ARITHMETIC PROGRESSIONS IN FINITE SETS OF
REAL NUMBERS

by W. KLOTZ
(Received 13 September, 1971)

In this paper we investigate the structure of a set of n reals that contains a maximal
number of /-term arithmetic progressions. This problem has been indicated by J. Riddell.
Let / and n be positive integers with 2 £/ < n. By F,(n) we denote the maximal number of
I-term arithmetic progressions that a set of # reals can contain. A set of » reals containing
F(n) l-progressions will be called an Fy(n)-set.

THEOREM. Let [x] be the integral part of x. Then
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Every arithmetic progression of n terms is an F(n)-set. Letn—1=r mod(I-1),0<r</-2.
For 1 =z 3 there are exactly the following types of F(n)-sets besides arithmetic progressions. (If
n2123 then every F(n)-set that is not a progression corresponds under a linear trans-
Jormation to one of the sets listed below. The digit 1 stands for an element of the set, O for a
gap.)

(i) I=3.

elements
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(i)l = 4.
(@) r=1-2.
111...11101.
(b) r=1-3.
Only progressions.

Proof. Let P(n) denote the number of /-progressions contained in {1, 2,...,n}. Then
P(n) < F(n). We shall prove equality. For practical reasons we put P,(n) = F;(n) = 0 for
every n 2 0 and P((n) = Fi(n) =0 for n <l. Clearly P,(n) = Fy(n)=(3), if n= 2. Assume
that P,_,(n) = F,_,(n) for every n = 0 has already been shown. We count the /-progressions
in an arbitrary Fi(n)-set S = {a,, ..., a,} witha, <a, <...<a,and I £ n. First we count all
progressions with a second term g, with 1 <i < 1+(n—1)/(/—1). Then we take the pro-
gressions having a last but one term a;, with n—(n—1)/(/—1) < j < n. Deleting the first and
the last term of every l-progression not yet counted gives a 1—-1 mapping into the set of
(I—2)-progressions contained in

n-1 n—1
"= —_— i<npn——V.
S {ai|a,eS,1+l_1<z=n l—l}

Thus we see that

Fyn) = ) (i-1+ ) (n—i)+F (|- )
1<ig1+m=-1)/(~1) n—(n—-1)/(I-1)<i<n
We recall that F,_,(|S’[) = P,-,(|S’[). If S is an n-progression, the right-hand side of (2)
counts every [-progression exactly once. This shows that F(n) = P(n).
We can now compute Fi(n) as the number of /-progressions in {1, 2,...,n}. We find
the number of /-progressions having the first term j, and sum over j.

n s [l::]"1
n—j n—-1 n—1
F(n)= — =l n-(-] — -1 k.
" ng[l_l:l [I_I:l(n ( )[1—1:D+( ) k;

This proves (1).

For the following we consider only F/(n)-sets S. We keep in mind that in (2) equality
holds. Therefore S’ is an F_ 2([ S"|)-set. Moreover, every (/—2)-progression in S’ can be
extended to an J-progression in S by adding a new first and a new last element. For every
aeS, with 1 <iZ 1+(@m—-1)/(/-1) (resp. n—(n—1)/(I—1) <i<n), and any a; < a, (resp.
a; < a;), there must be an [-progression in § containing a; and a; such that g, is its second
(resp. its last but one) term.

(i)1=3.

(@) r=1. Consider the elements a;, a; .,€S (i, =n/2). Every a;<a,, and every
a; > a; ,, can be reflected at g,  and a;,,, resp. to an element of S. From this, and because
there are no elements between a;, and a, ., it follows that the elements of S can only take

positions on the infinite arithmetic progression defined by a;, and a,,,.,. Thus we can represent
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S by zeros and ones on this progression. Recognizing that every gap < a,, (resp. > a,+1) can
be reflected at a;, , (resp. at a,) to another gap we find out all the sets listed in part (i)(a) of
the theorem. From the construction of these sets it is clear that they contain as many 3-
progressions as counted on the right-hand side of (2). So they are indeed F,(n)-sets.

(b) r=0. The proof is analogous to that for (a).

(i) I 2 4.

It might happen that |S’| < /~2. For r =0, this would mean that
|S|=n——F—-——-1<1-3

and so n £ /; while, forr 2 1,

2(1-r)
-3
terms is the only F,(n)-set.

Let |S'| 2 1-2. As §isan F,_,(] 8’ |)-set, we may assume for /2 5 that S’ is either a
progression or homothetic to one of the sets listed in the theorem. But every (/—2)-progression
in S’ has an extension to an /-progression in S. Therefore S’ is a progression itself. This is
also true for / =4.

We represent S’ by the positive integers i+ 1, i+2, ..., j—1 (and j, if r # 0), and we show
that, if r #£0, then S is of the form

S={l-g,...,0, 1, .., 0 i+1,...,j=1,j,...,n,n+1,...,n+h},

and so n < Il+1+ <1+1. Butfor 4 £/<n<I+1 the arithmetic progression of n

with
—-1- n—1-r

. h r .
g, hz0,i= 1 +1,1—-n—T_1—

,a,=t for i+1Lt<j—-1.

i€ S, because it belongs to the extension of the (/—2)-progression i+1,...,i+1—2 of S,
Clearly i £ a;. If i < a,, then it follows from a;+(a;—i)e S that g; =i+4. But as /=4 we

must also have a;+2(a;~i)€ S, which is not true. Therefore a; = i must hold. Similarly we see

that every element of S is an integer. In particular, we find thata; =j. Leta; =1—g and

a,=n+h(g,h=0). The l-progression having n+# as its last term and j as its last but one

term is contained in S. This is also true for r = 0. Let its first term be denoted by (n+4)'.

Then

n—1
1—

n—1-

-1

(n+hy =n— l'f—(z—z)<n+h-n+ r)=r+1—h(l—2).

If (n+h)’ < 1—h, then the J-progression starting with (n+h)’ and { would demand the existence
of an element of S greater than n+h. Therefore we conclude that r+1—h(/—2) 2 1 -4,
h<rl(l-3), and similarly g £r/(I-3) for r=0,1,...,1-2. 3)

Ifr <1—-4,theng =h=0, and S is a progression.
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Suppose that 0eS and 1€S; then every integer up to i must belong to S, which is
impossible, because S has only i elements not greater than i. Thus we see that not both 0
and 1 or analogously #» and n+1 can belong to S. Nowletr=1[-2,h=1. We have

(n+1) =1-2+1-(1-2) =1

and so S={1,2,...,n—1,n+1}. This is an F(n)-set. According to (3), for /=4 we need
consider only the following cases:

(@ r=1-2,h=2. We have
(n+2) =1-2+4+1-2(-2)= —-1.

Here the elements — 1, i, j, n+2 form a 4-progression. This means that there is a progression
counted twice on the right-hand side of (2). Therefore S cannot be an F,(n)-set.

B)r=1-3,h=1. We have
(+1) =1-3+1—(1-2)=0

and so §$=1{0,2,3,...,n—1,n+1}. ButnowO,i,2i...,j=(-2)i,n+1=(I-1)iforman
I-progression. For the same reason as before S cannot be an F,(n)-set.
Finally we pose the following problem. Given a system of linear equations

r r
Z aii'xi:O’ Z ai.i:o’ for i=1,2,...,5,
j=1 i=1

with integer coefficients a;;. Denote by F(n) the maximal number of solutions in a set of n
reals and by P(») the number of solutions in {1,2,...,n}. Is F(n) ~ P(n) always true?
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