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Abstract Precise bounds are given for the quantity

L(α) =
lim supm→∞(1/m) ln qm

lim infm→∞(1/m) ln qm
,

where (qm) is the classical sequence of denominators of convergents to the continued fraction α =
[0, u1, u2, . . . ] and (um) is assumed bounded, with a distribution.

If the infinite word u = u1u2 . . . has arbitrarily large instances of segment repetition at or near the
beginning of the word, then we quantify this property by means of a number γ, called the segment-
repetition factor.

If α is not a quadratic irrational, then we produce a specific sequence of quadratic irrational approx-
imations to α, the rate of convergence given in terms of L and γ. As an application, we demonstrate
the transcendence of some continued fractions, a typical one being of the form [0, u1, u2, . . . ] with
um = 1 + �mθ� mod n, n � 2, and θ an irrational number which satisfies any of a given set of con-
ditions.
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1. Introduction

Suppose Σ is a finite set of positive integers. If (um)m�1 is an infinite sequence with
um ∈ Σ for each m � 1, then we let u be the infinite word u1u2 . . . and say that u takes
its values from Σ. Suppose the continued fraction α = [0, u1, u2, . . . ] has convergents

(
pm

qm

)
m�0

.

Then we define

L(α) =
lim supm→∞(1/m) ln qm

lim infm→∞(1/m) ln qm

and set L(u) = L(α).
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It is evident that L(α) � 1 and that L(α) = 1 if and only if limm→∞(1/m) ln qm exists.
It is of interest to be able to provide precise upper estimates for L(α). Of course, if we
only know that a � um � b for all m � 1, then it is easy to see that

L(α) � ln(1
2 (b +

√
b2 + 4))/ ln(1

2 (a +
√

a2 + 4))

and that this bound can be attained.
If we assume that |Σ| = 2 and that u takes each of the two values with a frequency

(see Definition 3.1), then the authors of [1] have shown that L(u) < 1.13, irrespective of
the particular elements of Σ. In §§ 2 and 3, we extend this result to any finite set, on the
assumption that u takes each of the values in Σ with a frequency. In § 4 we give a more
precise estimate, provided that u is uniformly distributed (that is, each value is taken
with the same frequency).

Our main goal in this paper is to prove transcendence of a certain family of continued
fractions. For this, we also need to consider the property that the infinite word u has
arbitrarily large instances of segment repetition near the beginning of u. A special case
of this concept was discussed in [1]. More formally we make the following definition.

Definition 1.1. Suppose γ ∈ R with γ � 1. The infinite word w = w1w2w3 . . . is said
to have a segment expansion factor greater than or equal to γ if there exist three infinite
sequences of finite words {Uk}k�1, {Vk}k�1, {Wk}k�1 which satisfy all the following
conditions.

(1) UkVkWk is a prefix of w.

(2) limk→∞ |Vk| = ∞, where |Vk| is the length of Vk.

(3) Wk is a prefix of V s
k for some positive integer s.

(4) lim inf
k→∞

|UkVkWk|
|Uk| + |UkVk| = γ.

Finally, we will say w has a prefix expansion factor greater than or equal to γ if we
can take Uk = λ for all k � 1.

In § 5 we provide explicit computations of the segment expansion factor for the infinite
word w = w1w2 . . . , where wm = �mθ� mod n and θ is an irrational with 0 < θ < 1.

In the final section of the paper we first prove that if α is not a quadratic irrational
(that is, u is not ultimately periodic) and if u has a segment expansion factor greater
than or equal to γ, then there is a sequence of quadratic irrationals (αk) which satisfy

|α − αk| <
1

H(αk)2γ/L(α) ,

where H(αk) denotes the height of αk.
With the aid of Schmidt’s Theorem [9], we then obtain a transcendence result for a

special class of continued fractions derived from the words studied in § 5.
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2. Basic terminology and the trace inequality

Let Σ = {a1, a2, . . . , an} be a finite set of n � 2 positive integers, ordered so that
1 � a1 < a2 < · · · < an. Let u = (um)m�1 ∈ ΣN be any infinite sequence with values in
Σ.

Consider the sequence (qm)m�−1 defined by

q−1 = 0, q0 = 1, qm = umqm−1 + qm−2 for m � 1. (2.1)

The sequence (qm)m�−1 so defined is the sequence of denominators of the convergents
to the continued fraction [0, u1, u2, . . . ]. Readers can consult [6] or [8] for information
on standard continued fraction theory. We will say u generates the sequence (qm). The
statement (2.1) can be expressed in matrix form by[

q0

q−1

]
=

[
1
0

]
,

[
qm

qm−1

]
=

[
um 1
1 0

] [
qm−1

qm−2

]
for m � 1.

If we write

Ai =

[
ai 1
1 0

]
for 1 � i � n,

then it can be shown that the semigroup Sn = S(A1, A2, . . . , An) generated by the matri-
ces A1, A2, . . . , An is free, so we can identify the matrices in Sn with the corresponding
words (strings) in the symbols A1, A2, . . . , An. The length of such a word W , denoted by
|W |, is the number of symbols (counting repetitions) that occur in W . If S−

n denotes the
set of those matrices in Sn with determinant equal to −1, then W ∈ S−

n if and only if
|W | is odd. The trace of W , denoted by tr(W ), is the trace of the matrix W .

