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Abstract

We extend the Atiyah, Patodi, and Singer index theorem for first-order differential
operators from the context of manifolds with cylindrical ends to manifolds with
periodic ends. This theorem provides a natural complement to Taubes’ Fredholm
theory for general end-periodic operators. Our index theorem is expressed in terms
of a new periodic eta-invariant that equals the Atiyah–Patodi–Singer eta-invariant in
the cylindrical setting. We apply this periodic eta-invariant to the study of moduli
spaces of Riemannian metrics of positive scalar curvature.

1. Introduction

In this paper, we prove an index theorem for operators on end-periodic manifolds, generalizing
the index theorem of Atiyah et al. [APS75a].

The Atiyah–Patodi–Singer theorem applies to a first-order elliptic differential operator A on
a compact oriented manifold Z with boundary Y that has the form

A = σ

(
∂

∂θ
−B

)
(1)

on a collar neighborhood of Y . Here, B is a self-adjoint elliptic operator on Y and σ is a bundle
isomorphism. We orient Y so that the outer normal vector ∂/∂θ followed by the orientation of Y
gives the orientation on X (this is different from the orientation convention of [APS75a], hence
the negative sign in (1)). The theorem states that the index of A, with respect to a certain global
boundary condition, is given by

indA =

∫
Z

I(A)− 1

2
(hB + ηB(Y )). (2)

In this formula, I(A) is the local index form [ABP73, BGV92] whose integral would give the
index of A if Z were a closed manifold, hB = dim kerB, and the η-invariant ηB(Y ) is the value
at s = 0 of the meromorphic extension of the function∑

signλ|λ|−s

defined for sufficiently large Re(s) by summing over the non-zero eigenvalues λ in the (discrete
and real) spectrum of B.
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Because of (1), the operator A extends to an operator (still denoted by A) on the non-compact
manifold obtained from Z by attaching a product end R+×Y . If kerB = 0, the L2-closure of A is
known to be Fredholm, and its index is again given by formula (2). With a proper interpretation
of indA as in [APS75a, § 3], this formula holds even when kerB 6= 0 and the L2-closure of A
fails to be Fredholm.

Manifolds with product ends are a special case of the end-periodic manifolds that we study
in this paper. By an end-periodic manifold we mean an open Riemannian manifold with an
end modeled on an infinite cyclic cover X̃ of a compact manifold X associated with a primitive
cohomology class γ ∈ H1(X;Z); the case of several ends, which plays an important role in §§ 8
and 9, can be treated similarly. To be precise, such a manifold is of the form

Z∞ = Z ∪W0 ∪W1 ∪W2 ∪ · · · , (3)

where Wk are isometric copies of the fundamental segment W obtained by cutting X open along
a oriented connected submanifold Y Poincaré dual to γ, and Z is a smooth compact manifold
with boundary Y .

End-periodic elliptic operators on end-periodic manifolds were studied by Taubes [Tau87].
A fundamental example of such an operator would be an operator having the form (1) on
a manifold with product end, and more general versions appear elsewhere in geometry [MP98,
MPU96, Mil06, MRS11]; see also the discussion at the end of § 2.1. Taubes established conditions
under which the L2-closure of an end-periodic elliptic operator is Fredholm, and calculated the
index of the anti-self-dual operator occurring in Yang–Mills theory; this naturally raises the
question of evaluating the index in the general case.

In this paper we present an index theorem for certain end-periodic operators, generalizing the
Atiyah–Patodi–Singer index theorem. Assume that Z∞ is even dimensional, and let S = S+⊕S−
be an end-periodic Z/2-graded Dirac bundle as in [LM89] with associated chiral Dirac operator

D+(Z∞) : C∞(Z∞;S+) → C∞(Z∞;S−).

Typical examples would include the spin Dirac operator on a spin manifold and the signature
operator; more generally, either of these operators twisted by a complex vector bundle with
unitary connection would give a Dirac operator to which our theorem would apply.

To state our theorem, write γ = [df ] for a choice of smooth function f : X̃ → R lifting a
circle-valued function on X. According to Taubes [Tau87, Lemma 4.3], the L2-closure of D+(Z∞)
is Fredholm if and only if the operators

D+
z = D+(X)− ln z · df

on the closed manifold X obtained by Fourier–Laplace transform are invertible on the unit circle
|z| = 1. As a consequence of this condition, the operator D+(X) has index zero and hence its
index form I(D+(X)) is exact. Our end-periodic index theorem is now as follows.

