COMMUTING DILATIONS AND UNIFORM ALGEBRAS

TAKAHIKO NAKAZI

1. Introduction. Let X be a compact Hausdorff space, let C(X) be the algebra of complex-valued continuous functions on X, and let A be a uniform algebra on X. Fix a nonzero complex homomorphism τ on A and a representing measure m for τ on X. The abstract Hardy space $H^p = H^p(m)$, $1 \le p \le \infty$, determined by A is defined to the closure of A in $L^p = L^p(m)$ when p is finite and to be the weak*-closure of A in $L^{\infty} = L^{\infty}(m)$ when $p = \infty$.

Let *M* be an invariant subspace of H^2 under the multiplications of functions in *A* and *N* the orthogonal complement of *M* in H^2 , that is, $N = H^2 \ominus M$. The orthogonal projection in L^2 with range *N* will be denoted by *P*. For *f* a function in H^{∞} let S_f denote the projection onto *N* of the operator M_f on L^2 of multiplication by *f*, that is, $S_f = PM_f | N$. If *A* is a disc algebra and $\tau(f) = \tilde{f}(0)$ where \tilde{f} denotes the holomomorphic extension of *f* in *A*, then τ is a complex homomorphism on *A*. Let *m* be a normalized Lebesgue measure on the unit circle ∂U ; then *m* is a representing measure for τ . Then H^2 is the classical Hardy space $H^2(U)$.

SARASON THEOREM. Let H^2 be the classical Hardy space $H^2(U)$. If T is a bounded linear operator on N that commutes with S_f ($f \in A$), then there is a function ϕ in H^{∞} such that

$$\|\phi\|_{\infty} = \|T\|$$
 and $T = S_{\phi}$.

The Sarason Theorem implies that $||S_{\phi}|| = ||\phi + M \cap L^{\infty}||$ for any ϕ in H^{∞} , and hence it is close to Nehari's theorem. The author ([10], [11]) generalized Nehari's theorem to general uniform algebras. In this paper generalizations of the Sarason Theorem to general uniform algebras will be proved using the method in the author's previous papers ([10], [11]). The proofs are different from Sarason's proof and simpler than his in the classical Hardy space $H^2(U)$. In Section 2, we will consider the relation between $||S_{\phi}||$ and $||\phi + M \cap L^{\infty}||$. In Section 3, we will apply the result in Section 2 to get Pick's theorem. In the special case, this gives a theorem of Abrahamse [1, Theorem 1] that implies Pick's theorem in a multiply

Received February 2, 1990.

This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.

connected domain. In Section 4, we will study generalizations of the Sarason Theorem. This gives a dilation of the commutant of some representation of a uniform algebra, extending partially the dilation theorem of Sz-Nagy and Foiaş, ([9]), in case A is a disc algebra. In Section 5, we will give dilations of the commutants of other representations of a uniform algebra relating with Hankel operators and Toeplitz operators. In Section 6, we will give concrete examples for which we can apply theorems in previous sections. That is, a uniform algebra which consists of rational functions on a multiply connected domain, a subalgebra of a disc algebra which contains the constants and which has finite codimension, and a polydisc algebra. However the Sarason Theorem is not true in an exact meaning. It is interesting to compare a recent paper of R. G. Douglas and V. I. Paulsen [6] or an example of S. Parrott [13] with this.

Throughout this paper, we use the following definition and assume that $M^{\perp} \cap L^{\infty}$ is dense in $M^{\perp} \cap L^1$. This assumption is satisfied in many examples (see Section 6).

DEFINITION. For an invariant subspace M in H^2 , M^{\perp} denotes the orthogonal complement of M in L^2 . Moreover set

$$M^{\perp} \cap L^{\infty} = \left\{ f \in L^{\infty} : \int_{X} f\bar{g} \, dm = 0 \text{ for all } g \text{ in } M \right\}$$

and

$$M^{\perp} \cap L^1 = \left\{ f \in L^1 \colon \int_X f \bar{g} \ dm = 0 \text{ for all } g \text{ in } M \cap L^{\infty} \right\}.$$

2. Generalized Interpolation. Put $\mathcal{L} = \{v \in L^{\infty}; v^{-1} \in L^{\infty} \text{ and } v \ge 0\}$. Let M be an invariant subspace of H^2 and N be an orthogonal complement of M in H^2 , that is, $N = H^2 \ominus M$, as in the Introduction. For each v in \mathcal{L} , let $N^v = vH^2 \ominus vM$ and P^v the orthogonal projection from L^2 onto N^v . For ϕ in H^{∞} and g in N^v , S^v_{ϕ} is the operator defined by

$$S^{\nu}_{\phi}g = P^{\nu}M_{\phi}g.$$

If v is a constant function, then $N^{v} = N$, $P^{v} = P$ and $S_{\phi}^{v} = S_{\phi}$.

Denoting by (f) the coset in $(L^{\infty})^{-1}/(H^{\infty})^{-1}$ of an f in $(L^{\infty})^{-1}$, define

$$||(f)|| = \inf\{||g||_{\infty} ||g^{-1}||_{\infty}; g \in (f)\}$$

and

$$\gamma_0 = \sup\{ \|(f)\|; (f) \in (L^{\infty})^{-1} / (H^{\infty})^{-1} \}.$$

This constant γ_0 was introduced in [11], and used in [11] and [12]. In the definition above, we can use $\mathcal{L}/|(H^{\infty})^{-1}|$ instead of $(L^{\infty})^{-1}/(H^{\infty})^{-1}$.

