞} then there exists a sequence $\left\{v_{n}\right\}$ in \mathcal{L} such that

$$
\lim _{n \rightarrow \infty} \int_{X} v_{n}^{2} d m=\int_{X}|h| d m
$$

and

$$
\lim _{n \rightarrow \infty} \int_{X}|h|^{2} v_{n}^{-2} d m=\int_{X}|h| d m
$$

Proof. This is in the proof of Theorem 1 in [10]. In fact set $E_{n}=\{x \in X ; 0<$ $|h(x)|<1 / n\}, F_{0}=\{x \in X ; h(x)=0\}$ and $F_{n}=\{x \in X ;|h(x)| \geq 1 / n\}$. Define v_{n} by the formula

$$
v_{n}(x)= \begin{cases}1 & x \in E_{n} \\ 1 / n & x \in F_{0} \\ |h(x)|^{1 / 2} & x \in F_{n}\end{cases}
$$

LEMMA 2. If ϕ is in H^{∞}, then for any v in \mathcal{L}

$$
\begin{array}{r}
\left\|S_{\phi}^{v}\right\|=\sup \left\{\left|\int \phi h \bar{k} d m\right| ; h \in v H^{2}, k \in v^{-1} M^{\perp},\|h\|_{2} \leq 1\right. \text { and } \\
\left.\|k\|_{2} \leq 1\right\} .
\end{array}
$$

Proof. Since $N^{v}=\left(v H^{2}\right) \cap v^{-1} M^{\perp}$, it is sufficient to show that

$$
\begin{array}{r}
\left\|S_{\phi}^{v}\right\| \geq \sup \left\{\left|\int \phi h \bar{k} d m\right| ; h \in v H^{2}, k \in v^{-1} M^{\perp},\|h\|_{2} \leq 1\right. \text { and } \\
\left.\|k\|_{2} \leq 1\right\} .
\end{array}
$$

For $h \in v H^{2}$ and $k \in v^{-1} M^{\perp}$

$$
\begin{aligned}
\left|\int \phi h \bar{k} d m\right| & =|(\phi h, k)| \\
& =\left|\left(\phi P^{v} h, k\right)\right| \\
& =\left|\left(P^{v} \phi P^{v} h, k\right)\right| \\
& \leq\left\|S_{\phi}^{v}\right\|\|h\|_{2}\|k\|_{2}
\end{aligned}
$$

where (,) denotes the usual inner product with respect to $d m$. Hence the lemma follows.

ThEOREM 1. Suppose M is an invariant subspace of H^{2} and $M^{\perp} \cap L^{\infty}$ is dense in $M^{\perp} \cap L^{1}$. Let ϕ be a function in H^{∞}; then the following are valid.
(1) $\sup \left\{\left\|S_{\phi}^{v}\right\| ; v \in \mathcal{L}\right\}=\left\|\phi+M \cap L^{\infty}\right\|$.
(2) $\left\|S_{\phi}^{v}\right\|=\left\|S_{\phi}^{u}\right\|$ if $(v)=(u)$.
(3) $\left\|\left(v^{-1}\right)\right\| \leq\left\|S_{\phi}^{v}\right\| /\left\|S_{\phi}\right\| \leq\|(v)\|$ for any v in \mathcal{L}.

Proof.
(1) If $g \in M \cap L^{\infty}$ and $h \in N^{v}$ then $g h \in v M$. Hence

$$
S_{\phi+g}^{v} h=P^{v}((\phi+g) h)=P^{v}(\phi h) .
$$

Thus for any $v \in \mathcal{L}\left\|S_{\phi}^{v}\right\| \leq\left\|\phi+M \cap L^{\infty}\right\|$. If $h \in M^{\perp} \cap L^{\infty}$ then $h=v_{n} \times v_{n}^{-1} h$, $v_{n} \in v_{n} H^{2}$ and $v_{n}^{-1} h \in\left(v_{n} M\right)^{\perp}=v_{n}^{-1} M^{\perp}$. By Lemma 2

$$
\begin{aligned}
\left|\int_{X} \phi \bar{h} d m\right| & =\left|\int_{X} \phi v_{n}\left(v_{n}^{-1} \bar{h}\right) d m\right| \\
& \leq\left\|S_{\phi}^{v_{n}}\right\|\left\|v_{n}\right\|_{2}\left\|v_{n}^{-1} h\right\|_{2} .
\end{aligned}
$$

As $n \rightarrow \infty$, by Lemma 1

$$
\left|\int_{X} \phi \bar{h} d m\right| \leq \sup _{v}\left\|S_{\phi}^{v}\right\| \int_{X}|\bar{h}| d m .
$$

Since $M^{\perp} \cap L^{\infty}$ is dense in $M^{\perp} \cap L^{1}$

$$
\left\|\phi+M \cap L^{\infty}\right\| \leq \sup _{v}\left\|S_{\phi}^{v}\right\| .
$$