Theorem A. Suppose that the L2-closure of the operator D+(Z∞) is Fredholm, and choose a
form ω on X such that dω = I(D+(X)). Then

indD+(Z∞) =

∫
Z

I(D+(Z))−
∫
Y
ω +

∫
X
df ∧ ω − 1

2
η(X), (4)

where

η(X) =
1

πi

∫ ∞
0

∮
|z|=1

Tr(df · D+
z exp(−tD−z D+

z ))
dz

z
dt. (5)
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We will refer to (5) as the periodic η-invariant. The form ω is known in the literature as the

transgressed class; cf. Gilkey [Gil93].

In the product end case, one can choose X = S1×Y so that X̃ = R×Y , and let f : X̃ → R be

the projection onto the first factor. With our orientation conventions, D+(Z∞) is of the form (1),

where B = D is the self-adjoint Dirac operator on Y ; see Nicolaescu [Nic99, p. 70]. One can easily

see that in this case the operators D+
z are invertible on the unit circle if and only if kerD = 0. We

then show in § 6.3 that η(X) = ηD(Y ). A similar ‘spectral’ interpretation of (5) in the general

end-periodic case will be given in § 6.

How restrictive the Fredholmness condition in Theorem A is varies from one operator

to another. For instance, the L2-closure of the spin Dirac operator on a spin manifold Z∞
of dimension at least four is Fredholm for a generic end-periodic metric, provided a certain

topological obstruction vanishes; see [RS007]. On the other hand, the L2-closure of the signature

operator on Z∞ is never Fredholm. This explains the need to extend our Theorem A to the

situations when the L2-closure of D+(Z∞) is not Fredholm. We will discuss such an extension

in § 7 for a properly interpreted index analogous to the one treated in [APS75a, § 3].

It is worth mentioning that the index theorem of Atiyah, Patodi, and Singer is just one

of multiple index theorems generalizing the original Atiyah–Singer index theorem [AS68] from

compact to non-compact manifolds. In many of these generalizations, the operator is no longer

required to be Fredholm but the index is interpreted through some kind of averaging procedure;

examples include Atiyah’s index theorem for coverings [Ati76] and Roe’s index theorem for

certain open manifolds [Roe88a, Roe88b]. Despite the common use of Fourier transform methods,

our theorem is of a different nature; in fact, it is nearest to the classical case in that the operator

under consideration is actually Fredholm, and its index is given by a formula similar to that of

Atiyah et al. [APS75a] with a different correction term.

1.1 An outline of the proof

Our proof of Theorem A is an adaptation to the end-periodic case of Melrose’s proof of the

Atiyah–Patodi–Singer theorem [Mel93]. Let D be the full Dirac operator on the end-periodic

manifold Z∞. The operator exp(−tD2) with t > 0 has a smoothing kernel K(t;x, y). Unlike in

the compact case, this does not mean that exp(−tD2) is of trace class because tr(K(t;x, x)) need

not be an integrable function of x ∈ Z∞. To rectify this problem, we define in § 3 a regularized

trace Tr[, and show that the associated supertrace

Str[(exp(−tD2)) = Tr[(exp(−tD−D+))−Tr[(exp(−tD+D−))

has the desired properties that

lim
t→0

Str[(exp(−tD2)) =

∫
Z

I(D+(Z))

and

lim
t→∞

Str[(exp(−tD2)) = indD+(Z∞).

In the closed case, the analysis shows that the supertrace of exp(−tD2) is constant in t, and this

fact proves the index theorem. In our case, however, an easy calculation shows that

d

dt
Str[(exp(−tD2)) = −Tr[[D−,D+ exp(−tD−D+)],
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where the term on the right need not vanish because of the failure of the regularized trace Tr[

to be a true trace functional, that is, to vanish on commutators. Integrating the latter formula
with respect to t ∈ (0,∞), we obtain an index theorem with the ‘defect’ in the form∫ ∞

0
Tr[[D−,D+ exp(−tD−D+)] dt.

Expressing this integral in terms of the periodic η-invariant (5) completes the proof of Theorem A.
There is a fair amount of analytic results behind each of the steps in the proof. Some of

these results, like the short-time estimates on the kernel of exp(−tD2), are well known and hold
for all manifolds of bounded geometry, of which end-periodic manifolds are a special case. Other
results, like the convergence Str[(exp(−tD2)) → indD+(Z∞) as t → ∞, are more delicate and
rely on the original gradient estimates which are specific to manifolds with periodic ends. All of
this analysis is collected in § 10.