LEMMA 1. If h is in L^{∞} then there exists a sequence $\{v_n\}$ in \mathcal{L} such that

$$\lim_{n\to\infty}\int_X v_n^2 \, dm = \int_X |h| \, dm$$

and

$$\lim_{n\to\infty}\int_X |h|^2 v_n^{-2} dm = \int_X |h| dm.$$

PROOF. This is in the proof of Theorem 1 in [10]. In fact set $E_n = \{x \in X; 0 < |h(x)| < 1/n\}$, $F_0 = \{x \in X; h(x) = 0\}$ and $F_n = \{x \in X; |h(x)| \ge 1/n\}$. Define v_n by the formula

$$v_n(x) = \begin{cases} 1 & x \in E_n \\ 1/n & x \in F_0 \\ |h(x)|^{1/2} & x \in F_n \end{cases}$$

LEMMA 2. If ϕ is in H^{∞} , then for any v in \mathcal{L}

$$\|S_{\phi}^{v}\| = \sup\left\{ \left| \int \phi h\bar{k} \, dm \right|; \, h \in vH^{2}, \, k \in v^{-1}M^{\perp}, \, \|h\|_{2} \le 1 \text{ and} \\ \|k\|_{2} \le 1 \right\}$$

PROOF. Since $N^{\nu} = (\nu H^2) \cap \nu^{-1} M^{\perp}$, it is sufficient to show that

$$\|S_{\phi}^{\nu}\| \ge \sup\left\{ \left| \int \phi \, h\bar{k} \, dm \right|; \, h \in \nu H^2, \, k \in \nu^{-1} M^{\perp}, \, \|h\|_2 \le 1 \text{ and} \\ \|k\|_2 \le 1 \right\}.$$

For
$$h \in vH^2$$
 and $k \in v^{-1}M^{\perp}$
$$\left| \int \phi h\bar{k} \, dm \right| = |(\phi h, k)|$$
$$= |(\phi P^v h, k)|$$
$$= |(P^v \phi P^v h, k)|$$
$$\leq ||S_{\phi}^v|| \ ||h||_2 \ ||k||_2$$

where (,) denotes the usual inner product with respect to dm. Hence the lemma follows.

THEOREM 1. Suppose M is an invariant subspace of H^2 and $M^{\perp} \cap L^{\infty}$ is dense in $M^{\perp} \cap L^1$. Let ϕ be a function in H^{∞} ; then the following are valid. (1) $\sup\{\|S_{\phi}^{v}\|; v \in \mathcal{L}\} = \|\phi + M \cap L^{\infty}\|.$

(2) $\|S_{\phi}^{v}\| = \|S_{\phi}^{u}\|$ if (v) = (u).

 $(3) \| (v^{-1}) \| \le \| S_{\phi}^{v} \| / \| S_{\phi} \| \le \| (v) \| \text{ for any } v \text{ in } \mathcal{L}.$

PROOF.

(1) If $g \in M \cap L^{\infty}$ and $h \in N^{\nu}$ then $gh \in \nu M$. Hence

$$S_{\phi+g}^{\nu}h = P^{\nu}((\phi+g)h) = P^{\nu}(\phi h).$$

Thus for any $v \in \mathcal{L} \|S_{\phi}^{v}\| \leq \|\phi + M \cap L^{\infty}\|$. If $h \in M^{\perp} \cap L^{\infty}$ then $h = v_n \times v_n^{-1}h$, $v_n \in v_n H^2$ and $v_n^{-1}h \in (v_n M)^{\perp} = v_n^{-1}M^{\perp}$. By Lemma 2

$$\left| \int_{X} \phi \bar{h} \, dm \right| = \left| \int_{X} \phi \, v_n(v_n^{-1} \bar{h}) \, dm \right|$$
$$\leq \| S_{\phi}^{v_n} \| \, \| v_n \|_2 \, \| v_n^{-1} h \|_2.$$

As $n \to \infty$, by Lemma 1

$$\left|\int_{X}\phi\,\bar{h}\,dm\right|\leq \sup_{\nu}\|S_{\phi}^{\nu}\|\,\int_{X}|\bar{h}|\,dm.$$

Since $M^{\perp} \cap L^{\infty}$ is dense in $M^{\perp} \cap L^{1}$

$$\|\phi + M \cap L^{\infty}\| \leq \sup_{v} \|S^{v}_{\phi}\|.$$

(2) If $f \in (H^{\infty})^{-1}$ then $v|f|H^2 = q(vH^2)$ and $v^{-1}|f|^{-1}M^{\perp} = q(v^{-1}M^{\perp})$ with $q = |f|/f = \bar{f}/|f|$. Hence

$$\sup \left\{ \left| \int_{X} a\bar{b}\phi \ dm \right|; \ a \in vH^{2}, \ b \in v^{-1}M^{\perp}, \ \|a\|_{2} \le 1 \text{ and} \right.$$
$$\|b\|_{2} \le 1 \right\}$$
$$= \sup \left\{ \left| \int_{X} c\bar{d}\phi \ dm \right|; \ c \in v|f|H^{2}, \ d \in v^{-1}|f|^{-1}M, \ \|c\|_{2} \le 1 \text{ and} \right.$$
$$\|d\|_{2} \le 1 \right\}.$$

By Lemma 2 $||S_{\phi}^{v}|| = ||S_{\phi}^{u}||$ if (v) = (u).

