CONVEXITY PROPERTIES FOR WEAK SOLUTIONS OF SOME DIFFERENTIAL EQUATIONS IN HILBERT SPACES

S. ZAIDMAN

1. In this work we obtain a simultaneous extension of Theorems 1.6 and 1.7 in Agmon and Nirenberg (1), together with a partial extension of the result on backward unicity for parabolic equations by Lions and Malgrange (4).
2. Let H be a Hilbert space. (\cdot) and $\|$ are the notations for the scalar product and the norm in this space. Consider in H a family $B(t), 0 \leqslant t \leqslant T$, of closed linear operators with dense domain $D_{B(t)}$ (varying) with t. Let $L^{2}(0, T, H)$ be the space of Bochner square-integrable vector-valued functions with values in H . Our main result is the following

Theorem 1. Let $u(t)$ be a function defined for $0 \leqslant t \leqslant T$ and with values in H, with the following properties:
(i) $u(t) \in L^{2}(0, T, H), \quad \dot{u}(t)=d u / d t \in L^{2}(0, T, H) ; u(t) \in D_{B(t)} \cap D_{B^{*}(t)}$ for almost all $t, 0 \leqslant t \leqslant T ; \dot{u}(t)-B(t) u=0,0 \leqslant t \leqslant T ;|u(t)|>0$ for $0 \leqslant t \leqslant T$.
(ii) The scalar function $\operatorname{Re}(B(t) u(t), u(t))$ is almost everywhere differentiable in $[0, T]$, and the derivative $d[\operatorname{Re}(B(t) u(t), u(t))] / d t$ is integrable in every interval $\alpha \leqslant t \leqslant \beta$, such that $0<\alpha<\beta<T$.
(iii) There exist a constant $k \geqslant 0$ and an increasing twice continuously differentiable function $\omega(t), 0 \leqslant t \leqslant T$, such that the inequality

$$
\begin{align*}
\left.\operatorname{Re}[d(B(t) u(t), u(t)) / d t] \geqslant \frac{1}{2} \right\rvert\,(B(t) & \left.+B^{*}(t)\right)\left.u(t)\right|^{2} \tag{2.1}\\
& +(\ddot{\omega} / \dot{\omega}) \operatorname{Re}((B(t)-k) u, u)
\end{align*}
$$

holds, almost everywhere in $0<t<T$.
Then, if (i)-(iii) are fulfilled, the function $\log \left|e^{-k t} u(t)\right|$ is a convex function of $s=\omega(t)$.

Proof of Theorem 1. We use the following (known) criterion of convexity:
Lemma 1. Let $f(t)$ be a continuous scalar function on $0 \leqslant t \leqslant T$, with the property that

$$
\int_{0}^{T} f(t) \mu(t) d t \geqslant 0
$$

Received November 4, 1964. This work has been partially supported by the Summer Research Institute of the Canadian Mathematical Congress.
for any $\mu(t) \geqslant 0$, with compact support in $] 0, T\left[\right.$, and of the class $C^{2}[0, T]$. Then $f(t)$ is convex on $[0, T]$.

Now, we shall prove the convexity of $f(t)=\log \left[e^{-2 k t}|u(t)|^{2}\right]$ as a function of $s=\omega(t)$. Let $C_{0}{ }^{2}(a, b)$ denote the class of functions twice continuously differentiable, with compact support in (a, b). We observe that the class of positive functions $\mu(t) \in C_{0}{ }^{2}(0, T)$ is mapped by the transformation

$$
\begin{equation*}
\mu(t) \rightarrow M(s) \tag{2.2}
\end{equation*}
$$

defined by $M(\omega(t))=\mu(t)$ on the class of positive functions $M(s) \in C_{0}{ }^{2}(\omega(0)$, $\omega(T)$. Hence, we have to prove, according to the lemma, putting $t=\omega^{-1}(s)$, the relation