We can write the preceding matrix recurrence in the form[
qm

qm−1

]
= Wm

[
1
0

]
, (2.2)

where Wm(A1, A2, . . . , An) is a word of length m in the matrices A1, A2, . . . , An. We will
say that Wm is associated with qm.

If ρ(M) denotes the spectral radius of the real square matrix M , then the L2-norm of
M , written as ‖M‖, equals

√
ρ(M tM). In particular, ‖Ai‖ = ρ(Ai) = 1

2 (ai +
√

a2
i + 4).

The first result, proved in [1], shows the connection between qm and Wm.

Proposition 2.1. The following inequalities hold:

(a) qm � ‖Wm‖; and

(b) qm � 1
2 trWm.

In order to proceed further, it is thus essential to consider the trace of words in Sn.
As much of the first part is easily derivable from the n = 2 case described in some detail
in [1], we will be brief in our exposition.
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If

X =

[
α β

γ δ

]
∈ Sn,

let ΦX be the map x → ((δx + γ)/(βx + α)). Then ΦMN = ΦM ◦ ΦN and ΦX has two
fixed points xX , yX with xX < yX . For 1 � i, j � n put

xij = xAiAj
= 1

2

(
−aj −

√
a2

j + 4aj/ai

)
and yij = yAiAj

= 1
2

(
−aj +

√
a2

j + 4aj/ai

)
.

Note that xii = xAi
and yii = yAi for 1 � i � n.

Lemma 2.2. For 1 � i, j � n the following hold:

(a) (1/(xij + aj)) = xji;

(b) yijxji = −1; and

(c) xij > −(aj + (1/ai)).

Lemma 2.3. The fixed points (xij), (yij) are totally ordered as follows:

(a) −aj − 1 < x1j < x2j < · · · < xnj < −aj , 1 � j � n; and

(b) (1/(ai + 1)) < yi1 < yi2 < · · · < yin < (1/ai), 1 � i � n.

The proofs of these three lemmas are omitted.

Proposition 2.4. We have

tr(A1AnX) � ρ(A1An) tr(X) for any X ∈ S−
n (A1, A2, . . . , An).

Proof. As in [1], it suffices to show that (i) βx1n + α < 0, and (ii) xn1 � ΦX(x1n) �
y1n, where

X =

[
α β

γ δ

]
.

These two statements are proved by induction on the (odd) length of X. Lemmas 2.2
and 2.3 give the basis case (|X| = 1) and, if we let Un = {AiAj ; 1 � i, j � n}, the
inductive step hinges on the fact that

min
{

m1

m2
: M =

[
m1 m2

m3 m4

]
∈ Un

}
= a1 +

1
an

.

The details are left to the reader. �

So far the extension to more than two arguments is fairly direct. We now come to the
proposition that allows us to take out an A1An term when the word does not have an
adjacent pair A1, An.
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Proposition 2.5. Suppose n � 3, and let WR denote the transposed (or reverse)
string of W . Then tr(A1WAnX) � tr(A1AnWRX) for all W ∈ S(A2, . . . , An−1) and for
all X ∈ S(A1, A2, . . . , An) that do not start with A1.

Proof. Let

W =

[
u v

w x

]
.

Then (noting that a2 � 2) it is easy to establish by induction that

w < u < anw + x. (2.3)

Also

WAn − AnWR =

[
0 u − anw − x

anw + x − u 0

]
,

which by (2.3) is of the form [
0 −yn

yn 0

]

with yn > 0.
Since tr(A1(WAn − AnWR)X) = yn(α − a1γ − δ), it suffices to show that α � a1γ + δ

for all X not starting with A1. If X = Ai for some i, 2 � i � n, then ai � a1 + 1, so the
result holds in this case. If |X| � 2, then we can write X = AiUAj , where 2 � i � n,
1 � j � n, and U ∈ Sn ∪ {I}. It is easy to see that α � a1γ + δ in this situation. �

3. Infinite words with frequency

As mentioned in § 1, we must impose some condition on u = (um)m�1 in order to expect
a better estimate for L(u). It turns out that a natural condition to impose is that each
ai ∈ Σ occurs in u with a frequency αi. Specifically, we make the following definition.

Definition 3.1. For 1 � i � n put αi(m) = |{1 � k � m : uk = ai}|. If for each i,
limm→∞(αi(m)/m) exists, say equal to αi, then we say that u is a word with frequency

α = (α1, α2, . . . , αn).

Let us write A = (A1, A2, . . . , An), where, as usual, Ai denotes the matrix[
ai 1
1 0

]
.

Furthermore, put M(A,α) =
∑n

i=1 αi ln ρ(Ai). Then we have the following proposition
(cf. [1,3]).