TAKAHIKO NAKAZI

(3) Let $v \in \mathcal{L}$. If $\int_X |k|^2 v^2 \, dm \leq 1$ and $\int_X |h|^2 v^{-2} \, dm \leq 1$, then $\int_X |k|^2 \, dm \leq \|v^{-2}\|_{\infty}$ and $\int_X |h|^2 \, dm \leq \|v^2\|_{\infty}$. Hence

$$\begin{split} \|S_{\phi}^{v}\| &= \sup \left\{ \left| \int_{X} a\bar{b}\phi \ dm \right|; \ a \in N^{v}, \ b \in N^{v}, \ \|a\|_{2} \leq 1 \text{ and} \\ &\|b\|_{2} \leq 1 \right\} \\ &\leq \sup \left\{ \left| \int_{X} vk \times v^{-1}\bar{h}\phi \ dm \right|; \ vk \in vH^{2}, v^{-1}k \in (vM)^{\perp}, \\ &\|vk\|_{2} \leq 1 \text{ and } \|v^{-1}h\|_{2} \leq 1 \right\} \\ &\leq \sup \left\{ \left| \int_{X} k\bar{h}\phi \ dm \right|; \ k \in H^{2}, \ h \in M^{\perp}, \ \|k\|_{2} \leq \|v^{-2}\|_{\infty}^{1/2} \\ &\text{ and } \|h\|_{2} \leq \|v^{2}\|_{\infty}^{1/2} \right\} \\ &\leq \left(\|v^{-2}\|_{\infty} \|v^{2}\|_{\infty} \right)^{1/2} \sup \left\{ \left| \int_{X} k\bar{h}\phi \ dm \right|; \ k \in H^{2}, \ h \in M^{\perp}, \\ &\|k\|_{2} \leq 1 \text{ and } \|h\|_{2} \leq 1 \right\} \end{split}$$

By Lemma 2

$$\|S_{\phi}^{v}\| \leq \|v^{-1}\|_{\infty} \|v\|_{\infty} \|S_{\phi}\|$$

and by (2) in this theorem

 $||S_{\phi}^{v}|| \leq ||(v)|| ||S_{\phi}||.$

This implies (3).

The proof of (1) of Theorem 1 is similar to that of Theorem 1 in [10]. The proofs of (2) and (3) are similar to that of Theorem 3 in [11].

COROLLARY 1. Suppose M is an invariant subspace of H^2 such that $M^{\perp} \cap L^{\infty}$ is dense in $M^{\perp} \cap L^1$. If γ_0 is finite, then

$$\|S_{\phi}\| \leq \|\phi + M \cap L^{\infty}\| \leq \gamma_0 \|S_{\phi}\|$$

for any ϕ in H^{∞} .

If *A* is a disc algebra then $\gamma_0 = 1$ and hence Corollary 1 is a part of the Sarason Theorem. Let N_{τ} denote the set of representing measures on the Shilov boundary of *A* for τ . Suppose N_{τ} is finite dimensional and *m* is a core point of N_{τ} . Let N^{∞} be the real annihilator of *A* in $L_{\mathcal{R}}^{\infty}$; then N^{∞} is also finite dimensional. Set $\mathcal{E} = \exp N^{\infty}$; then \mathcal{E} is a subgroup of \mathcal{L} . If n = 0 then $\mathcal{E} = \{1\}$.

COROLLARY 2. Suppose N_{τ} is finite dimensional and m is a core point of N_{τ} . Let M be an invariant subspace of H^2 and ϕ a function in H^{∞} .

(1) sup{ $||S_{\phi}^{v}||$; $v \in \mathcal{E}$ } = $||\phi + M \cap L^{\infty}||$. (2) If m is a unique logmodular measure then there exists v_{0} in \mathcal{E} such that

$$||S_{\phi}^{v_0}|| = ||\phi + M \cap L^{\infty}||.$$

Moreover γ_0 is finite and so

 $||S_{\phi}|| \leq ||\phi + M \cap L^{\infty}|| \leq \gamma_0 ||S_{\phi}||.$

PROOF. (1) By the proof of Theorem 2 in [10] and (2) of Theorem 1, we can choose \mathcal{E} instead of \mathcal{L} in (1) of Theorem 1. By Theorem 6.1 in [7, Chapter V], $M^{\perp} \cap L^{\infty}$ is dense in $M^{\perp} \cap L^{1}$ and hence we need not assume it. (2) By (1) and the proof of Theorem 3 in [10] there exists v_0 in \mathcal{E} such that $||S_{\phi}^{v_0}|| = ||\phi + M \cap L^{\infty}||$. γ_0 is finite by Theorem in [11] and hence Corollary 1 completes the proof.

3. Pick Interpolation Theorem. The proofs in this section are modeled after the Pick interpolation theorem for a bounded domain in the plane whose boundary consists of finite disjoint analytic Jordan curves due to M. B. Abrahamse [1].