(2) If $f \in\left(H^{\infty}\right)^{-1}$ then $v|f| H^{2}=q\left(v H^{2}\right)$ and $v^{-1}|f|^{-1} M^{\perp}=q\left(v^{-1} M^{\perp}\right)$ with $q=|f| / f=\bar{f} /|f|$. Hence

$$
\begin{aligned}
& \sup \left\{\left|\int_{X} a \bar{b} \phi d m\right| ; a \in v H^{2}, b \in v^{-1} M^{\perp},\|a\|_{2} \leq 1\right. \text { and } \\
& \left.\|b\|_{2} \leq 1\right\} \\
& =\sup \left\{\left|\int_{X} c \bar{d} \phi d m\right| ; c \in v|f| H^{2}, d \in v^{-1}|f|^{-1} M,\|c\|_{2} \leq 1\right. \text { and } \\
& \left.\|d\|_{2} \leq 1\right\} .
\end{aligned}
$$

By Lemma $2\left\|S_{\phi}^{v}\right\|=\left\|S_{\phi}^{u}\right\|$ if $(v)=(u)$.
(3) Let $v \in \mathcal{L}$. If $\int_{X}|k|^{2} v^{2} d m \leq 1$ and $\int_{X}|h|^{2} v^{-2} d m \leq 1$, then $\int_{X}|k|^{2} d m \leq$ $\left\|v^{-2}\right\|_{\infty}$ and $\int_{X}|h|^{2} d m \leq\left\|v^{2}\right\|_{\infty}$. Hence

$$
\begin{aligned}
&\left\|S_{\phi}^{v}\right\|= \sup \left\{\left|\int_{X} a \bar{b} \phi d m\right| ; a \in N^{v}, b \in N^{v},\|a\|_{2} \leq 1\right. \text { and } \\
&\left.\|b\|_{2} \leq 1\right\} \\
& \leq \sup \left\{\left|\int_{X} v k \times v^{-1} \bar{h} \phi d m\right| ; v k \in v H^{2}, v^{-1} k \in(v M)^{\perp},\right. \\
&\left.\|v k\|_{2} \leq 1 \text { and }\left\|v^{-1} h\right\|_{2} \leq 1\right\} \\
& \leq \sup \left\{\left|\int_{X} k \bar{h} \phi d m\right| ; k \in H^{2}, h \in M^{\perp},\|k\|_{2} \leq\left\|v^{-2}\right\|_{\infty}^{1 / 2}\right.
\end{aligned} \quad \begin{array}{r}
\text { and } \left.\|h\|_{2} \leq\left\|v^{2}\right\|_{\infty}^{1 / 2}\right\} \\
\leq\left(\left\|v^{-2}\right\|_{\infty}\left\|v^{2}\right\|_{\infty}\right)^{1 / 2} \sup \left\{\left|\int_{X} k \bar{h} \phi d m\right| ; k \in H^{2}, h \in M^{\perp}\right. \\
\left.\|k\|_{2} \leq 1 \text { and }\|h\|_{2} \leq 1\right\} .
\end{array}
$$

By Lemma 2

$$
\left\|S_{\phi}^{v}\right\| \leq\left\|v^{-1}\right\|_{\infty}\|v\|_{\infty}\left\|S_{\phi}\right\|
$$

and by (2) in this theorem

$$
\left\|S_{\phi}^{v}\right\| \leq\|(v)\|\left\|S_{\phi}\right\| .
$$

This implies (3).
The proof of (1) of Theorem 1 is similar to that of Theorem 1 in [10]. The proofs of (2) and (3) are similar to that of Theorem 3 in [11].

Corollary 1. Suppose M is an invariant subspace of H^{2} such that $M^{\perp} \cap L^{\infty}$ is dense in $M^{\perp} \cap L^{1}$. If γ_{0} is finite, then

$$
\left\|S_{\phi}\right\| \leq\left\|\phi+M \cap L^{\infty}\right\| \leq \gamma_{0}\left\|S_{\phi}\right\|
$$

for any ϕ in H^{∞}.
If A is a disc algebra then $\gamma_{0}=1$ and hence Corollary 1 is a part of the Sarason Theorem. Let N_{τ} denote the set of representing measures on the Shilov boundary of A for τ. Suppose N_{τ} is finite dimensional and m is a core point of N_{τ}. Let N^{∞} be the real annihilator of A in L_{R}^{∞}; then N^{∞} is also finite dimensional. Set $\mathcal{E}=\exp N^{\infty}$; then \mathcal{E} is a subgroup of \mathcal{L}. If $n=0$ then $\mathcal{E}=\{1\}$.