1.2 Calculations and applications
Because the definition (5) of the periodic η-invariant is so complex, it is not easy to make
calculations beyond the product case. We present in § 6.4 a partial calculation for one family of
examples, that of Dirac operators on certain Inoue surfaces [Ino74]. These are important examples
in the theory of non-Kähler complex surfaces; see for instance [OT00, Tel07]. Topologically they
fiber over the circle with 3-torus fiber, but the resulting infinite cyclic cover is not a metric
product so η(X) is not a priori related to the η-invariant of the fiber.

In §§ 8 and 9, we present a sample application of our index theorem in differential geometry.
First, in parallel to the theory of [APS75b], we show how our periodic η-invariants give rise to a
(metric dependent) invariant ξ̃α of an even-dimensional manifold X equipped with a primitive
cohomology class γ ∈ H1(X;Z) and a unitary representation α of π1(X). Recall that the
ξ̃-invariants of [APS75b, § 3] are defined for odd-dimensional manifolds Y ; our ξ̃-invariants are
equal to these when X = S1 × Y . We apply our ξ̃-invariants in § 9 to detect components
of the moduli space M+(X) of Riemannian metrics of positive scalar curvature, modulo
diffeomorphism. Theorem 9.2 gives a somewhat more general version of the following result;
cf. Botvinnik and Gilkey [BG95].

Theorem B. Let Y be a closed connected spin manifold of dimension 4n − 1 with n > 1 and
with a non-trivial finite fundamental group, and let M be a closed spin manifold of dimension
4n. If Y and M admit metrics of positive scalar curvature, then π0(M+(S1×Y )#M) is infinite.

The topological techniques (surgery and handlebody theory) that go into the proof of this
theorem are not completely available in low dimensions and so we are not able to obtain the result
as stated if n = 1. By careful use of available techniques, in Theorem 9.5, we find 4-manifolds of
the form X = (S1 × Y ) #m · (S2 × S2) for which π0(M+(X)) can be arbitrarily large.

1.3 Organization
The paper is organized as follows. We begin in § 2 by reviewing the basics of the theory of end-
periodic operators and by deriving an explicit formula for the smoothing kernel of the operator
exp(−tD2) on the periodic manifold X̃. Analytic estimates on the heat kernel, despite being
crucial to the proof, are postponed until § 10 for the sake of exposition. The regularized trace Tr[ is
defined in § 3. In § 4, we derive the commutator trace formula for Tr[; this is followed by the proof
of Theorem A in § 5. Section 6 discusses a spectral interpretation of the invariant η(X), as well as
its interpretation in terms of the von Neumann trace. We also calculate the periodic η-invariant

402

https://doi.org/10.1112/S0010437X15007502 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007502


An index theorem for end-periodic operators

for product manifolds and make partial calculations for certain Inoue surfaces. Theorem A is
extended to the non-Fredholm case in § 7. In the same section, we discuss the dependence of the
periodic η-invariants on orientations and its relation to spectral flow. The periodic ξ̃-invariants
are introduced in § 8 and are applied to the study of metrics of positive scalar curvature in § 9.
Several analytic results used elsewhere in the paper are collected in the final § 10.

2. End-periodic operators

We begin by describing manifolds with periodic ends, and the class of operators that we will
consider. We will restrict ourselves to the situation with one end; the extension to several ends
is routine.

2.1 End-periodic manifolds and operators
LetX be an oriented compact manifold endowed with a primitive cohomology class γ ∈H1(X;Z).
This data gives rise to an infinite cyclic covering p : X̃ → X, together with a generator T of the
covering translations, which we will often denote by T (x) = x + 1. Choose a smooth function
X → S1 which pulls back the generator of H1(S1;Z) to γ. We fix a lift f : X̃ → R of this
function; it has the property that f(x + 1) = f(x) + 1. Note that while f does not descend to
a real-valued function on X, its differential does, and we will abuse notation by viewing df as a
1-form on X.

Choose an oriented, connected submanifold Y ⊂ X that is Poincaré dual to γ, and cut X
open along Y to obtain a cobordism W with boundary ∂W = −Y ∪ Y . Note that

X̃ =
∞⋃

k=−∞
Wk,

where Wk are just copies of W . By definition, an end-periodic manifold with end modeled on
the infinite cyclic cover of X is a manifold of the form

Z∞ = Z ∪W0 ∪W1 ∪W2 ∪ · · · , (6)

where Z is a smooth oriented compact manifold with boundary Y . There are obvious definitions
of Riemannian metrics, bundles, and differential operators in this setting; in short, all data over
the end should be pulled back from the same sort of data on X.