Let $E = \{s_1, s_2, ..., s_n\}$ be the finite set of independent continuous linear functionals on H^2 . Suppose if $s \in E$ then for any ϕ in H^∞ and h in H^2 $s(\phi h) = s(\phi)s(h)$, and we will write s(h) = h(s). Put $M = \{f \in H^2: f(s) = 0 \text{ for all } s \in E\}$. Then M is an invariant subspace and $N = H^2 \ominus M$ is an n-dimensional subspace. Let $(,)_v$ denote the usual inner product with respect to $v^2 dm$. For each v in \mathcal{L} and $s \in E$, there exists k_s^v in H^2 such that for any h in H^2

$$h(s) = (h, k_s^v)_v = \int_X h \overline{k_s^v} v^2 \, dm$$

If *v* is constant we will write $k_s^v = k_s$. Put $k^v(s, t) = (k_s^v, k_t^v)_v$; then $k^v(s, t)$ is a kernel function on $E \times E$. If *f* is in *M* then for any $s \in E$ we have $(f, k_s^v)_v = 0$ and hence

$$\int_X \bar{f} k_s^v v^2 \ dm = \int_X \overline{vf} \ v k_s^v \ dm = 0.$$

Therefore vk_s^v belongs to N^v and $\{vk_{s_1}^v, \ldots, vk_{s_n}^v\}$ is a basis in N^v .

LEMMA 3. For ϕ in H^{∞} , $P^{\nu}(\overline{\phi} k_s^{\nu}) = \overline{\phi(s)} k_s^{\nu}$.

THEOREM 2. Let $E = \{s_1, s_2, ..., s_n\}$ be the finite set of independent continuous linear functionals on H^2 which if $s \in E$ then for any ϕ in H^∞ and h in H^2 $s(\phi h) =$

 $s(\phi)s(h)$, and let w_1, w_2, \ldots, w_n be complex numbers. Suppose $M^{\perp} \cap L^{\infty}$ is dense in $M^{\perp} \cap L^1$ where $M = \{h \in H^2; h(s) = 0 \text{ for all } s \in E\}$.

(1) There is an analytic function ϕ in H^{∞} satisfying $\|\phi\|_{\infty} \leq 1$ and $\phi(s_i) = w_i$ for i = 1, ..., n if and only if the matrix

 $[(1 - w_i \bar{w}_j) k^{v}(s_i, s_j)]$

is nonnegative for each v in \mathcal{L} .

(2) When (v) = (u), the matrix $[(1 - w_i \bar{w}_j)k^v(s_i, s_j)]$ is nonnegative if and only if $[(1 - w_i \bar{w}_j)k^v(s_i, s_j)]$ is nonnegative.

(3) When γ_0 is finite, if the matix

$$[(1 - w_i \bar{w}_j)k(s_i, s_j)]$$

is nonnegative then there is an analytic function ϕ in H^{∞} satisfying $\|\phi\|_{\infty} \leq \gamma_0$ and $\phi(s_i) = w_i$ for i = 1, ..., n.

PROOF. For $s \in E$, let α_s be a complex number and set

$$k=\sum_{s}\bar{\alpha}_{s}vk_{s}^{v}.$$

Then

$$\|k\|_2^2 = \sum_{s,t} \alpha_s \bar{\alpha}_t k^{\nu}(s,t)$$

and

$$\|P^{\nu}(\bar{\phi}k)\|_2^2 = \sum_{s,t} \alpha_s \bar{\alpha}_t \phi(s) \bar{\phi}(t) k^{\nu}(s,t).$$

Hence the assertion

$$\|P^{\nu}(\bar{\phi}k)\|_{2}^{2} \leq \|k\|_{2}^{2}$$

for all k in N^{v} is equivalent to the assertion

$$[(1-w_i\bar{w}_j)k^{\nu}(s_i,s_j)]\geq 0.$$

Since $||P^{\nu}(\bar{\phi}k)||_2 = ||(S^{\nu}_{\phi})^* k||_2$, the matrix above is nonnegative for each ν if and only if $\sup\{|S^{\nu}_{\phi}||; \nu \in \mathcal{L}\} \le 1$.

(1) If $\|\phi\|_{\infty} \leq 1$ and $\phi(s_i) = w_i$ for i = 1, ..., n then $\sup\{\|S_{\phi}^v\|; v \in \mathcal{L}\} \leq 1$ and hence from the above remark the part of 'only if' follows. Conversely if the matrix is positive for each $v \in \mathcal{L}$, by what was shown above $\sup\{\|S_{\phi}^v\|; v \in \mathcal{L}\} \leq 1$ and by (1) of Theorem 1 $\|\phi + M \cap L^{\infty}\| \leq 1$.

(2) follows from (2) of Theorem 1 and what was shown above.

(3) If $[(1 - w_i \bar{w}_j)k^{\nu}(s_i, s_j)]$ is nonnegative then $||S_{\phi}|| \le 1$. Since γ_0 is finite, by Corollary 1 $||\phi + M \cap L^{\infty}|| \le \gamma_0$ and this implies (2).

COROLLARY 3. Suppose N_{τ} is finite dimensional and m is a core point of N_{τ} . Let $E = \{s_1, s_2, \ldots, s_n\}$ be the finite set of independent continuous linear functionals on H^2 and w_1, w_2, \ldots, w_n complex numbers.