Corollary 2. Suppose N_{τ} is finite dimensional and m is a core point of N_{τ}. Let M be an invariant subspace of H^{2} and ϕ a function in H^{∞}.
(1) $\sup \left\{\left\|S_{\phi}^{v}\right\| ; v \in \mathcal{E}\right\}=\left\|\phi+M \cap L^{\infty}\right\|$.
(2) If m is a unique logmodular measure then there exists v_{0} in \mathcal{E} such that

$$
\left\|S_{\phi}^{v_{0}}\right\|=\left\|\phi+M \cap L^{\infty}\right\| .
$$

Moreover γ_{0} is finite and so

$$
\left\|S_{\phi}\right\| \leq\left\|\phi+M \cap L^{\infty}\right\| \leq \gamma_{0}\left\|S_{\phi}\right\|
$$

Proof. (1) By the proof of Theorem 2 in [10] and (2) of Theorem 1, we can choose \mathcal{E} instead of \mathcal{L} in (1) of Theorem 1. By Theorem 6.1 in [7, Chapter V], $M^{\perp} \cap L^{\infty}$ is dense in $M^{\perp} \cap L^{1}$ and hence we need not assume it. (2) By (1) and the proof of Theorem 3 in $\left[\mathbf{1 0]}\right.$ there exists v_{0} in \mathcal{E} such that $\left\|S_{\phi}^{v_{0}}\right\|=\left\|\phi+M \cap L^{\infty}\right\|$. γ_{0} is finite by Theorem in [11] and hence Corollary 1 completes the proof.
3. Pick Interpolation Theorem. The proofs in this section are modeled after the Pick intepolation theorem for a bounded domain in the plane whose boundary consists of finite disjoint analytic Jordan curves due to M. B. Abrahamse [1].

Let $E=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ be the finite set of independent continuous linear functionals on H^{2}. Suppose if $s \in E$ then for any ϕ in H^{∞} and h in $H^{2} s(\phi h)=$ $s(\phi) s(h)$, and we will write $s(h)=h(s)$. Put $M=\left\{f \in H^{2}: f(s)=0\right.$ for all $s \in$ $E\}$. Then M is an invariant subspace and $N=H^{2} \ominus M$ is an n-dimensional subspace. For each v in $\mathcal{L}, N^{v}=v H^{2} \ominus v M$ is also an n-dimensional subspace. Let $(,)_{v}$ denote the usual inner product with respect to $v^{2} d m$. For each v in \mathcal{L} and $s \in E$, there exists k_{s}^{v} in H^{2} such that for any h in H^{2}

$$
h(s)=\left(h, k_{s}^{v}\right)_{v}=\int_{X} h \overline{k_{s}^{v}} v^{2} d m
$$

If v is constant we will write $k_{s}^{v}=k_{s}$. Put $k^{v}(s, t)=\left(k_{s}^{v}, k_{t}^{v}\right)_{v}$; then $k^{v}(s, t)$ is a kernel function on $E \times E$. If f is in M then for any $s \in E$ we have $\left(f, k_{s}^{v}\right)_{v}=0$ and hence

$$
\int_{X} \bar{f} k_{s}^{v} v^{2} d m=\int_{X} \overline{v f} v k_{s}^{v} d m=0 .
$$

Therefore $v k_{s}^{v}$ belongs to N^{v} and $\left\{v k_{s_{1}}^{v}, \ldots, v k_{s_{n}}^{v}\right\}$ is a basis in N^{v}.
Lemma 3. For ϕ in $H^{\infty}, P^{v}\left(\bar{\phi} k_{s}^{v}\right)=\overline{\phi(s)} k_{s}^{v}$.
THEOREM 2. Let $E=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ be the finite set of independent continuous linear functionals on H^{2} which if $s \in E$ then for any ϕ in H^{∞} and h in $H^{2} s(\phi h)=$
$s(\phi) s(h)$, and let $w_{1}, w_{2}, \ldots, w_{n}$ be complex numbers. Suppose $M^{\perp} \cap L^{\infty}$ is dense in $M^{\perp} \cap L^{1}$ where $M=\left\{h \in H^{2} ; h(s)=0\right.$ for all $\left.s \in E\right\}$.
(1) There is an analytic function ϕ in H^{∞} satisfying $\|\phi\|_{\infty} \leq 1$ and $\phi\left(s_{i}\right)=w_{i}$ for $i=1, \ldots, n$ if and only if the matrix

$$
\left[\left(1-w_{i} \bar{w}_{j}\right) k^{v}\left(s_{i}, s_{j}\right)\right]
$$

is nonnegative for each v in \mathcal{L}.
(2) When $(v)=(u)$, the matrix $\left[\left(1-w_{i} \bar{w}_{j}\right) k^{v}\left(s_{i}, s_{j}\right)\right]$ is nonnegative if and only if $\left[\left(1-w_{i} \bar{w}_{j}\right) k^{\nu}\left(s_{i}, s_{j}\right)\right]$ is nonnegative.
(3) When γ_{0} is finite, if the matix

$$
\left[\left(1-w_{i} \bar{w}_{j}\right) k\left(s_{i}, s_{j}\right)\right]
$$

is nonnegative then there is an analytic function ϕ in H^{∞} satisfying $\|\phi\|_{\infty} \leq \gamma_{0}$ and $\phi\left(s_{i}\right)=w_{i}$ for $i=1, \ldots, n$.