$$
\begin{equation*}
\int_{\omega(0)}^{\omega(T)} \log \exp \left[-2 k \omega^{-1}(s)\right]\left|u\left(\omega^{-1}(s)\right)\right|^{2} \frac{d^{2} M(s)}{d s^{2}} \geqslant 0 \tag{2.3}
\end{equation*}
$$

for every non-negative $M(s)$ in $C_{0}{ }^{2}(\omega(0), \omega(T))$. Substituting $s=\omega(t)$, we deduce from (2.3) that the relation

$$
\begin{equation*}
\int_{0}^{T} \log \left[e^{-2 k t}|u(t)|^{2}\right] \frac{\dot{\omega} \ddot{\mu}-\dot{\mu} \ddot{\omega}}{\dot{\omega}^{2}} d t \leqslant 0 \tag{2.4}
\end{equation*}
$$

must hold, for any non-negative $\mu(t)$ in $C_{0}{ }^{2}(0, T)$, where the dot indicates differentiation with respect to t. Now, we write $e^{-2 k t}|u(t)|^{2}=q(t)$, and follow essentially the calculation of (1, pp. 137-138).

Observe that using (i), we can integrate by parts reducing (2.4) to

$$
\begin{equation*}
\int_{0}^{T} \frac{\dot{q}}{q} \frac{\mu}{\dot{\omega}} d t \leqslant 0 \tag{2.5}
\end{equation*}
$$

for any non-negative $\mu(t) \geqslant 0$ in $C_{0}{ }^{2}(0, T)$. As we have, almost everywhere on $(0, T)$,

$$
\begin{equation*}
\dot{q}=2 e^{-2 k t} \operatorname{Re}(B u, u)-2 k q, \tag{2.6}
\end{equation*}
$$

(2.5) becomes

$$
\begin{equation*}
\int_{0}^{T}\left[\frac{e^{-2 k t} \operatorname{Re}(B u, u)-k q}{\dot{\omega} q}\right] \dot{\mu} d t \leqslant 0 \tag{2.7}
\end{equation*}
$$

for all non-negative $\mu(t)$ in $C_{0}{ }^{2}(0, T)$. As μ has compact support, say $[\alpha, \beta]$, in $(0, T)$, we can apply (ii), integrate by parts once more, and obtain, on account of (2.6),

$$
\begin{align*}
\int_{0}^{T} \mu(t) & {\left[\frac{d\left(e^{-2 k t} \operatorname{Re}(B u, u)-k q\right) / d t}{q \dot{\omega}}-\frac{2\left(e^{-2 k t} \operatorname{Re}(B u, u)-k q\right)^{2}}{q^{2} \dot{\omega}}\right] d t } \tag{2.8}\\
& -\int_{0}^{T} \mu(t)\left[\frac{1}{q} \frac{\ddot{\omega}}{\dot{\omega}^{2}}\left(e^{-2 k t} \operatorname{Re}(B u, u)-k q\right] d t \geqslant 0\right.
\end{align*}
$$

for all non-negative μ in $C^{2}(0, T)$. Hence (2.3) follows if we prove that the
coefficient of $\mu(t)$ is non-negative almost everywhere on $(0, T)$, or, using $q \dot{\omega}>0$, that

$$
\begin{align*}
\frac{d}{d t}\left(e^{-2 k t} \operatorname{Re}(B u, u)-k q\right)-\frac{2}{q}\left(e^{-2 k t}\right. & \operatorname{Re}(B u, u)-k q)^{2} \tag{2.9}\\
& -\frac{\ddot{\omega}}{\dot{\omega}}\left(e^{-2 k t} \operatorname{Re}(B u, u)-k q\right) \geqslant 0
\end{align*}
$$