(1) There is an analytic function ϕ in H^{∞} satisfying $\|\phi\|_{\infty} \leq 1$ and $\phi(s_i) = w_i$ for i = 1, ..., n if and only if the matrix

 $[(1 - w_i \bar{w}_j) k^{\nu}(s_i, s_j)]$

is nonnegative for each v in \mathcal{E} (2) When m is a unique logmodular measure, if the matrix

$$[(1 - w_i \bar{w}_j)k(s_i, s_j)]$$

is nonnegative then there is an analytic function ϕ in H^{∞} satisfying $\|\phi\|_{\infty} \leq \gamma_0$ and $\phi(s_i) = w_i$ for i = 1, ..., n.

In this section, we used a well known result, that is, when $E = \{s_1, s_2, ..., s_n\}$ is a finite set there exists at least one function f in H^{∞} such that $f(s_i) = w_i$ for i = 1, ..., n.

4. Dilations of Commutants. Let *L* be a complex Hilbert space and $\mathcal{B}(L)$ the algebra of all bounded linear operators on *L*. I denotes the identity operator in *L*. An algebra homomorphism $f \to \mathcal{M}_f$ of H^{∞} in $\mathcal{B}(L)$ which satisfies

$$\mathcal{M}_1 = I$$
 and $\|\mathcal{M}_f\| \leq \|f\|_{\infty}$

is called a representation of H^{∞} on *L*. If \mathcal{N} is a closed subspace of *L* and \mathcal{P} is the orthogonal projection onto \mathcal{N} , then \mathcal{N} is called semi-invariant under H^{∞} provided $\mathcal{PM}_{f}\mathcal{PM}_{g}\mathcal{P} = \mathcal{PM}_{f}\mathcal{M}_{g}$ for all *f* and *g* in H^{∞} . For ϕ in H^{∞} and *h* in \mathcal{N} , S_{ϕ} is the operator defined by

$$S_{\phi}h=\mathcal{PM}_{\phi}h.$$

D. Sarason [14] showed that every semi-invariant subspace of H^{∞} is equal to the orthogonal complement of one invariant subspace of H^{∞} with respect to a larger one, and every subspace of the latter form is semi-invariant under H^{∞} . By the Sarason Theorem it is natural to assume that for any f, g in $H^{\infty} \mathcal{M}_f^* \mathcal{M}_g = \mathcal{M}_g \mathcal{M}_f^*$. A question is that if T is a bounded operator on \mathcal{N} that commutes with \mathcal{S}_f for any f in H^{∞} then $T = \mathcal{S}_{\phi}$ for some ϕ in H^{∞} and $||T|| = ||\phi||_{\infty}$. However the conjecture can be answered negatively even if \mathcal{N}_f is two dimensional because the Pick interpolation theorem for two points is not true in the original form for the annulus algebra [1, p. 202]. If the question can be answered positively for the disc algebra, then it contains the part of a theorem of B. Sz-Nagy and C. Foias [9] and

TAKAHIKO NAKAZI

hence a theorem of *T*. Ando [3]. The question is not true for the polydisc algebra [8]. This is not so surprising. For when $\mathcal{N} = N = H^2 \ominus M$, if the question is true then for any ϕ in $H^{\infty} ||S_{\phi}|| = ||\phi + M \cap L^{\infty}||$. This negative answer for the polydisc algebra is related with examples of S. Parrott [13] and N. J. Varopoulos [15].

In this section we concentrate on a special case. We assume that $H^{\infty} = H^2 \cap L^{\infty}$. As in Section 2 let $\mathcal{N} = N = H^2 \ominus M$, $L = L^2$ and $S_{\phi} = S_{\phi}(\phi \in H^{\infty})$. Suppose $N \cap L^{\infty}$ is dense in N, then $N^{\nu} \cap L^{\infty}$ is dense in N^{ν} for any ν in \mathcal{L} . For ϕ in H^2 and g in $N^{\nu} \cap L^{\infty}$, $\mathring{S}^{\phi}_{\phi}$ is the operator defined by

$$\mathring{S}^{\nu}_{\phi} g = P^{\nu} M_{\phi} g.$$

If ϕ is in H^{∞} then $\mathring{S}^{v}_{\phi} = S^{v}_{\phi}$.

THEOREM 3. Let M be an invariant subspace of H^2 and let $M^{\perp} \cap L^{\infty}$ be dense in M^{\perp} and $M^{\perp} \cap L^1$, and $N \cap L^{\infty}$ dense in N. Suppose T is a bounded operator on N which commutes with S_f for any f in H^{∞} .

(1) There exists a function ϕ in H^2 such that $T = \mathring{S}_{\phi}$.

(2) If TP1 is in H^{∞} then there exists a function ϕ in H^{∞} such that

 $||T|| \le ||\phi||_{\infty}, T = S_{\phi} \text{ and } ||\phi||_{\infty} = \sup\{||\mathring{S}_{\phi}^{v}||; v \in \mathcal{L}\}.$

(3) If γ_0 is finite then there exists a function ϕ in H^{∞} such that

 $||T|| \le ||\phi||_{\infty} \le \gamma_0 ||T||$ and $T = S_{\phi}$.

PROOF.