We will largely follow the notation of [LM89] for index-theoretic notions. We consider Dirac
operators D(M) defined on sections of a Dirac bundle S over a manifold M . When the dimension
of M is even, the Dirac bundle S = S+ ⊕ S− is Z/2-graded, and the Dirac operator D(M)
decomposes into the chiral Dirac operators,

D(M) =

(
0 D−(M)

D+(M) 0

)
with D±(M) : C∞(M,S±) → C∞(M,S∓). Note that part of the data of the Dirac bundle is a
connection on S compatible with Clifford multiplication and with the grading.

There are many examples of end-periodic manifolds, and our analysis will apply to the natural
geometric operators on these manifolds, such as the spin Dirac operator on a spin manifold and
the signature operator, as well as to their twisted versions. We remark that an end may be
topologically a product but not geometrically so; examples of this sort are warped products
R× Y with metric dθ2 +ϕ(θ)gY (with periodic warping function ϕ(θ)). Manifolds with periodic
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ends that are not topologically products also abound; for instance, the manifold X obtained by
(0-framed for n = 3) surgery on a knot in Sn will have infinite cyclic cover X̃ that is not a product
if the Alexander polynomial of the knot is not monic. A typical end-periodic manifold with end
modeled on this X̃ may be obtained by cutting X̃ along a lift of a Seifert surface for the knot,
and filling in this Seifert surface by an n-manifold that it bounds. In a recent paper [MRS14],
we analyzed the de Rham complex (with weights, as in § 7) on end-periodic manifolds. When
the end is modeled on the infinite cyclic cover of surgery on a knot, the Alexander module of
the knot determines the behavior of the index as the weights are varied.

2.2 Fredholm theory for end-periodic operators
We briefly review relevant parts of the Fredholm theory of end-periodic operators following
Taubes [Tau87], starting with the definition of the weighted Sobolev spaces.

Given δ ∈ R and a non-negative integer k, we will say that u ∈ L2
k,δ(Z∞,S) if and only if

eδfu ∈ L2
k(Z∞,S), where f : Z∞ → R is an extension of f to Z∞. We define

‖u‖L2
k,δ(Z∞,S) = ‖eδfu‖L2

k(Z∞,S).

Assume for the sake of concreteness that Z∞ is even dimensional. Then, as usual, the operator
D+(Z∞) extends to a bounded operator

D+(Z∞) : L2
k+1,δ(Z∞,S+) → L2

k,δ(Z∞,S−), (7)

and similarly for D−(Z∞). An excision principle shows that the operator (7) is Fredholm if
and only if the operator D+(X̃) : L2

k+1,δ(X̃,S+) → L2
k,δ(X̃,S−) is Fredholm (or, equivalently,

invertible). Taubes gave a Fredholmness criterion using the Fourier–Laplace transform, as follows.
Given a spinor u ∈ C∞0 (X̃;S) and a complex number z ∈ C∗, the Fourier–Laplace transform

of u is defined as

ûz(x) = zf(x)
∞∑

n=−∞
znu(x+ n)

for a fixed branch of ln z. Since u has compact support, the above sum is finite. One can easily
check that ûz(x+ 1) = ûz(x) for all x ∈ X̃. Therefore, for every z ∈ C∗, we have a well-defined
spinor ûz over X that depends analytically on z. The spinor u can be recovered from its Fourier–
Laplace transform using the formula

u(x) =
1

2πi

∮
|z|=1

z−f(x)ûz(x0)
dz

z
, (8)

where p : X̃ → X is the covering projection, x0 = p(x) ∈ X, and the contour integral is taken
counterclockwise. This can be checked by direct substitution.

The Fourier–Laplace transform extends to the weighted Sobolev spaces defined above.
Conjugating the operators D±(X̃) by the Fourier–Laplace transform, we obtain holomorphic
families of twisted Dirac operators on X,

D±z (X) = D±(X)− ln z · df, z ∈ C∗. (9)

Proposition 2.1 [Tau87, Lemma 4.3]. The operator (7) is Fredholm if and only if the operators
D+
z (X) are invertible for all z on the circle |z| = eδ.

Corollary 2.2. A necessary condition for the operator (7) to be Fredholm is that
indD+(X) = 0.
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Given that indD+(X) = 0, the set of points z ∈ C∗ where the operators D+
z (X) are not

invertible will be referred to as the spectral set of the family D+
z (X). The following result is due

to Taubes [Tau87, Theorem 3.1].