Proof. For $s \in E$, let α_{s} be a complex number and set

$$
k=\sum_{s} \bar{\alpha}_{s} v k_{s}^{v} .
$$

Then

$$
\|k\|_{2}^{2}=\sum_{s, t} \alpha_{s} \bar{\alpha}_{t} k^{v}(s, t)
$$

and

$$
\left\|P^{v}(\bar{\phi} k)\right\|_{2}^{2}=\sum_{s, t} \alpha_{s} \bar{\alpha}_{t} \phi(s) \bar{\phi}(t) k^{v}(s, t) .
$$

Hence the assertion

$$
\left\|P^{v}(\bar{\phi} k)\right\|_{2}^{2} \leq\|k\|_{2}^{2}
$$

for all k in N^{v} is equivalent to the assertion

$$
\left[\left(1-w_{i} \bar{w}_{j}\right) k^{v}\left(s_{i}, s_{j}\right)\right] \geq 0 .
$$

Since $\left\|P^{v}(\bar{\phi} k)\right\|_{2}=\left\|\left(S_{\phi}^{v}\right)^{*} k\right\|_{2}$, the matrix above is nonnegative for each v if and only if $\sup \left\{\left\|S_{\phi}^{v}\right\| ; v \in \mathcal{L}\right\} \leq 1$.
(1) If $\|\phi\|_{\infty} \leq 1$ and $\phi\left(s_{i}\right)=w_{i}$ for $i=1, \ldots, n$ then $\sup \left\{\left\|S_{\phi}^{v}\right\| ; v \in \mathcal{L}\right\} \leq 1$ and hence from the above remark the part of 'only if' follows. Conversely if the matrix is positive for each $v \in \mathcal{L}$, by what was shown above $\sup \left\{\left\|S_{\phi}^{v}\right\| ; v \in\right.$ $\mathcal{L}\} \leq 1$ and by (1) of Theorem $1\left\|\phi+M \cap L^{\infty}\right\| \leq 1$.
(2) follows from (2) of Theorem 1 and what was shown above.
(3) If $\left[\left(1-w_{i} \bar{w}_{j}\right) k^{\nu}\left(s_{i}, s_{j}\right)\right]$ is nonnegative then $\left\|S_{\phi}\right\| \leq 1$. Since γ_{0} is finite, by Corollary $1\left\|\phi+M \cap L^{\infty}\right\| \leq \gamma_{0}$ and this implies (2).

Corollary 3. Suppose N_{τ} is finite dimensional and m is a core point of N_{τ}. Let $E=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ be the finite set of independent continuous linear functionals on H^{2} and $w_{1}, w_{2}, \ldots, w_{n}$ complex numbers.
(1) There is an analytic function ϕ in H^{∞} satisfying $\|\phi\|_{\infty} \leq 1$ and $\phi\left(s_{i}\right)=w_{i}$ for $i=1, \ldots, n$ if and only if the matrix

$$
\left[\left(1-w_{i} \bar{w}_{j}\right) k^{v}\left(s_{i}, s_{j}\right)\right]
$$

is nonnegative for each v in \mathcal{E}
(2) When m is a unique logmodular measure, if the matrix

$$
\left[\left(1-w_{i} \bar{w}_{j}\right) k\left(s_{i}, s_{j}\right)\right]
$$

is nonnegative then there is an analytic function ϕ in H^{∞} satisfying $\|\phi\|_{\infty} \leq \gamma_{0}$
and $\phi\left(s_{i}\right)=w_{i}$ for $i=1, \ldots, n$.
In this section, we used a well known result, that is, when $E=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ is a finite set there exists at least one function f in H^{∞} such that $f\left(s_{i}\right)=w_{i}$ for $i=1, \ldots, n$.
4. Dilations of Commutants. Let L be a complex Hilbert space and $\mathcal{B}(L)$ the algebra of all bounded linear operators on L. I denotes the identity operator in L. An algebra homomorphism $f \rightarrow \mathcal{M}_{f}$ of H^{∞} in $\mathcal{B}(L)$ which satisfies

$$
\mathcal{M}_{1}=I \quad \text { and } \quad\left\|\mathcal{M}_{f}\right\| \leq\|f\|_{\infty}
$$

is called a representation of H^{∞} on L. If \mathcal{N} is a closed subspace of L and \mathcal{P} is the orthogonal projection onto \mathcal{N}, then \mathcal{N} is called semi-invariant under H^{∞} provided $\mathcal{P M} \mathcal{M}_{f} \mathscr{P M}{ }_{g} \mathcal{P}=\mathcal{P M} \mathcal{M}_{f} \mathcal{M}_{g}$ for all f and g in H^{∞}. For ϕ in H^{∞} and h in \mathcal{N}, S_{ϕ} is the operator defined by