Proposition 3.2. Suppose u is an infinite word with values taken from Σ with fre-
quency α and suppose u generates (qm). Then lim supm→∞(1/m) ln qm � M(A,α).
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Proof. Using our previously introduced notation we have

‖Wm‖ � ρ(A1)α1(m)ρ(A2)α2(m) . . . ρ(An)αn(m).

By Proposition 2.1 it follows that

lim sup
m→∞

(
1
m

)
ln qm � lim sup

m→∞

ln ‖Wm‖
m

�
n∑

i=1

αi ln ρ(Ai) = M(A,α).

�

The task ahead will be to construct a piecewise linear (in α) function H(A,α) that
satisfies the inequality lim infm→∞(1/m) ln qm � H(A,α).

First we note the following lemma from Proposition 2.1.

Lemma 3.3. lim inf
m→∞

(
1
m

)
ln qm � lim inf

m→∞
m odd

(
1
m

)
ln trWm.

Proof. (qm) is an increasing sequence so that

lim inf
m→∞

(
1
m

)
ln qm = lim inf

m→∞
m odd

(
1
m

)
ln qm � lim inf

m→∞
m odd

(
1
m

)
ln trWm.

�

We now use Proposition 2.4 and Proposition 2.5 to get the following theorem.

Theorem 3.4. Let Wm(A1, A2, . . . , An) be a word of odd length m.

(a) If α1(m) � αn(m), then

trWm(A1, A2, . . . , An) � ρ(A1An)α1(m) trWm−2α1(m)(A2, A3, . . . , An),

where the number of occurrences of Ai in Wm−2α1(m) is αi(m) for 2 � i � n − 1,
and αn(m) − α1(m) for i = n.

(b) If αn(m) � α1(m), then

trWm(A1, A2, . . . , An) � ρ(A1An)αn(m) trWm−2αn(m)(A1, A2, . . . , An−1),

where the number of occurrences of Ai in Wm−2αn(m) is α1(m) − αn(m) for i = 1
and αi(m) for 2 � i � n − 1.

Proof. If Wm has an adjacent A1An or AnA1, we use Proposition 2.4, since tr is
invariant under cyclic permutation and under transpose (or reverse), to obtain

trWm � ρ(A1An) trWm−2(A1, . . . , An).

We can continue to remove adjacent A1An in such a manner until no adjacency remains.
At that point we can use Proposition 2.5 instead, which will produce an adjacency
between A1, An for which Proposition 2.4 will again be used. Going back and forth
in this manner, we will either exhaust the A1s first (α1(m) < αn(m)) or the Ans
(αn(m) < α1(m)) or possibly exhaust them together (α1(m) = αn(m)). The desired
inequalities are now clear. �
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The effect of Theorem 3.4 is to reduce the number of variables in the argument by one,
or possibly two. Consider for example a word u with frequency α, where α1 < αn. Then
α1(m) < αn(m) for all m � m0, say, and also m∗ = m − 2α1(m) → ∞, since α1 < 1

2 .
Thus

lim inf
m→∞
m odd

(
1
m

)
ln trWm � α1 ln ρ(A1An) + (1 − 2α1) lim inf

m∗→∞
m∗ odd

(
1

m∗

)
ln trWm∗ , (3.1)

and the frequencies of Ai in Wm∗ are αi/(1−2α1) for 2 � i � n−1 and (αn−α1)/(1−2α1)
for i = n.

The right-hand side of equation (3.1) has the makings of part of the recursive definition
of H(A,α), but we must be careful about the relationship between the different αs. We
therefore consider the various domains of definition of the proposed H(A,α).

For n � 1 let us put

Dn =
{

α ∈ Rn : αi � 0 for 1 � i � n and
n∑

i=1

αi = 1
}

.

Note, in particular, that D1 = {1}. For n � 2 we also need the following special points
in Dn:

(a) for 1 � i � n, put ei = (αk), where αk = 1 if k = i and 0 otherwise; and

(b) for 1 � i < j � n, put fij = 1
2 (ei + ej).

We are going to break up the set Dn into 2n−1 subdomains, which we can usefully
parametrize using binary strings of length (n − 1).

Definition 3.5.

(a) If λ denotes the empty string, put ∆λ = {1}.

(b) Let n � 2 and suppose ∆b has been defined for all binary strings b of length (n−2).
Then we set

∆1b = {α ∈ Dn : α1 � αn and (α2, α3, . . . , αn−1, αn − α1) ∈ (1 − 2α1)∆b}

and

∆0b = {α ∈ Dn : αn � α1 and (α1 − αn, α2, . . . , αn−1) ∈ (1 − 2αn)∆b}.

Proposition 3.6. Let n � 1. Then

(a) Dn =
⋃

∆b, taken over all binary strings b of length (n − 1); and

(b) if b is a binary string of length (n − 1), then ∆b is a simplex with vertices in the
set {fij : 1 � i < j � n}

⋃
{ei : 1 � i � n}.
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Proof. Both parts are proved by induction. �

Note that if α ∈ ∆1b, then we can write

α = 2α1f1n + (1 − 2α1)(0,β) for some β ∈ ∆b, (3.2)

and if α ∈ ∆0b, then we have

α = 2αnf1n + (1 − 2αn)(β, 0) for some β ∈ ∆b. (3.3)

These decompositions are unique if α1 < 1
2 in (3.2) and αn < 1

2 in (3.3). We are now
ready to define H recursively on Dn.