Theorem 2.3. Suppose that indD+(X) = 0 and the map df : kerD+(X) → cokerD+(X) given
by Clifford multiplication by df is injective. Then the spectral set of the family D+

z (X) is a
discrete subset of C∗. In particular, the operator (7) is Fredholm for all but a discrete set of
δ ∈ R.

Remark 2.4. In the paper [RS007], the second and third authors investigated the special case of
the spin Dirac operator on end-periodic manifolds of dimension at least four and gave a condition
that guarantees that the spectral set of the family D+

z (X) is both discrete and avoids the unit
circle |z| = 1 for a generic metric on X. If the dimension of X is divisible by four, that condition
is simply the necessary condition of Corollary 2.2.

2.3 Smoothing kernels
This section introduces smoothing kernels of operators of the form h(D), where h is a rapidly
decaying function. To avoid complicating the exposition, we have delayed a detailed discussion
of relevant analytic matters until § 10.

Let D be a Dirac operator on a manifold M , which in all of our applications will be either
closed or end-periodic. For any rapidly decaying function h : R → R, the operator h(D) defined
using the spectral theorem can be written as

h(D)(u)(x) =

∫
M
K(x, y)u(y) dy, (10)

where K(x, y) is a smooth section of the bundle Hom(π∗RS, π∗LS), and πL and πR are projections
onto the two factors of M ×M . We refer to K(x, y) as the smoothing kernel. For example, the
operators exp(−tD2) and D exp(−tD2) are represented by such smoothing kernels for all t > 0.
When M is even dimensional, we can restrict our operators to the sections of S± to obtain
their chiral versions like exp(−tD−D+) or D+ exp(−tD−D+), which again are represented by
smoothing kernels.

In the original proof of the Atiyah–Patodi–Singer index theorem [APS75a], a crucial role was
played by an explicit formula for the smoothing kernel of the operator exp(−tD2) on a cylinder
obtained from the classical solution of the heat equation [APS75a, § 2]. Such an explicit formula
is not available in our more general setting; however, we present below an equally useful formula
for the smoothing kernel of the operator h(D) on the infinite cyclic cover X̃ in terms of data
on X.

Let Dz = D(X) − ln z · df , z ∈ C∗. The smoothing kernels of operators h(D) on X̃ and of
h(Dz) = h(D)z on X will be called K̃(x, y) and Kz(x, y), respectively. The following proposition,
which expresses K̃ in terms of Kz, can be verified by a direct calculation with the Fourier–Laplace
transform.

Proposition 2.5. Let p : X̃ → X be the covering projection; then, for any x, y ∈ X̃ and
x0 = p(x), y0 = p(y), we have

K̃(x, y) =
1

2πi

∮
|z|=1

zf(y)−f(x)Kz(x0, y0)
dz

z
. (11)

Remark 2.6. Note that formula (11) implies that the smoothing kernel K̃(x, y) is periodic in
that

K̃(x+ k, y + k) = K̃(x, y) for any k ∈ Z. (12)
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In addition, if K̂z(x0, y) is the Fourier–Laplace transform of K̃(x, y) with respect to the variable
x, then

K̂z(x0, y) = zf(y)Kz(x0, y0). (13)

3. Regularized trace

A smoothing operator (10) need not be of trace class on a non-compact manifold because the
integral of tr(K(x, x)), which is used to define the operator trace, may diverge. Such an integral
can be regularized in many different ways; the regularization we choose is inspired by that of
Melrose [Mel93]. It applies to end-periodic manifolds like Z∞ and the operators Dm exp(−tD2),
m > 0, and their chiral versions such as D−D+ exp(−tD−D+).

Extending this construction to a larger class of operators, while it may be an interesting
problem in its own right, is certainly beyond the scope of this paper.

3.1 Definition of the regularized trace
Let us fix an integer m > 0 and consider the operator Dm exp(−tD2). This operator will be called
P or P̃ , depending on whether D is the Dirac operator on Z∞ or X̃. The smoothing kernels of
P and P̃ will be denoted by K(t;x, y) and K̃(t;x, y), respectively.

Let ZN = Z ∪W0 ∪ · · · ∪WN for any integer N > 0. We define the regularized trace of P by
the formula

Tr[(P ) = lim
N→∞

[∫
ZN

tr(K(t;x, x)) dx− (N + 1)

∫
W0

tr(K̃(t;x, x)) dx

]
. (14)

Lemma 3.1. For any t > 0, the limit (14) exists.