almost everywhere on ($0, T$). But (2.9) equals

$$
\begin{align*}
& \text { (2.10) } e^{-2 k t} \frac{d}{d t} \operatorname{Re}(B u, u)-\frac{2}{q} e^{-4 k t}(\operatorname{Re}(B u, u))^{2}-\frac{\ddot{\omega}}{\dot{\omega}}\left(e^{-2 k t} \operatorname{Re}(B u, u)-k q\right) \tag{2.10}\\
& =e^{-2 k t} \frac{d}{d t} \operatorname{Re}(B u, u)-\frac{1}{2 q} e^{-4 k t}\left(\left(B+B^{*}\right) u, u\right)^{2}-\frac{\ddot{\omega}}{\dot{\omega}}\left(e^{-2 k t} \operatorname{Re}(B u, u)-k q\right) \\
& \geqslant e^{-2 k t} \frac{d}{d t} \operatorname{Re}(B u, u)-\frac{1}{2} e^{-2 k t}\left|\left(B+B^{*}\right) u\right|^{2}-\frac{\ddot{\omega}}{\dot{\omega}}\left(e^{-2 k t} \operatorname{Re}(B u, u)-k q\right) \geqslant 0
\end{align*}
$$

by (iii). This proves Theorem 1.
Remark 1. The theorem is obviously an extension of (1, Theorem 1.7), where $\omega(t)=e^{c t}$, and stronger derivability hypotheses on $u(t)$ seem to be assumed.

Remark 2. Our Theorem 1 is also an extension of (1, Theorem 1.6). In fact, we can derive from Theorem 1 the following

Theorem 2. Let A be a symmetric operator in the Hilbert space H, with dense domain. Suppose $u(t) \in L^{2}(0, T ; H), \dot{u}(t) \in L(0, T ; H),|u(t)|>0$ on $0 \leqslant t$ $\leqslant T, u(t) \in D_{A}$ for almost every $t, 0 \leqslant t \leqslant T, \dot{u}-\gamma A u=0$, a.e. on $(0, T)$; γ is a complex number. Then $\log |u(t)|$ is a convex function of $t, 0 \leqslant t \leqslant T$.

This result extends (1 , Theorem 1.6), where $u(t)$ is supposed to be twice strongly continuously differentiable.

We apply Theorem 1. Hypothesis(i) is obviously fulfilled. The non-trivial part in the proof is the verification of (ii). This result is a consequence of the following.

Lemma 2. Given

(a) a symmetric operator C with dense domain D_{C} in a Hilbert space H;
(b) a function $v(t) \in L^{2}(0, T ; H)$, with $\dot{v}(t) \in L^{2}(0, T ; H)$, belonging to D_{C} for almost every $t \in(0, T)$, such that $C v \in L^{2}(0, T ; H)$;
(c) a C^{∞} scalar function $\zeta(t)$, defined for $t \geqslant 0$, such that $\zeta(t)=0$ for $t \geqslant T-\delta, \zeta(t)=1$ for $t \leqslant T-2 \delta(\delta>0)$.

Then

$$
\begin{equation*}
(C(\zeta v), \zeta v)=-2 \operatorname{Re} \int_{t}^{\infty}(C(\zeta v), d(\zeta v) / d t) d t \tag{2.11}
\end{equation*}
$$

for almost all $t \in(0, T)$.

Remark. A similar formula is proved in (3, p. 136, formula (4.8)). The proof given there is easily adapted to our case.

Finally, one easily verifies (iii), taking $k=0$ and $\omega(t)=t$, and Theorem 2 is proved.

We can, as a matter of fact, prove a further extension of Theorem 2 directly. However, it will no longer be a special case of Theorem 1. We state this result as follows.

Theorem 2'. Let A be a symmetric operator with dense domain in H. Suppose $u(t)$ is a strongly continuous function with values in H, defined for $0<t<T$, $|u(t)|>0$, and satisfying

$$
\begin{equation*}
-\int_{0}^{T}(u(t), \dot{\phi}(t)) d t=\int_{0}^{T}\left(u(t), \bar{\gamma} A^{*} \phi(t)\right) d t \tag{2.12}
\end{equation*}
$$

for every $\phi(t) \in C_{0}{ }^{1}(0, T ; H), \phi(t) \in D_{A^{*}}, 0 \leqslant t \leqslant T, A^{*} \phi(t) \in L^{2}(0, T ; H)$. Then, $\log |u(t)|$ is convex in t.