Definition 3.7.

(a) If n = 1, then set H(A, 1) = ln ρ(A), for A a matrix of the form[
a 1
1 0

]

with a a positive integer.

(b) Suppose n � 2 and assume H(A,α) has been defined for α ∈ Dn−1. If α ∈ Dn,
then by Proposition 3.6 either α ∈ ∆1b or α ∈ ∆0b for some b of length n − 2.

If α ∈ ∆1b, then in light of (3.2) we set

H(A,α) = α1 ln ρ(A1An) + (1 − 2α1)H(B,β),

where B = (A2, A3, . . . , An).

If α ∈ ∆0b, then using (3.3) we set

H(A,α) = αn ln ρ(A1An) + (1 − 2αn)H(C,β) where C = (A1, A2, . . . , An−1).

Proposition 3.8. Let n � 1. Then

(a) H is a well-defined function on Dn; and

(b) H is linear in α on ∆b for any b. In other words, H is piecewise linear in α on Dn.

Proof.

(a) Easily checked (by induction).

(b) If, for example, α ∈ ∆1b and α1 < 1
2 , then (3.2) gives

β =
1

1 − 2α1
(α2, α3, . . . , αn−1, αn − α1).

If H(B,β) is linear in β on ∆b, then H(A,α) is linear in α on ∆1b.

�
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If we set n = 2 in Definition 3.7, we obtain

H(A,α) =

{
α1 ln ρ(A1A2) + (α2 − α1) ln ρ(A2) if α1 � α2,

α2 ln ρ(A1A2) + (α1 − α2) ln ρ(A1) if α2 � α1.

We are now ready to prove the following theorem.

Theorem 3.9. Let u be an infinite word with values taken from Σ with frequency α

and suppose u generates (qm).

Then lim
m→∞

inf
(

1
m

)
ln qm � H(A,α).

Proof. By Lemma 3.3 it suffices to show that

lim inf
m→∞
m odd

ln trWm(A1, A2, . . . , An) � H(A,α).

We will prove this by induction on n.
If n = 1, then in fact

lim
m→∞

(
1
m

)
ln tr(Am

1 ) = ln ρ(A1) = H(A1, 1),

as can easily be checked by the reader (A1 is diagonalizable).
Assume now that n � 2 and that the result has been established for the case of (n−1)

arguments (in both A and α).
We will consider four possibilities for α ∈ Dn.

Case 1 (α1 < αn (and so α1 < 1
2)). Equation (3.1) is then applicable, and it

follows by induction that

lim inf
m→∞
m odd

(
1
m

)
ln trWm � α1 ln ρ(A1, An) + (1 − 2α1)H(B,β), (3.4)

where, as before, B = (A2, A3, . . . , An) and

β =
(

α2

1 − 2α1
, . . . ,

αn−1

1 − 2α1
,
αn − α1

1 − 2α1

)
.

But the right-hand side of (3.4) is H(A,α), by Definition 3.7, and so we have established
the required inequality.

Case 2 (αn < α1 (and so αn < 1
2)). This case is similar to Case (1). We proceed

from Theorem 3.4 (b) and use C instead of B.

Case 3 (α1 = αn < 1
2). Let I = {m ∈ N : m odd and α1(m) � αn(m)} and

J = {m ∈ N : m odd and αn(m) < α1(m)}. At least one of I or J is infinite. If I is
infinite, then equation (3.1) gives

lim inf
m∈I

(
1
m

)
ln trWm � α1 ln ρ(A1An) + (1 − 2α1) lim inf

m→∞
m odd

(
1

m∗

)
ln trWm∗

� H(A,α)
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by the inductive hypothesis. If also J is infinite, we use αn instead and get

lim inf
m∈J

(
1
m

)
ln trWm � H(A,α),

and hence

lim inf
m→∞
m odd

(
1
m

)
ln trWm � H(A,α).

If one of I, J is finite, then we just have one lim inf to consider.

Case 4 (α1 = αn = 1
2). Let ε > 0. Then for m � m0(ε) we have that

α1(m)
m

> 1
2 − ε and

αn(m)
m

> 1
2 − ε.

By Theorem 3.4, where we replace the final trace by 1, we easily have tr Wm �
ρ(A1An)(m/2)−εm and hence

lim inf
m→∞
m odd

(
1
m

)
ln trWm � 1

2 ln ρ(A1An) = H(A,f1n),

which is the required bound.

�

Let us now set F (A,α) = (M(A,α)/H(A,α)). Then we have the following corollary.

Corollary 3.10. L(u) � F (A,α).

Proof. Clear. �

Theorem 3.11.

L(u) � max
1�i<j�n

{
ln ρ(Ai)ρ(Aj)
ln ρ(AiAj)

}
.