(1) Put $\phi = TP1$ then $\phi \in H^2$. For any $h, k \in N \cap L^{\infty}$

$$(Th, k) = (hP1, T^*k)$$
$$= (TS_hP1, k)$$
$$= (S_hTP1, k)$$
$$= (\phi h, k)$$
$$= (\mathring{S}_{\phi}h, k)$$

because T commutes with S_h . Thus $T = \mathring{S}_{\phi}$ because $N \cap L^{\infty}$ is dense in N.

(2) $\phi_1 = TP1$ is in H^{∞} and hence by the proof of (1) $T = S_{\phi_1}$. By (1) of Theorem 1 we can choose ϕ in H^{∞} such that $||T|| \leq ||\phi||_{\infty}$, $T = S_{\phi}$ and $||\phi||_{\infty} = \sup\{||S_{\phi}^{v}||; v \in L\}$.

(3) Put $\phi_1 = TP1$ then $\phi_1 \in H^2$. As in the proof of (1) of Theorem 1 we can show that

$$\left|\int_{X}\phi_{1}\bar{h}\ dm\right|\leq \sup_{\nu}\|\mathring{S}_{\phi_{1}}^{\nu}\|\ \int_{X}|\bar{h}|\ dm$$

for $h \in M^{\perp} \cap L^{\infty}$. Moreover as in the proof of (3) of Theorem 1 we can show that

$$||S_{\phi_1}^{\nu}|| \le \left(||v^{-2}||_{\infty} ||v^{2}||_{\infty}\right)^{\frac{1}{2}} \sup\left\{\left|\int_{X} k\bar{h}\phi_{1} dm\right|; \\ k \in H^{\infty}, h \in M^{\perp} \cap L^{\infty}, ||k||_{2} \le 1 \text{ and } ||h||_{2} \le 1\right\}.$$

For any $h, k \in N \cap L^{\infty}$, $(Th, k) = (\mathring{S}^{\nu}_{\phi_1}h, k)$ and hence as in the proof of Lemma 2 we can show that

$$||T|| = \sup\{\left|\int_X k\bar{h}\phi_1 \ dm\right|; k \in H^{\infty}, \ h \in M^{\perp} \cap L^{\infty}, \ ||k||_2 \le 1$$

and $||h||_2 \le 1\}$

because $M^{\perp} \cap L^{\infty}$ is dense in M. Since γ_0 is finite, $\sup_{v} \| \mathring{S}_{\phi_1}^v \| \leq \gamma_0 \| T \|$. Therefore $\sup_{v} \| \mathring{S}_{\phi_1}^v \| < \infty$ and hence by the Hahn-Banach theorem there exists a function $\phi \in L^{\infty}$ such that $\phi - \phi_1$ is orthogonal to $M^{\perp} \cap L^{\infty}$. Since $M^{\perp} \cap L^{\infty}$ is dense in $M^{\perp}, \phi - \phi_1$ belongs to M. Thus $\phi \in H^2 \cap L^{\infty} = H^{\infty}$ and $S_{\phi} = \mathring{S}_{\phi_1}^v$.

5. Hankel operators and Toeplitz operators. Let *L* be a complex Hilbert space and $\mathcal{M}_f(f \in L^{\infty})$ a representation of L^{∞} on *L*. If *H* is a closed subspace of *L* and *Q* is the orthogonal projection onto H^{\perp} , then *H* is called invariant under H^{∞} provided $(1 - Q)\mathcal{M}_f(1 - Q) = \mathcal{M}_f(1 - Q)$ for all *f* in H^{∞} . For ϕ in L^{∞} and *h* in *H*, H_{ϕ} is the operator defined by

$$H_{\phi}h = Q\mathcal{M}_{\phi}h$$

and it is called a Hankel operator. For ϕ in L^{∞} and h in H, T_{ϕ}^{+} is the operator defined by

$$T_{\phi}^{+}h = (1-Q)\mathcal{M}_{\phi}h$$

and it is called a Toeplitz operator. For ϕ in H^{∞} put $T_{\phi}^{-} = Q\mathcal{M}_{\phi}|H$. Two natural questions are following:

(1) If T is a bounded operator from H into H^{\perp} and $TT_f^+ = T_f^- T$ for any f in H^{∞} then $T = H_{\phi}$ for some ϕ in L^{∞} and $||T|| = ||\mathcal{M}_{\phi}||$?

(2) If *T* is a bounded operator on *H* that commutes with T_f^+ for any *f* in H^∞ then $T = T_{\phi}^+$ for some ϕ in H^∞ and $||T|| = ||\mathcal{M}_{\phi}||$? As in Section 4 if the questions can be answered positively for the disc algebra, then these contain the part of a theorem of B. Sz-Nagy and C. Foiaş.

In this section we concentrate on a special case. Let $L = L^2$ and $H = H^2$.

PROPOSITION 4. Suppose if h is a function in H^2 with $hH^2 \subset H^2$ then h belongs to H^∞ . If T is a bounded linear operator on H that commutes with T_f^+ for all f in H^∞ then $T = T_{\phi}^+$ for some ϕ in H^∞ and $||T|| = ||K_{\phi}||$.