$$
S_{\phi} h=P \mathcal{M}_{\phi} h
$$

D. Sarason [14] showed that every semi-invariant subspace of H^{∞} is equal to the orthogonal complement of one invariant subspace of H^{∞} with respect to a larger one, and every subspace of the latter form is semi-invariant under H^{∞}. By the Sarason Theorem it is natural to assume that for any f, g in $H^{\infty} \mathcal{M}_{f}^{*} \mathcal{M}_{g}=\mathcal{M}_{g} \mathcal{M}_{f}^{*}$. A question is that if T is a bounded operator on \mathcal{N} that commutes with \mathcal{S}_{f} for any f in H^{∞} then $T=S_{\phi}$ for some ϕ in H^{∞} and $\|T\|=\|\phi\|_{\infty}$. However the conjecture can be answered negatively even if \mathcal{N} is two dimensional because the Pick interpolation theorem for two points is not true in the original form for the annulus algebra [$\mathbf{1}, \mathrm{p} .202$]. If the question can be answered positively for the disc algebra, then it contains the part of a theorem of B. Sz-Nagy and C. Foiaş [9] and
hence a theorem of T. Ando [3]. The question is not true for the polydisc algebra [8]. This is not so surprizing. For when $\mathcal{N}=N=H^{2} \ominus M$, if the question is true then for any ϕ in $H^{\infty}\left\|S_{\phi}\right\|=\left\|\phi+M \cap L^{\infty}\right\|$. This negative answer for the polydisc algebra is related with examples of S. Parrott [13] and N. J. Varopoulos [15].
In this section we concentrate on a special case. We assume that $H^{\infty}=H^{2} \cap L^{\infty}$. As in Section 2 let $\mathcal{N}=N=H^{2} \ominus M, L=L^{2}$ and $S_{\phi}=S_{\phi}\left(\phi \in H^{\infty}\right)$. Suppose $N \cap L^{\infty}$ is dense in N, then $N^{v} \cap L^{\infty}$ is dense in N^{v} for any v in \mathcal{L}. For ϕ in H^{2} and g in $N^{v} \cap L^{\infty}, S_{\phi}^{v}$ is the operator defined by

$$
\check{S}_{\phi}^{v} g=P^{v} M_{\phi} g .
$$

If ϕ is in H^{∞} then $\stackrel{S}{\phi}_{\phi}^{v}=S_{\phi}^{v}$.
Theorem 3. Let M be an invariant subspace of H^{2} and let $M^{\perp} \cap L^{\infty}$ be dense in M^{\perp} and $M^{\perp} \cap L^{\perp}$, and $N \cap L^{\infty}$ dense in N. Suppose T is a bounded operator on N which commutes with S_{f} for any f in H^{∞}.
(1) There exists a function ϕ in H^{2} such that $T=\dot{S}_{\phi}$.
(2) If TPI is in H^{∞} then there exists a function ϕ in H^{∞} such that

$$
\|T\| \leq\|\phi\|_{\infty}, T=S_{\phi} \text { and }\|\phi\|_{\infty}=\sup \left\{\left\|S_{\phi}^{v}\right\| ; v \in \mathcal{L}\right\} .
$$

(3) If γ_{0} is finite then there exists a function ϕ in H^{∞} such that

$$
\|T\| \leq\|\phi\|_{\infty} \leq \gamma_{0}\|T\| \text { and } T=S_{\phi} .
$$

Proof.
(1) Put $\phi=T P 1$ then $\phi \in H^{2}$. For any $h, k \in N \cap L^{\infty}$

$$
\begin{aligned}
(T h, k) & =\left(h P 1, T^{*} k\right) \\
& =\left(T S_{h} P 1, k\right) \\
& =\left(S_{h} T P 1, k\right) \\
& =(\phi h, k) \\
& =\left(\dot{S}_{\phi} h, k\right)
\end{aligned}
$$

because T commutes with S_{h}. Thus $T=\grave{S}_{\phi}$ because $N \cap L^{\infty}$ is dense in N.
(2) $\phi_{1}=T P 1$ is in H^{∞} and hence by the proof of (1) $T=S_{\phi_{1}}$. By (1) of Theorem 1 we can choose ϕ in H^{∞} such that $\|T\| \leq\|\phi\|_{\infty}, T=S_{\phi}$ and $\|\phi\|_{\infty}=\sup \left\{\left\|S_{\phi}^{v}\right\| ; v \in \mathcal{L}\right\}$.
(3) Put $\phi_{1}=T P 1$ then $\phi_{1} \in H^{2}$. As in the proof of (1) of Theorem 1 we can show that

$$
\left|\int_{X} \phi_{1} \bar{h} d m\right| \leq \sup _{v}\left\|\stackrel{S}{S}_{\phi_{1}}^{v}\right\| \int_{X}|\bar{h}| d m
$$

for $h \in M^{\perp} \cap L^{\infty}$. Moreover as in the proof of (3) of Theorem 1 we can show that

$$
\begin{aligned}
&\left\|S_{\phi_{1}}^{v}\right\| \leq\left(\left\|v^{-2}\right\|_{\infty}\left\|v^{2}\right\|_{\infty}\right)^{\frac{1}{2}} \sup \left\{\left|\int_{X} k \bar{h} \phi_{1} d m\right|\right. \\
&\left.k \in H^{\infty}, h \in M^{\perp} \cap L^{\infty},\|k\|_{2} \leq 1 \text { and }\|h\|_{2} \leq 1\right\}
\end{aligned}
$$