Proof. F (A,α) is the piecewise quotient of two linear functions (in α) and hence
attains its maximum at a vertex of one of the defining ∆b simplexes. By Proposition 3.6
the vertices of ∆b are elements of Sn = {fij , 1 � i < j � n}

⋃
{ei : 1 � i � n}. We then

compute

F (A, ei) =
αi ln ρ(Ai)
H(α, ei)

=
αi ln ρ(Ai)
αi ln ρ(Ai)

= 1.

F (A,fij) =
1
2 ln ρ(Ai) + 1

2 ln ρ(Aj)
H(A,fij)

=
ln ρ(Ai)ρ(Aj)
ln ρ(AiAj)

,

and so deduce that

max
α∈Sn

F (A,α) = max
1�i<j�n

ln ρ(Ai)ρ(Aj)
ln ρ(AiAj)

.

Hence, by Corollary 3.10, the result follows. �
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In [1] it was shown that

max
1�a1<a2

(
ln ρ(A1)ρ(A2)
ln ρ(A1A2)

)
< 1.129

and that the maximum is attained when a1 = 1, a2 = 13. Thus it follows from Theo-
rem 3.11 that L(u) < 1.129 for all infinite words with frequency and whose values come
from a finite set of positive integers. For n � 3, we can make a slight improvement on the
estimate for L(u) if we can also assume that all symbols occur with the same frequency.
We discuss this in our next section.

4. Infinite words with uniform distribution

If |Σ| = n and the infinite word u has values from Σ with frequency αi = (1/n) for
1 � i � n, then we say that u is a word with uniform distribution.

If we set

gn =
(

1
n

,
1
n

, . . . ,
1
n

)
∈ Dn,

then from their respective definitions, we have

M(A, gn) =
1
n

n∑
i=1

ln ρ(Ai)

and

H(A, gn) =




1
n

�n/2�∑
i=1

ln ρ(AiAn+1−i) if n is even,

1
n

{�n/2�∑
i=1

ln ρ(AiAn+1−i) + ln ρ(A�n/2�)
}

if n is odd.

For 1 � x � y, let

X =

[
x 1
1 0

]
, Y =

[
y 1
1 0

]

and consider the function l(x, y) = 1.1 ln ρ(XY ) − ln ρ(X)ρ(Y ). Then

l(x, y) = 1.1 ln(1
2 (xy + 2 +

√
x2y2 + 4xy)) − ln(1

4 (x +
√

x2 + 4)(y +
√

y2 + 4)).

The function l has various properties, summarized in the following lemma.

Lemma 4.1. The function l(x, y) satisfies the following conditions.

(a) If 1 � x1 � x2 � y, then l(x1, y) � l(x2, y).

(b) If 2 � x � y1 � y2, then l(x, y1) � l(x, y2).
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(c) miny�2 l(1, y) > −0.083.

(d) miny�3 l(2, y) = l(2, 3) (> 0.19).

Proof. Omitted. �

Proposition 4.2. If n � 3, then F (A, gn) < 1.1.

Proof.

(1) n = 3. Then

F (A, g3) =
ln ρ(A1)ρ(A3) + ln ρ(A2)
ln ρ(A1A3) + ln ρ(A2)

.

So F (A, g3) < 1.1 is equivalent to l(a1, a3) + 0.1 ln ρ(A2) > 0. From parts (b)
and (d) of Lemma 4.1 we see that l(a1, a3) > 0 if a1 � 2. If a1 = 1, then a2 � 2 so
that ρ(A2) � 1 +

√
2 and thus

l(a1, a3) + 0.1 ln ρ(A2) � min
y�2

l(1, y) + 0.1 ln(1 +
√

2)

> −0.083 + 0.088 = 0.05 > 0.

Thus in either case we have established that F (A, g3) < 1.1.

(2) n odd, n � 5. Then F (A, gn) < 1.1 if and only if

�n/2�∑
l=1

l(ai, an+1−i) + 0.1 ln ρ(A�n/2�) > 0. (4.1)

The left-hand side of (4.1) is at least l(a1, an) + 0.1 ln ρ(A2) and hence is greater
than 0 by part (1).

(3) n even, n � 4. Then

F (A, gn) < 1.1 ⇔
�n/2�∑
i=1

l(ai, an+1−i) > 0. (4.2)

We will show that l(a1, an) + l(a2, an−1) > 0.

By Lemma 4.1,

l(a1, an) + l(a2, an−1) � min
y�3

l(1, y) + min
y�3

l(2, y)

> −0.083 + 0.19 > 0.

�

Corollary 4.3. If u is an infinite word taking values in the finite set Σ with uniform
distribution and |Σ| � 3, then L(u) < 1.1.

It is possible to show that L(u) < 1.09 if |Σ| � 4, and presumably we would get
smaller bounds as |Σ| → ∞.
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5. Expansion factors for {�mθ� mod n}

Suppose θ is irrational with 0 < θ < 1 and n � 2. We set wm = �mθ� mod n and
w = w1w2 . . . . If Φ : {0, 1, . . . , n − 1} → Σ is a bijection, then the infinite word u is
defined by setting um = Φ(wm) for m � 1. u is said to be derived from w and we also
write u = Φ ◦ w. From Definition 1.1 it is evident that u has a segment expansion factor
greater than or equal to γ if and only if w has a segment expansion factor greater than
or equal to γ.