We indicate the proof briefly. Denote by \tilde{A} the closure of A, and consider a sequence $\left\{\alpha_{n}(t)\right\}$ such that:

$$
\alpha_{n}(t) \in C_{0}^{\infty}(-\infty, \infty), \quad \alpha_{n}=0 \quad \text { for }|t|>1 / n, \int \alpha_{n} d t=1\left(\alpha_{n} \rightarrow \delta\right) .
$$

The regularizations

$$
\left(u^{*} \alpha_{n}\right)(t)=\int_{-\infty}^{\infty} u(\tau) \alpha_{n}(t-\tau) d \tau
$$

are well defined for $1 / n<t<T-1 / n$. It is easy to prove that the $C^{\infty}(1 / n, T-1 / n ; H)$-valued functions, $\left(u^{*} \alpha_{n}\right)(t)$, also belong to $D_{\tilde{A}}$ for every $t, 1 / n<t<T-1 / n$, and that

$$
\begin{equation*}
d\left(u^{*} \alpha_{n}\right) / d t=\gamma \widetilde{A}\left(u^{*} \alpha_{n}\right) \quad \text { for } 1 / n<t<T-1 / n . \tag{2.13}
\end{equation*}
$$

It is known that this implies that $\log \left|u^{*} \alpha_{n}\right|$ is convex in t for

$$
1 / n<t<T-1 / n .
$$

As $n \rightarrow \infty, u^{*} \alpha_{n} \rightarrow u(t), 0<t<T$; hence

$$
\lim _{n \rightarrow \infty} \log \left|u^{*} \alpha_{n}\right|=\log |u(t)|, \quad 0<t<T .
$$

As the limit of convex functions is convex, our result follows.
3. Our last application of Theorem 1 is a partial extension of a result by Lions and Malgrange (4).

Let us recall their notations and definitions. Consider two Hilbert spaces V and $H, V \subset H$ with continuous immersion, V dense in H. The symbols $(()$,$) and (,) denote the scalar products in V$ and H respectively, while || || and | | denote the corresponding norms.

Let t be a real variable, $0 \leqslant t \leqslant T$; for every such t a sesqui-linear form $a(t, u, v)$ is defined, continuous on $V \times V$, which we shall suppose, less generally than in (4), to be symmetric:

$$
\begin{equation*}
a(t, u, v)=a(\overline{t, v, u}), \quad u, v \in V \tag{3.1}
\end{equation*}
$$

Moreover, as in (2), we assume that

$$
\begin{equation*}
a(t, u, v) \in C^{1}[0, T], \quad u, v \in V \tag{3.2}
\end{equation*}
$$

and there are two positive numbers λ and α such that

$$
\begin{equation*}
a(t, v, v)+\lambda|v|^{2} \geqslant \alpha\|v\|^{2} \quad \text { for all } v \in V \tag{3.3}
\end{equation*}
$$

We remark that these relations readily imply that

$$
|a(t, u, v)| \leqslant M\|u\|\|v\|, \quad|\dot{a}(t, u, v)| \leqslant M\|u\|\|v\|
$$

for $u, v \in V, 0 \leqslant t \leqslant T$, where M is a positive constant.
The form $a(t, u, v)$ defines an (unbounded) linear operator $A(t)$ in H through

$$
\begin{equation*}
(A(t) u, v)=a(t, u, v) ; \quad t \in[0, T], u \in D_{A(t)}, v \in H \tag{3.4}
\end{equation*}
$$

where

$$
D_{A(t)}=\left\{u \in V,|a(t, u, v)| \leqslant C_{u}|v| v \in V\right\}
$$

From (3.1) it follows that $A(t)$ is self-adjoint in H. Its domain $D_{A(t)}$ is not constant; but it is easily seen that