For any $h, k \in N \cap L^{\infty},(T h, k)=\left(\stackrel{\circ}{S}_{\phi_{1}}^{v} h, k\right)$ and hence as in the proof of Lemma 2 we can show that

$$
\begin{gathered}
\|T\|=\sup \left\{\left|\int_{X} k \bar{h} \phi_{1} d m\right| ; k \in H^{\infty}, h \in M^{\perp} \cap L^{\infty},\|k\|_{2} \leq 1\right. \\
\text { and } \left.\|h\|_{2} \leq 1\right\}
\end{gathered}
$$

because $M^{\perp} \cap L^{\infty}$ is dense in M. Since γ_{0} is finite, $\sup \left\|\stackrel{\circ}{S}_{\phi_{1}}^{v}\right\| \leq \gamma_{0}\|T\|$. Therefore $\sup \left\|\dot{S}_{\phi_{1}}^{v}\right\|<\infty$ and hence by the Hahn-Banach theorem there exists a function $\phi \in L^{\infty}$ such that $\phi-\phi_{1}$ is orthogonal to $M^{\perp} \cap L^{\infty}$. Since $M^{\perp} \cap L^{\infty}$ is dense in $M^{\perp}, \phi-\phi_{1}$ belongs to M. Thus $\phi \in H^{2} \cap L^{\infty}=H^{\infty}$ and $S_{\phi}=\dot{S}_{\phi_{1}}^{v}$.
5. Hankel operators and Toeplitz operators. Let L be a complex Hilbert space and $\mathcal{M}_{f}\left(f \in L^{\infty}\right)$ a representation of L^{∞} on L. If H is a closed subspace of L and Q is the orthogonal projection onto H^{\perp}, then H is called invariant under H^{∞} provided $(1-Q) \mathcal{M}_{f}(1-Q)=\mathcal{M}_{f}(1-Q)$ for all f in H^{∞}. For ϕ in L^{∞} and h in H, H_{ϕ} is the operator defined by

$$
H_{\phi} h=Q \mathcal{M}_{\phi} h
$$

and it is called a Hankel operator. For ϕ in L^{∞} and h in H, T_{ϕ}^{+}is the operator defined by

$$
T_{\phi}^{+} h=(1-Q) \mathcal{M}_{\phi} h
$$

and it is called a Toeplitz operator. For ϕ in H^{∞} put $T_{\phi}^{-}=Q \mathcal{M}_{\phi} \mid H$. Two natural questions are following:
(1) If T is a bounded operator from H into H^{\perp} and $T T_{f}^{+}=T_{f}^{-} T$ for any f in H^{∞} then $T=H_{\phi}$ for some ϕ in L^{∞} and $\|T\|=\left\|\mathcal{M}_{\phi}\right\|$?
(2) If T is a bounded operator on H that commutes with T_{f}^{+}for any f in H^{∞} then $T=T_{\phi}^{+}$for some ϕ in H^{∞} and $\|T\|=\left\|\mathcal{M}_{\phi}\right\|$? As in Section 4 if the questions can be answered positively for the disc algebra, then these contain the part of a theorem of B. Sz-Nagy and C. Foiaş.
In this section we concentrate on a special case. Let $L=L^{2}$ and $H=H^{2}$.
Proposition 4. Suppose if h is a function in H^{2} with $h H^{2} \subset H^{2}$ then h belongs to H^{∞}. If T is a bounded linear operator on H that commutes with T_{f}^{+}for all f in H^{∞} then $T=T_{\phi}^{+}$for some ϕ in H^{∞} and $\|T\|=\left\|K_{\phi}\right\|$.

Proof. Put $\phi=T 1$ then $\phi \in H^{2}$. Fix $h \in H^{2}$. There exists a sequence $\left\{h_{n}\right\}$ in H^{∞} such that $\left\|h_{n}-h\right\|_{2} \rightarrow 0$ and $h_{n} \rightarrow h$ a. e. as $n \rightarrow \infty$. Since T commutes with T_{f}^{+}for all f in H^{∞},

$$
\begin{aligned}
T h_{n} & =T\left(T_{h_{n}}^{+} 1\right) \\
& =T_{h_{n}}^{+} T 1 \\
& =T_{h_{n}}^{+} \phi \\
& =h_{n} \phi .
\end{aligned}
$$

Since T is bounded and $\left\|T h_{n}-T h\right\|_{2} \rightarrow 0$ as $n \rightarrow \infty,\left\|h_{n} \phi-T h\right\|_{2} \rightarrow 0$ as $n \rightarrow \infty$. There exists a subsequence $\left\{h_{n_{j}}\right\}$ in H^{∞} such that $h_{n_{j}} \phi \rightarrow h \phi$ a. e. as $j \rightarrow \infty$, and hence $\phi h=T h$. Thus $\phi H^{2} \subset H^{2}$ and by the hypothesis $\phi \in H^{\infty}$ and $T=T_{\phi}^{+}$.