It will turn out that, in order to obtain the transcendence of continued fractions asso-
ciated with such u, we need to obtain conditions on θ to guarantee that w will have a
segment expansion factor greater that 3

2 .
Let the continued fraction of θ be [0, b1, b2, . . . ] with convergents (Pk/Qk)k�0. If t is a

non-negative integer, then we set

Pk,t = tPk+1 + Pk, Qk,t = tQk+1 + Qk.

Thus, in particular,

Pk,0 = Pk, Pk,bk+2 = Pk+2

and

Qk,0 = Qk, Qk,bk+2 = Qk+2.

If bk+2 � 2 and 1 � t � bk+2 − 1, then Pk,t/Qk,t is called a median convergent to θ

(see [8] for further information).
The following proposition generalizes what was proved in [3].

Proposition 5.1. Suppose k � 0 and 0 � t � bk+2 − 1. Then for all integers m

satisfying 1 � m < Qk,t+1 we have

�mθ� =




⌊
m

Pk,t

Qk,t

⌋
if k is even,

⌈
m

Pk,t

Qk,t

⌉
− 1 if k is odd.

Proof.

(1) First consider when k is even. From the classical inequalities

0 < Qk+2θ − Pk+2 < Q−1
k+2

we derive

�mθ� =
⌊
m

Pk+2

Qk+2

⌋
for 1 � m � Qk+2. (5.1)

We now show that if t satisfies 0 � t � bk+2 − 1, then⌊
m

Pk,t

Qk,t

⌋
=

⌊
m

Pk,t+1

Qk,t+1

⌋
for 1 � m < Qk,t+1. (5.2)
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From the basic theory we have

Pk,t+1

Qk,t+1
− Pk,t

Qk,t
=

1
Qk,t+1Qk,t

,

and therefore if 1 � m < Qk,t+1, we obtain

m
Pk,t

Qk,t
< m

Pk,t+1

Qk,t+1
< m

Pk,t

Qk,t
+

1
Qk,t

,

from which (5.2) follows immediately.

If we put t = bk+2 − 1 in (5.2) and use (5.1), we find that �mθ� = �m(Pk,t/Qk,t)�
for 1 � m < Qk,t+1. We can then put t = bk+2 − 2 in (5.2) and see that the
required result holds. Continuing in this manner we establish the result for all
t : 0 � t � bk+2 − 1.

(2) Now consider the case when k is odd. We can similarly show that if 1 � m � Qk+2,
then

�mθ� =
⌈
m

Pk+2

Qk+2

⌉
− 1, (5.3)

and if 1 � m < Qk,t+1, 0 � t � bk+2 − 1, then⌈
m

Pk,t

Qk,t

⌉
=

⌈
m

Pk,t+1

Qk,t+1

⌉
(5.4)

and the result follows as before.

�

Corollary 5.2. Suppose k � 0 and 0 � t � bk+2 −1. Then �(Qk,t + r)θ� = Pk,t + �rθ�
for 1 � r � Qk+1 − 1.

Proof. Omitted. �

For each k � 0 and for 0 � t � bk+2 − 1 we define the following prefixes of w:

Xk,t = {�mθ� mod n}1�m�Qk,t
,

Zk,t = {�mθ� mod n}1�m<Qk,t+1 .

For convenience we write Xk = Xk,0 and Zk = Zk,0. The prefix partial order will be
denoted by ‘�’, so it is evident that Xk,t � Zk,t.

We are now able to prove the following proposition.

Proposition 5.3. Suppose θ = [0, b1, b2, . . . ] with convergents {Pk/Qk}k�0 and
w = {�mθ� mod n}m�1.

(a) If there is an infinite number of k with Pk ≡ 0 mod n, then w has a prefix expansion
factor greater than or equal to 2.
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(b) Suppose M = lim supr→∞ br < ∞. If there is an infinite number of k with
Pk + Pk+1 ≡ 0 mod n and bk+2 � 2, then w has a prefix expansion factor greater
than or equal to 3

2 + 1/(8M).

(c) If there is an infinite number of k with bk+1 � 3
2n, then w has a prefix expansion

factor greater than or equal to 3
2 + 1/n.

Proof.

(a) Suppose Pk ≡ 0 mod n. By Corollary 5.2 (with t = 0), we can write Zk = XkYk

with Yk � Xs
k for some integer s. Let Uk = λ, Vk = Xk, Wk = Yk. Then

|VkWk|
|Vk| =

Qk+1 + Qk − 1
Qk

> 2.

Since there are an infinite number of such k, we can conclude that w has a prefix
expansion factor greater than or equal to 2.

(b) Suppose Pk + Pk+1 ≡ 0 mod n and bk+2 � 2. Applying Corollary 5.2 with t = 1
gives �(Qk,1 + r)θ� ≡ �rθ� mod n for 1 � r � Qk+1 −1. Hence Zk,1 = Xk,1Yk,1 with
Yk,1 � Xs

k,1 for some positive integer s. Set Uk = λ, Vk = Xk,1, Wk = Yk,1 and we
find that

|VkWk|
|Vk| =

2Qk+1 + Qk − 1
Qk+1 + Qk

.