Proof. Write∫
ZN

tr(K(t;x, x)) dx =

∫
Z

tr(K(t;x, x)) dx+

N∑
k=0

∫
Wk

tr(K(t;x, x)) dx

=

∫
Z

tr(K(t;x, x)) dx+
N∑
k=0

∫
W0

tr(K(t;x+ k, x+ k)− K̃(t;x+ k, x+ k)) dx

+ (N + 1)

∫
W0

tr(K̃(t;x, x)) dx,

where we used (12) in the last line. Use Corollary 10.8 and Remark 10.10 to estimate∫
W0

|tr(K(t;x+ k, x+ k)− K̃(t;x+ k, x+ k))| dx 6 C1e
−C2(k−1)2/t (15)

for all k > 1. Therefore, the series
∞∑
k=0

∫
W0

tr(K(t;x+ k, x+ k)− K̃(t;x+ k, x+ k)) dx (16)

converges absolutely for any t > 0. This completes the proof. 2

Lemma 3.2. The regularized trace Tr[(P ) is a continuous function of t ∈ (0,∞).

Proof. Since both K(t;x, x) and K̃(t;x, x) are continuous functions of t ∈ (0,∞), see § 10.1
and [Roe88a, Proposition 2.10], the result follows from uniform convergence of the series (16) on
bounded intervals. 2
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3.2 A formula for the regularized trace
The formula (11) can be used to express the correction term in formula (14) for the regularized
trace in terms of the family Dz = Dz(X) of twisted Dirac operators on the closed manifold X.
Restricting (11) to the diagonal x = y and applying the matrix trace, we obtain

tr(K̃(t;x, x)) =
1

2πi

∮
|z|=1

tr(Kz(t;x0, x0))
dz

z
,

where x0 = p(x), y0 = p(y), and Kz is the smoothing kernel of the operator Pz = Dmz exp(−tD2
z)

on X. Since X is closed, Pz is of trace class with

Tr(Pz) =

∫
X

tr(Kz(t;x0, x0)) dx0.

Therefore, we can write

Tr[(P ) = lim
N→∞

[∫
ZN

tr(K(t;x, x)) dx− N + 1

2πi

∮
|z|=1

Tr(Pz)
dz

z

]
. (17)

4. A commutator trace formula

Let P and Q be the chiral versions of the operator D exp(−tD2) on Z∞ and define
Tr[[P,Q] = Tr[(PQ)−Tr[(QP ). The purpose of this section is to derive a formula for Tr[[P,Q]
solely in terms of data on X. This formula will be the main ingredient in the proof of the index
theorem in § 5.

4.1 First step
Let us fix s > 0 and t > 0 and consider the operators P = D− exp(−sD+D−) and Q =
D+ exp(−tD−D+) on Z∞. Note that the regularized traces Tr[(PQ) and Tr[(QP ) are well defined
because both operators PQ and QP are of the type described in § 3. This follows from the identity
D∓ exp(−tD±D∓) = exp(−tD∓D±)D∓, which is easily verified using (50). Write

(Pu)(x) =

∫
Z∞

KP (x, y)u(y) dy, (Qu)(x) =

∫
Z∞

KQ(x, y)u(y) dy;

then

(PQ)u(x) =

∫
Z∞

(∫
Z∞

KP (x, y)KQ(y, z) dy

)
u(z) dz,

so that

KPQ(x, x) =

∫
Z∞

KP (x, y)KQ(y, x) dy.

Similarly,

KQP (x, x) =

∫
Z∞

KQ(x, y)KP (y, x) dy.

For any fixed N , ∫
ZN

(trKPQ)(x, x) dx =

∫∫
ZN×Z∞

tr(KP (x, y)KQ(y, x)) dx dy

and ∫
ZN

(trKQP )(x, x) dx=

∫∫
ZN×Z∞

tr(KQ(x, y)KP (y, x)) dx dy

=

∫∫
Z∞×ZN

tr(KP (x, y)KQ(y, x)) dx dy.
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Figure 1. Regions of integration.

The Gaussian estimates (51) ensure that the double integrals in the last two formulas
are absolutely convergent and in particular that changing the order of integration is justified.
Therefore, we can write ∫

ZN

(trKPQ)(x, x) dx−
∫
ZN

(trKQP )(x, x) dx

=

∫∫
∆+

tr(KP (x, y)KQ(y, x)) dx dy

−
∫∫

∆−

tr(KP (x, y)KQ(y, x)) dx dy, (18)

where ∆+ = ZN × (Z∞−ZN ) and ∆− = (Z∞−ZN )×ZN are shown schematically in Figure 1.