PROOF. Put $\phi = T1$ then $\phi \in H^2$. Fix $h \in H^2$. There exists a sequence $\{h_n\}$ in H^{∞} such that $||h_n - h||_2 \to 0$ and $h_n \to h$ a. e. as $n \to \infty$. Since *T* commutes with T_f^+ for all *f* in H^{∞} ,

$$Th_n = T(T_{h_n}^+ 1)$$
$$= T_{h_n}^+ T 1$$
$$= T_{h_n}^+ \phi$$
$$= h_n \phi.$$

Since *T* is bounded and $||Th_n - Th||_2 \to 0$ as $n \to \infty$, $||h_n\phi - Th||_2 \to 0$ as $n \to \infty$. There exists a subsequence $\{h_{n_j}\}$ in H^∞ such that $h_{n_j}\phi \to h\phi$ a. e. as $j \to \infty$, and hence $\phi h = Th$. Thus $\phi H^2 \subset H^2$ and by the hypothesis $\phi \in H^\infty$ and $T = T_{\phi}^+$.

By the proofs of Theorem 1 in [10], Theorem 3 in [11] and Theorem 3 in this paper, we can prove the following proposition. Let Q^{ν} be the orthogonal projection from L^2 onto $(\nu H^2)^{\perp}$ for each ν in \mathcal{L} . For ϕ in H^{∞} and g in νH^2 , H^{ν}_{ϕ} is the operator defined by

$$H^{\nu}_{\phi}g = Q^{\nu}M_{\phi}g.$$

When ϕ in H^2 and g in $\nu H^2 \cap L^{\infty}$, $\mathring{H}^{\nu}_{\phi}$ is the operator denfined by $\mathring{H}^{\nu}_{\phi}g = Q^{\nu}M_{\phi}g$.

PROPOSITION 5. Let $(H^2)^{\perp} \cap L^{\infty}$ be dense in $(H^{\infty})^{\perp} \cap L^1$ and $H^{\infty} = H^2 \cap L^{\infty}$. Suppose *T* is a bounded operator from H^2 into $(H^2)^{\perp}$ and $TT_f^+ = T_f^- T$ for any *f* in H^{∞} .

(1) There exists a function ϕ in H^2 such that $T = \mathring{H}_{\phi}$.

(2) If T1 is in H^{∞} then there exists a function in L^{∞} such that

 $||T|| \le ||\phi||_{\infty}, T = H_{\phi} \quad \text{and} \\ ||\phi||_{\infty} = \sup\{||H_{\phi}^{v}||; v \in \mathcal{L}\}.$

(3) If γ_0 is finite then there exists a function ϕ in L^{∞} such that

 $||T|| \le ||\phi||_{\infty} \le \gamma_0 ||T||$ and $T = H_{\phi}$.

6. Concrete Examples. All results in this paper were known in the disc algebra. We shall now apply them to some other concrete examples.

(I) Let Γ be a subgroup of reals, endowed with the discrete topology, and X the dual group. Let *m* be a Haar measure on X and $A = \{f \in C(X); f_X f(x)(-a,x) dm(x) = 0 \text{ for any } a \in \Gamma \text{ with } a > 0\}$, where (a,x) denotes the continuous character of X for $a \in \Gamma$. Then dim $N_\tau = 0$ and $N_\tau = \{m\}$, and hence $\gamma_0 = 1$. If *M* is an invariant subspace of H^2 , then $M^{\perp} \cap L^{\infty}$ is dense in M^{\perp} and $M^{\perp} \cap L^1$ but $N = H^2 \ominus M$ is always infinite dimensional. Hence we can not apply Theorem 2 or Corollary 2 to this example. We do not know whether $N \cap L^{\infty}$ is dense in N or not.

(II) Let Y be a compact subset of the plane, and let R(Y) be the uniform closure of the rational functions in C(Y). We regard R(Y) as a uniform algebra on its Shilov boundary, the topological boundary X of Y. Suppose the complement Y^c of Y has a finite number n of components and the interior Y^0 of Y is a nonempty connected set. Let A = R(Y)|X and $\tau(f) = f(s)$ for some s in Y^0 . If m is a harmonic measure on X for s then m is a unique logmodular measure of N_{τ} and dim $N_{\tau} = n < \infty$. Then $\mathcal{E} \subset C(X)$ and γ_0 is finite (see [11]). (1) of Corollary 2 is essentially a theorem of M. B. Abrahamse [1, Theorem 1]. We can show that $N \cap L^{\infty}$ is dense in N, hence Theorem 3 gives a generalization of the Sarason Theorem but an example of M. B. Abrahamse [1] shows that the Sarason Theorem is not true explicitly.

(III) Let \mathcal{A} be the disc algebra and A be a subalgebra of \mathcal{A} which contains the constants and which has finite codimension in \mathcal{A} . If $\tau(f) = \tilde{f}(0)$ for f in A and m is the normalized Lebesgue measure on the unit circle ∂U , then it is easy to check that m is a core point of N_{τ} and dim $N_{\tau} = \dim N^{\infty} = 2 \dim \mathcal{A}/A$. Hence we can apply (1) of Corollary 3 to this example. But γ_0 is infinite [11].