The assumption that lim supr→∞ br = M � 2 gives, for all sufficiently large k,

Qk+1

Qk
� 1 +

1
M + 1

and hence that
|VkWk|

|Vk| � 3
2

+
1

8M
.

(c) Suppose bk+1 � 3
2n. Put X̃k = {�mθ� mod n}1�m�nQk

. Then |Zk| = Qk+1 + Qk −
1 > nQk = |X̃k| so X̃k � Zk. Thus Zk = X̃kỸk and Ỹk � X̃s

k for some positive
integer s. Setting Uk = λ, Vk = X̃k, Wk = Ỹk we obtain

|VkWk|
|Vk| =

Qk+1 + Qk − 1
nQk

�
3
2nQk + Qk−1 + Qk − 1

nQk
� 3

2
+

1
n

.

�

Remark 5.4.

(1) Proposition 5.3 only refers to results involving t = 0 and t = 1. In fact if we consider
t � 2 (so that necessarily bk+2 � 3) we find that

|Zk,t|
|Xk,t|

=
Qk,t+1 − 1

Qk,t
<

3
2

and we do not have an instance to demonstrate that w has a prefix expansion factor
greater than or equal to 3

2 .
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(2) It is possible to obtain analogous results to Proposition 5.3 when θ > 1, but we
have suppressed the details.

We now conclude this section by finding a situation where w has a segment expansion
factor greater than 3

2 . From Corollary 5.2 (with t = 0, k � 0) we see that

�(Qk+1 + r)θ� = �(Qk + r)θ� + Pk+1 − Pk for 1 � r � Qk+1 − 1,

and we can now prove the following proposition.

Proposition 5.5. Suppose M = lim supr→∞ br < ∞. If there are an infinite number
of k satisfying Pk ≡ Pk+1 mod n and bk+1 � 3, then w has a segment expansion factor
greater than or equal to 3

2 + 1/(12M).

Proof. Assume Pk ≡ Pk+1 mod n and let Uk = {�mθ� mod n}1�m�Qk
,

Vk = {�mθ� mod n}Qk<m�Qk+1 , Wk = {�mθ� mod n}Qk+1<m<2Qk+1 .

Then UkVkWk � w. By the observation just preceding Proposition 5.5 it is evident that
Wk � V s

k for some positive integers s. Also

|UkVkWk|
|Uk| + |UkVk| =

2Qk+1 − 1
Qk + Qk+1

� 3
2

+
1

12M
,

since under our present assumption

Qk+1

Qk
� 3 +

1
M + 1

for large k instances. �

6. Approximation by quadratic irrationals

We now proceed to make the connection between segment/prefix expansion factors and
quadratic approximation. If η is a quadratic irrational satisfying the minimal equa-
tion aη2 + bη + c = 0, where a, b, c ∈ Z with gcd(a, b, c) = 1, then we set H(η) =
max{|a|, |b|, |c|}. As before, u = u1u2 . . . , α = [0, u1, u2, . . . ] and {pm/qm}m�0 is the
sequence of convergents of α.

The following result is a refinement of the estimate given by Baker in [2].

Lemma 6.1. Let

η = [0, u1, u2, . . . , uh−1, uh, . . . , uh+k−1].

Then H(η) < 2qh−1qh+k−1.

Proof. Let ηh = [uh, uh+1, . . . , uh+k−1]. Then

η =
ph−1ηh + ph−2

qh−1ηh + qh−2
=

ph+k−1ηh + ph+k−2

qh+k−1ηh + qh+k−2
.
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Eliminating ηh, we obtain Pη2 + Qη + R = 0, where

P = qh−2qh+k−1 − qh−1qh+k−2,

Q = qh−1ph+k−2 + ph−1qh+k−2 − ph−2qh+k−1 − qh−2ph+k−1,

R = ph−2ph+k−1 − ph−1ph+k−2.

Now 0 < η < 1 so pr � qr for r � 0. Hence

|P | � qh−1qh+k−1, |R| � qh−1qh+k−1

and
|Q| � max{2qh−1qh+k−2, 2qh−2qh+k−1} � 2qh−1qh+k−1.

�

Lemma 6.2. Suppose {Uk}k�1 and {Vk}k�1 are two families of words (in Σ) satisfying
the two conditions:

(i) UkVk < u; and

(ii) limk→∞ |Vk| = ∞.

Then

lim sup
k→∞

(
ln q|Uk|q|UkVk|
|Uk| + |UkVk|

)
� lim sup

m→∞

(
1
m

)
ln qm.