Note that Tr[P,Q]z = Tr[Pz, Qz] = 0 on the closed manifold X; hence, the correction term in

the expression for Tr[[P,Q] vanishes and Tr[[P,Q] is obtained by simply passing to the limit as

N →∞ in (18).

Before we go on, we will introduce some notation. Given two numerical sequences AN and

BN , we will write AN ∼ BN to mean that AN −BN → 0 as N →∞.

Lemma 4.1.∫∫
∆−

tr(KP (x, y)KQ(y, x)) dx dy ∼
N∑
`=0

∞∑
k=N+1

∫∫
Wk×W`

tr(KP (x, y)KQ(y, x)) dx dy.

Proof. The difference between the two sides of the equation is the integral∫∫
(Z∞−ZN )×Z

tr(KP (x, y)KQ(y, x)) dx dy,

whose absolute value can be estimated using (51) by a multiple of

∞∑
k=N+1

∫∫
Wk×Z

e−Ck
2/t dx dy → 0 as N →∞. 2
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Change the variables of summation from k and ` to m = k − ` and k; then the right-hand
side of the equation in Lemma 4.1 becomes

N∑
m=1

N+m∑
k=N+1

∫∫
Wk×Wk−m

tr(KP (x, y)KQ(y, x)) dx dy

+

∞∑
m=N+1

N+m∑
k=m

∫∫
Wk×Wk−m

tr(KP (x, y)KQ(y, x)) dx dy. (19)

With the help of this formula, we will trade the kernels of P and Q on Z∞ for the kernels of P̃

and Q̃ on X̃, at the expense of adding a term that approaches zero as N →∞.

Lemma 4.2.∫∫
∆−

tr(KP (x, y)KQ(y, x)) dx dy ∼
∞∑
m=1

N+m∑
k=N+1

∫∫
Wk×Wk−m

tr(KP̃ (x, y)KQ̃(y, x)) dx dy.

Proof. We begin by noting that the second term in (19) approaches zero as N →∞ because it
can be estimated by a multiple of

∞∑
m=N+1

(N + 1)e−C(m−1)2/t 6 (N + 1)

∞∑
m=N+1

e−C(m−1)/t

6 (N + 1)e−CN/t
∞∑
n=0

e−Cn/t → 0,

where n = m− (N + 1) and C is a positive constant. Similarly, we obtain

∞∑
m=N+1

N+m∑
k=N+1

∫∫
Wk×Wk−m

|tr(KP̃ (x, y)KQ̃(y, x))| dx dy

6 C0

∞∑
m=N+1

me−C(m−1)2/t
→ 0 as N →∞,

where C0 and C are positive constants. All that is left to estimate is

N∑
m=1

N+m∑
k=N+1

∫∫
Wk×Wk−m

tr(KP (x, y)KQ(y, x)−KP̃ (x, y)KQ̃(y, x)) dx dy.

Write

|KP (x, y)KQ(y, x)−KP̃ (x, y)KQ̃(y, x)|
6 |KP (x, y)||KQ(y, x)−KQ̃(y, x)|+ |KP (x, y)−KP̃ (x, y)||KQ̃(y, x)|

and estimate the integrals of each of the summands on the right separately. By breaking the
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summation over m into two parts, we obtain

bN/2c∑
m=1

N+m∑
k=N+1

∫∫
Wk×Wk−m

|KP (x, y)||KQ(y, x)−KQ̃(y, x)| dx dy

6 C0

bN/2c∑
m=1

me−C1(m−1)2/se−C2N2/t

6 C0e
−C2N2/t

∞∑
m=1

me−C1(m−1)2/s
→ 0,

using the estimate (51) for |KP (x, y)| and that from Proposition 10.9 for |KQ(y, x)−KQ̃(y, x)|,
and

N∑
m=bN/2c+1

N+m∑
k=N+1

∫∫
Wk×Wk−m

|KP (x, y)||KQ(y, x)−KQ̃(y, x)| dx dy

6 C0

∞∑
m=bN/2c+1

me−C1(m−1)2(1/t+1/s)
→ 0,

using the estimate (51) for both |KP (x, y)| and |KQ(y, x) − KQ̃(y, x)|. The estimates for
|KP (x, y)−KP̃ (x, y)||KQ̃(y, x)| are similar. 2

By replacing ∆− with ∆+ and proceeding exactly as above, we obtain the following result.