Let \mathcal{H}^{∞} be the weak-*closure of \mathcal{A} in L^{∞} , that is, H^{∞} the classical Hardy space. Let s_1, \ldots, s_n be distinct points in the open unit disc U, and let w_1, \ldots, w_n be complex numbers. We wish to know a necessary and sufficient condition for that there is a function f in H^{∞} satisfying $||f||_{\infty} \leq 1, f(s_i) = w_i$ for $i = 1, ..., n, f'(0) = \cdots = f^{(\ell)}(0) = 0$ and $f(a_1) = \cdots = f(a_k)$. Let $A = \{f \in \mathcal{A}; f'(0) = \cdots = f^{(\ell)}(0) = 0$ and $f(a_1) = \cdots = f(a_k)\}$, then (1) of Corollary 3 gives a solution, but it is very difficult to check the condition.

(IV) The unit polydisc U^n and the torus $(\partial U)^n$ are cartesian products of *n* copies of *U* and of ∂U , respectively. $A(U^n)$ is the class of all continuous complex functions on the closure \overline{U}^n of U^n with holomorphic restrictions to U^n is holomorphic there. Let $A = A(U^n)|X$ and $X = (\partial U)^n$. Let *m* be normalized Lebesgue measure; then *m* is a representing measure for τ on *X* where $\tau(f) = f(0)$ and $0 \in U^n$. We can apply Theorem 1, Theorem 2, (1) and (2) of Theorem 3, Proposition 4 and Proposition 5.

The generalization of the Pick-Nevanlinna interpolation theorem was studied by F. Beatrous and J. Burbea [5] when *E* in Theorem 2 is an infinite uniqueness set in U^n . If $E = \{s_1, s_2, \ldots, s_n\}$ is finite set then nothing was known, where $E \subset U^n$. When $M = \{h \in H^2; h(s) = 0 \text{ for all } s \in E\}$, *M* is an invariant subspace in H^2 which has finite codimension and $N = H^2 \ominus M$ is in H^∞ . Hence $M^\perp \cap L^\infty$ is dense in M^\perp and $M^\perp \cap L^1$ and (1) and (2) of Theorem 2 in this paper give a generalization of the Pick interpolation theorem. However we can not apply (3) of Theorem 2. For K. Izuchi noted to me privately that γ_0 is infinite because H^∞ is not a uniform algebra in L^∞ . If *N* is finite dimensional then *N* is in H^∞ (see [2]). Hence by Theorem 3 if *T* is a bounded operator on *N* which commutes with S_f for any *f* in H^∞ , then $T = S_\phi$ for some ϕ in H^∞ . However, there is an operator *T* on *N* such that $||T|| \leq ||\phi + M \cap L^\infty||$. For an example due to Korányi and Pukánski [8] shows that a function on a 2 point set in the bi-disk that is not the restriction of any function in the unit ball of H^∞ . Thus an exact generalization of the Sarason Theorem (and hence a theorem of Nagy and Foiaş) is not true.

REFERENCES

- M. B. Abrahamse, *The Pick interpolation theorem for finitely connected domains*, Michigan Math. J. 26 (1979) 195–203.
- P. R. Ahern and D. N. Clark, *Invariant subspaces and analytic continuation in several variables*, J. Math. Mech. 19 (1970) 963–969.
- 3. T. Ando, On a pair of commutative contractions, Acta Sci. Math., 24 (1(1963) 88-90.
- K. Barbey and H. König, *Abstract analytic function theory and Hardy algebras*, Lecture Notes in Mathematics, 593, Springer-Verlag, Berlin, 1977.
- K. Beatrous and J. Burbea, Reproducing kernels and interpolation of holomorphic functions, Complex Analysis, Functional Analysis and Approximation Theory, J. Mujica (Ed.), (1986) 25–46.
- R. G. Douglas and V.I.Paulsen, Completely bounded maps and hypo-Dirichlet algebras, Acta Sci. Math., 50 (1986), 143–157.
- 7. T. Gamelin, Uniform Algebras, 2nd ed., Chelsea, New York, (1984).
- 8. G. Koranyi and A. Pukánski, *Holomorphic functions with positive real part on polycyylinders*, Trans. Amer. Math. Soc. 108 (1983) 449–456.
- 9. B. Sz-Nagy and C. Foiaş, Dilation des commutants d'opérateurs, C. R. Acad. Sci. Paris Sér. A–B 266 (1968) 493–495.

- 10. T. Nakazi, Norms of Hankel operators and uniform algebras, Trans. Amer. Math. Soc. 299 (1987) 573–580.
- 11. T. Nakazi, Norms of Hankel operators and uniform algebras, II, Tohoku Math. J. 39 (1987) 543– 555.
- 12. T. Nakazi and T. Yamamoto, A lifting theorem and uniform algebras, Trans. Amer. Math. Soc. 305 (1988) 79–94.
- 13. S. Parrott, Unitary dilations for commuting contractions, Pacific J. Math., 34 (1973) 481-490.
- 14. D. Sarason, Generalized interpolation in H^{∞} , Trans. Amer. Math. Soc. 127 (1967) 179–203.
- 15. N. Th. Varopoulos, On an inequality of von Neumann and application of the metric theory of tensor products to operators theory, J. Funct. Anal. 16 (1974) 83–100.
- **16.** I. Suciu, *Function Algebras*, translated from the Romanian by M. Mihailescu, Editura Academiei Republicii Socialiste Romania, Bucuresti (1973).

Department of Mathematics Faculty of Science Hokkaido University Sapporo 060, Japan