Proof. Let M = lim supm→∞(1/m) ln qm and let ε > 0. Then there exists m0 � 1
such that if m � m0, then (1/m) ln qm < M + 1

2ε. Let A = max0�m�m0−1 ln qm. Since
limk→∞ |Vk| = ∞, then there exists k0 such that if k � k0, then |Vk| � m0 and A <
1
2ε|Vk|. Now put I = {k : |Uk| < m0} and J = {k : |Uk| � m0}. If k ∈ I, k � k0 we have

ln q|Uk|q|UkVk|
|Uk| + |UkVk| �

A + ln q|Uk|Vk|
|UkVk| < 1

2ε + M + 1
2ε = M + ε,

whereas, if k ∈ J , k � k0 we have

ln q|Uk|q|UkVk|
|Uk| + |UkVk| =

|Uk|
|Uk| + |UkVk|

ln q|Uk|
|Uk| +

|UkVk|
|Uk| + |UkVk|

ln q|UkVk|
|UkVk|

< M + 1
2ε,

since it is a convex combination of two numbers, both less than M + 1
2ε. �

The following theorem generalizes Theorem 4 of [1].

Theorem 6.3. If α is not a quadratic irrational (that is, u is not ultimately periodic)
and if u has a segment expansion factor greater than or equal to γ, then there is a
sequence of quadratic irrationals (αk) which satisfies

|α − αk| <
1

H(αk)2γ/L(α) , (6.1)

where H(αk) denotes the height of αk.
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Proof. By assumption there are three families of words {Uk}k�1, {Vk}k�1, {Wk}k�1

satisfying the requirements of Definition 1.1. Set

αk = [0, u1, u2, . . . , u|Uk|, u|Uk|+1, . . . , u|UkVk|].

By standard theory, αk is a quadratic irrational. Furthermore, since limk→∞ |Vk| =
∞, it is evident that there an infinite number of distinct αks. By Lemma 6.1,
H(αk) < 2q|Uk|q|UkVk|. In addition, from Definition 1.1 it is clear that α and αk have
the same first |UkVkWk| partial quotients. Thus

|α − αk| � 1
q2
|UkVkWk|

. (6.2)

The required result will then follow if we can show that

q2
|UkVkWk| � (2q|Uk|q|UkVk|)2γ/L(α)

for all k that are large enough. Using Lemma 6.2,

lim inf
k→∞

2 ln q|UkVkWk|
ln(2q|Uk|q|UkVk|)

= 2 lim inf
k→∞

{
ln q|UkVkWk|

ln(q|Uk|q|UkVk|)

}

� 2 lim inf
k→∞

{(
ln q|UkVkWk|
|UkVkWk|

/
ln(q|Uk|q|UkVk|)
|Uk| + |UkVk|

)
|UkVkWk|

|Uk| + |UkVk|

}

� 2
lim infm→∞(1/m) ln qm

lim supm→∞(1/m) ln qm
· γ

=
2γ

L(α)
,

as required. �

Theorem 6.4. Let 0 < θ < 1 be irrational with continued fraction expansion θ =
[0, b1, b2, . . . ] and principal convergents (Pk/Qk)k�0. Let n be an integer greater than or
equal to 2 and Σ ⊂ Z

+ with |Σ| = n. Suppose Φ : {0, 1, . . . , n − 1} → Σ is a bijection,
w = {�mθ� mod n}m�1 and u = Φ ◦ w with associated continued fraction α.

Then α is transcendental if any of the following conditions hold for an infinite number
of positive integers k:

(a) Pk ≡ 0 mod n;

(b) bk+1 � 3
2n;

(c) Pk + Pk+1 ≡ 0 mod n;

(d) Pk ≡ Pk+1 mod n.

Proof. Since θ is irrational it is clear that α is neither a rational nor a quadratic
irrational. In view of Theorem 6.3 and Schmidt’s Theorem [9], the transcendence of α

will be proved provided (2γ/L(α)) > 3 + δ, for some δ > 0. For any irrational θ, it can
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be shown by classical ergodic theory that L(u) = 1 (cf. [5,7]). (I thank the referee for
bringing this to my attention.) A purely elementary proof of this fact can be found in [4].
Thus we need only demonstrate that w has a segment expansion factor γ � 3

2 + 1
2δ for

some δ > 0.
If (a) or (b) holds for an infinite number of k, then Proposition 5.3 (a), (c) gives the

required result. Suppose that (c) holds, but neither (a) nor (b) holds for an infinite
number of k. Then lim supr→∞ br � 3

2n and Pr ≡ 0 mod n for all sufficiently large r.
Now if bk+2 = 1, then Pk+2 = Pk+1 + Pk ≡ 0 mod n. So we must have bk+2 � 2 for all
sufficiently large instances of (c). Proposition 5.3 (b) then yields the result.

Finally, suppose that (d) holds but none of (a)–(c) hold for an infinite number of k.
It is then easy to check that we must have bk+1 � 3 for all sufficiently large instances
of (d). We can then use Proposition 5.5 to complete the proof. �

Theorem 6.4 immediately gives the result that α is always transcendental when n

equals 2 or 3. If n = 5 and θ = [0, 1, 3, 1, 1, 1, . . . ], then for all k � 1, we find that none of
the conditions (a)–(d) hold; so it is an open question whether the corresponding α can
be shown to be transcendental by the methods of this paper.
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