By the proofs of Theorem 1 in [10], Theorem 3 in [11] and Theorem 3 in this paper, we can prove the following proposition. Let Q^{v} be the orthogonal projection from L^{2} onto $\left(v H^{2}\right)^{\perp}$ for each v in \mathcal{L}. For ϕ in H^{∞} and g in $v H^{2}, H_{\phi}^{v}$ is the operator defined by

$$
H_{\phi}^{v} g=Q^{v} M_{\phi} g .
$$

When ϕ in H^{2} and g in $\nu H^{2} \cap L^{\infty}, \stackrel{H}{H}_{\phi}^{v}$ is the operator denfined by $\stackrel{H}{H}_{\phi}^{v} g=Q^{\nu} M_{\phi} g$.
PRoposition 5. Let $\left(H^{2}\right)^{\perp} \cap L^{\infty}$ be dense in $\left(H^{\infty}\right)^{\perp} \cap L^{1}$ and $H^{\infty}=H^{2} \cap L^{\infty}$. Suppose T is a bounded operator from H^{2} into $\left(H^{2}\right)^{\perp}$ and $T T_{f}^{+}=T_{f}^{-} T$ for any f in H^{∞}.
(1) There exists a function ϕ in H^{2} such that $T=\stackrel{\circ}{H}_{\phi}$.
(2) If $T 1$ is in H^{∞} then there exists a function in L^{∞} such that

$$
\begin{aligned}
& \|T\| \leq\|\phi\|_{\infty}, T=H_{\phi} \quad \text { and } \\
& \|\phi\|_{\infty}=\sup \left\{\left\|H_{\phi}^{v}\right\| ; v \in \mathcal{L}\right\} .
\end{aligned}
$$

(3) If γ_{0} is finite then there exists a function ϕ in L^{∞} such that

$$
\|T\| \leq\|\phi\|_{\infty} \leq \gamma_{0}\|T\| \text { and } T=H_{\phi}
$$

6. Concrete Examples. All results in this paper were known in the disc algebra. We shall now apply them to some other concrete examples.
(I) Let Γ be a subgroup of reals, endowed with the discrete topology, and X the dual group. Let m be a Haar measure on X and $A=\{f \in C(X)$; $\int_{X} f(x)(-a, x) d m(x)=0$ for any $a \in \Gamma$ with $\left.a>0\right\}$, where (a, x) denotes the continuous character of X for $a \in \Gamma$. Then $\operatorname{dim} N_{\tau}=0$ and $N_{\tau}=\{m\}$, and hence $\gamma_{0}=1$. If M is an invariant subspace of H^{2}, then $M^{\perp} \cap L^{\infty}$ is dense in M^{\perp} and $M^{\perp} \cap L^{1}$ but $N=H^{2} \ominus M$ is always infinite dimensional. Hence we can not apply Theorem 2 or Corollary 2 to this example. We do not know whether $N \cap L^{\infty}$ is dense in N or not.
(II) Let Y be a compact subset of the plane, and let $R(Y)$ be the uniform closure of the rational functions in $C(Y)$. We regard $R(Y)$ as a uniform algebra on its Shilov boundary, the topological boundary X of Y. Suppose the complement Y^{c} of Y has a finite number n of components and the interior Y^{0} of Y is a nonempty connected set. Let $A=R(Y) \mid X$ and $\tau(f)=f(s)$ for some s in Y^{0}. If m is a harmonic measure on X for s then m is a unique logmodular measure of N_{τ} and $\operatorname{dim} N_{\tau}=n<\infty$. Then $\mathcal{E} \subset C(X)$ and γ_{0} is finite (see [11]). (1) of Corollary 2 is essentially a theorem of M. B. Abrahamse [1, Theorem 1]. We can show that $N \cap L^{\infty}$ is dense in N, hence Theorem 3 gives a generalization of the Sarason Theorem but an example of M. B. Abrahamse [1] shows that the Sarason Theorem is not true explicitly.
(III) Let \mathcal{A} be the disc algebra and A be a subalgebra of \mathcal{A} which contains the constants and which has finite codimension in \mathcal{A}. If $\tau(f)=\tilde{f}(0)$ for f in A and m is the normalized Lebesgue measure on the unit circle ∂U, then it is easy to check that m is a core point of N_{τ} and $\operatorname{dim} N_{\tau}=\operatorname{dim} N^{\infty}=2 \operatorname{dim} \mathcal{A} / A$. Hence we can apply (1) of Corollary 3 to this example. But γ_{0} is infinte [11].
Let \mathcal{H}^{∞} be the weak-* closure of \mathcal{A} in L^{∞}, that is, H^{∞} the classical Hardy space. Let s_{1}, \ldots, s_{n} be distinct points in the open unit disc U, and let w_{1}, \ldots, w_{n} be complex numbers. We wish to know a necessary and sufficient condition for that there
is a function f in H^{∞} satisfying $\|f\|_{\infty} \leq 1, f\left(s_{i}\right)=w_{i}$ for $i=1, \ldots, n, f^{\prime}(0)=$ $\cdots=f^{(\ell)}(0)=0$ and $f\left(a_{1}\right)=\cdots=f\left(a_{k}\right)$. Let $A=\left\{f \in \mathcal{A} ; f^{\prime}(0)=\cdots=\right.$ $f^{(\ell)}(0)=0$ and $\left.f\left(a_{1}\right)=\cdots=f\left(a_{k}\right)\right\}$, then (1) of Corollary 3 gives a solution, but it is very difficult to check the condition.
(IV) The unit polydisc U^{n} and the torus $(\partial U)^{n}$ are cartesian products of n copies of U and of ∂U, respectively. $A\left(U^{n}\right)$ is the class of all continuous complex functions on the closure \bar{U}^{n} of U^{n} with holomorphic restrictions to U^{n} is holomorphic there. Let $A=A\left(U^{n}\right) \mid X$ and $X=(\partial U)^{n}$. Let m be normalized Lebesgue measure; then m is a representing measure for τ on X where $\tau(f)=f(0)$ and $0 \in U^{n}$. We can apply Theorem 1, Theorem 2, (1) and (2) of Theorem 3, Proposition 4 and Proposition 5.
The generalization of the Pick-Nevanlinna interpolation theorem was studied by F. Beatrous and J. Burbea [5] when E in Theorem 2 is an infinite uniqueness set in U^{n}. If $E=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ is finite set then nothing was known, where $E \subset U^{n}$. When $M=\left\{h \in H^{2} ; h(s)=0\right.$ for all $\left.s \in E\right\}, M$ is an invariant subspace in H^{2} which has finite codimension and $N=H^{2} \ominus M$ is in H^{∞}. Hence $M^{\perp} \cap L^{\infty}$ is dense in M^{\perp} and $M^{\perp} \cap L^{1}$ and (1) and (2) of Theorem 2 in this paper give a generalization of the Pick interpolation theorem. However we can not apply (3) of Theorem 2. For K. Izuchi noted to me privately that γ_{0} is infinite because H^{∞} is not a uniform algebra in L^{∞}. If N is finite dimensional then N is in H^{∞} (see [2]). Hence by Theorem 3 if T is a bounded operator on N which commutes with S_{f} for any f in H^{∞}, then $T=S_{\phi}$ for some ϕ in H^{∞}. However, there is an operator T on N such that $\|T\|<\neq\left\|\phi+M \cap L^{\infty}\right\|$. For an example due to Korányi and Pukánski [8] shows that a function on a 2 point set in the bi-disk that is not the restriction of any function in the unit ball of H^{∞}. Thus an exact generalization of the Sarason Theorem (and hence a theorem of Nagy and Foiaş) is not true.