$$
\begin{equation*}
D_{(A(t)+\lambda)^{1 / 2}}=V \tag{3.5}
\end{equation*}
$$

We indicate how one can derive from our Theorem 1 the following result.
Theorem 3. Let $u(t) \in L^{2}(0, T ; V), \dot{u}(t) \in L^{2}(0, T ; H), u(t) \in D_{A(t)}$ for almost every $t \in[0, T], \dot{u}(t)+A(t) u(t)=0$. Then, if $|u(t)|>0,0 \leqslant t \leqslant T$, the function $\log \left[e^{-k t}|u(t)|\right]$ is a convex function of $s=e^{c t}$, for some positive constants k and c.

Remark. S. G. Krein (2) announced a similar theorem, but he assumes that $D_{A(t)}$ is constant for $0 \leqslant t \leqslant T$; this is less general than (3.5).

We shall show how Theorem 3 follows from Theorem 1, where $\omega(t)=e^{c t}$ with some $c>0$ to be determined.

We need a preliminary result which is only slightly different from (4, Lemma 2.2).

Lemma 3. Assuming the hypotheses of Theorem 3, the function $\dot{u}(t)$ belongs to $L^{2}(\alpha, \beta ; V)$ for $0<\alpha<\beta<T$.

The proof is an easy adaptation of that of (4, Lemma 2.2).
Next, apply Theorem 1, and verify that the conditions (i)-(iii) are satisfied for $B(t)=-A(t)$. Consider the scalar function

$$
\operatorname{Re}(B(t) u, u)=-a(t, u, u)
$$

By Lemma 3, its derivative almost everywhere is

$$
d[\operatorname{Re}(B(t) u, u)] / d t=-\dot{a}(t, u, u)-a(t, \dot{u}, u)-a(t, u, \dot{u}) .
$$

We have

$$
\begin{aligned}
& |a(t, u, u)| \leqslant M\|u(t)\|^{2} \in L^{1}(0, T) \\
& |a(t, \dot{u}, u)| \leqslant M\|\dot{u}\|\|u\| \in L^{1}(\alpha, \beta) \quad \text { for } 0<\alpha<\beta<T .
\end{aligned}
$$

Finally, we have to prove that $c>0, k>0$ can be chosen such that for $\omega(t)=e^{c t}$,

$$
\begin{aligned}
& -\dot{a}(t, u, u)-2 \operatorname{Re}[a(t, u, \dot{u})]=-\dot{a}(t, u, u)+2 \operatorname{Re}[a(t, u, A u)] \\
& \quad=-\dot{a}(t, u, u)+2|A(t) u|^{2} \geqslant 2|A u|^{2}-c \operatorname{Re}((A(t)+k) u, u) .
\end{aligned}
$$

This is equivalent to

$$
\dot{a}(t, u, u) \leqslant c\left(a(t, u, u)+k|u|^{2}\right),
$$

which follows from the facts that $|\dot{a}(t, u, u)|<M\|u\|^{2}$ and $a(t, u, u)+$ $\lambda|u|^{2} \geqslant \alpha\|u\|^{2}$, with some $c, k>0$.

Remark. The above convexity property is valid for positive-norm solutions $u(t)$. But, with an obvious argument, it implies the backward unicity for all solutions, which means, as is well known, that if $u(T)=0$, then $u(t)=0$, $0 \leqslant t \leqslant T$.

References

1. S. Agmon and L. Nirenberg, Properties of solutions of ordinary differential equations in Banach spaces, Comm. Pure Appl. Math., 16 (1963), 121-239.
2. S. G. Krein, On some classes of correctly posed boundary value problems, Dokl. Akad. Nauk., SSSR, N.S., 114 (1957), 1162-1165.
3. J. L. Lions, Equations différentielles opérationnelles et problèmes aux limites (Berlin, 1961).
4. J. L. Lions and B. Malgrange, Sur l'unicité rétrograde dans les problèmes mixtes paraboliques, Math. Scand., 8 (1960), 277-286.

University of Montreal