References

1. M. B. Abrahamse, The Pick interpolation theorem for finitely connected domains, Michigan Math. J. 26 (1979) 195-203.
2. P. R. Ahern and D. N. Clark, Invariant subspaces and analytic continuation in several variables, J. Math. Mech. 19 (1970) 963-969.
3. T. Ando, On a pair of commutative contractions, Acta Sci. Math., 24 (1(1963) 88-90.
4. K. Barbey and H. König, Abstract analytic function theory and Hardy algebras, Lecture Notes in Mathematics, 593, Springer-Verlag, Berlin, 1977.
5. K. Beatrous and J. Burbea, Reproducing kernels and interpolation of holomorphic functions, Complex Analysis, Functional Analysis and Approximation Theory, J. Mujica (Ed.), (1986) 25-46.
6. R. G. Douglas and V.I.Paulsen, Completely bounded maps and hypo-Dirichlet algebras, Acta Sci. Math., 50 (1986), 143-157.
7. T. Gamelin, Uniform Algebras, 2nd ed., Chelsea, New York, (1984).
8. G. Koranyi and A. Pukánski, Holomorphic functions with positive real part on polycyylinders, Trans. Amer. Math. Soc. 108 (1983) 449-456.
9. B. Sz-Nagy and C. Foiaş, Dilation des commutants d'opérateurs, C. R. Acad. Sci. Paris Sér. A-B 266 (1968) 493-495.
10. T. Nakazi, Norms of Hankel operators and uniform algebras, Trans. Amer. Math. Soc. 299 (1987) 573-580.
11. T. Nakazi, Norms of Hankel operators and uniform algebras, II, Tohoku Math. J. 39 (1987) 543555.
12. T. Nakazi and T. Yamamoto, A lifting theorem and uniform algebras, Trans. Amer. Math. Soc. 305 (1988) 79-94.
13. S. Parrott, Unitary dilations for commuting contractions, Pacific J. Math., 34 (1973) 481-490.
14. D. Sarason, Generalized interpolation in H^{∞}, Trans. Amer. Math. Soc. 127 (1967) 179-203.
15. N. Th. Varopoulos, On an inequality of von Neumann and application of the metric theory of tensor products to operators theory, J. Funct. Anal. 16 (1974) 83-100.
16. I. Suciu, Function Algebras, translated from the Romanian by M. Mihailescu, Editura Academiei Republicii Socialiste Romania, Bucuresti (1973).

Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060, Japan