Lemma 4.3.∫∫
∆+

tr(KP (x, y)KQ(y, x)) dx dy ∼
−∞∑
m=−1

N−m∑
`=N+1

∫∫
Wm+`×W`

tr(KP̃ (x, y)KQ̃(y, x)) dx dy.

The kernels KP̃ and KQ̃ have the property that KP̃ (x+n, y+n) = KP̃ (x, y) for any integer

n and similarly for KQ̃; see (12). Use this observation together with Lemmas 4.2 and 4.3 and
formula (18) to obtain∫

ZN

(trKPQ)(x, x) dx−
∫
ZN

(trKQP )(x, x) dx

∼
−∞∑
m=−1

N−m∑
`=N+1

∫∫
W0×W0

tr(KP̃ (x+m, y)KQ̃(y, x+m)) dx dy

−
∞∑
m=1

N+m∑
k=N+1

∫∫
W0×W0

tr(KP̃ (x+m, y)KQ̃(y, x+m)) dx dy

as N → ∞. Next, observe that the integrands in the above formula do not depend on k or `;
hence, this last formula can be written as follows:∫

ZN

(trKPQ)(x, x) dx−
∫
ZN

(trKQP )(x, x) dx

∼ −
∞∑

m=−∞
m ·

∫∫
W0×W0

tr(KP̃ (x+m, y)KQ̃(y, x+m)) dx dy.

Finally, pass to the limit as N →∞ in this formula to conclude that

Tr[[P,Q] = −
∞∑

m=−∞
m ·

∫∫
W0×W0

tr(KP̃ (x+m, y)KQ̃(y, x+m)) dx dy. (20)
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4.2 Second step
Our next task will be to calculate the expression

−
∞∑

m=−∞
m ·KP̃ (x+m, y)KQ̃(y, x+m), x, y ∈W0, (21)

in terms of the kernels KPz and KQz of the holomorphic families Pz and Qz.

Lemma 4.4 (Parseval’s relation). For any x ∈W0, we have∑
m

u(x+m)v(x+m) =
1

2πi

∮
|z|=1

ûz(x) v̂1/z(x)
dz

z
.

Proof. According to the definition of the Fourier–Laplace transform, for any u and v with
compact support, we have

ûz(x) = zf(x)
∑
n

znu(x+ n) and v̂1/z(x) = z−f(x)
∑
m

z−mv(x+m).

Therefore,

1

2πi

∮
|z|=1

ûz(x) v̂1/z(x)
dz

z
=

1

2πi

∑
m,n

∮
|z|=1

zn−mu(x+ n)v(x+m)
dz

z
,

and the result obviously follows. 2

Lemma 4.5. For any x ∈W0, we have∑
m

mu(x+m)v(x+m) =
1

2πi

∮
|z|=1

∂

∂z
(z−f(x) ûz(x))zf(x) v̂1/z(x) dz.

Proof. The result follows as above by inserting into the contour integral the expressions

z−f(x) ûz(x) =
∑
n

znu(x+ n) and zf(x) v̂1/z(x) =
∑
m

z−mv(x+m). 2

We will apply Lemma 4.5 with u(x + m) = KP̃ (x + m, y) and v(x + m) = KQ̃(y, x + m),
where x, y ∈W0. Comparing

u(x+m) =
1

2πi

∮
|z|=1

z−f(x)−m ûz(x)
dz

z

with

KP̃ (x+m, y) =
1

2πi

∮
|z|=1

zf(y)−f(x)−mKPz(x, y)
dz

z
,

see (11), we obtain

ûz(x) = zf(y)KPz(x, y);

see also (13). Similarly, substitute w = 1/z in

v(x+m) =
1

2πi

∮
|w|=1

w−f(x)−m v̂w(x)
dw

w
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to obtain

v(x+m) =
1

2πi

∮
|z|=1

zf(x)+m v̂1/z(x)
dz

z
.

Comparing the latter with

KQ̃(y, x+m) =
1

2πi

∮
|z|=1

zf(x)+m−f(y)KQz(y, x)
dz

z
,

see (11), we obtain
v̂1/z(x) = z−f(y)KQz(y, x).

Substitute the above in the formula of Lemma 4.5 to obtain the following formula for the
expression (21):

−
∑
m

m ·KP̃ (x+m, y)KQ̃(y, x+m)

= − 1

2πi

∮
|z|=1

zf(x)−f(y) ∂

∂z
(z−f(x)+f(y)KPz(x, y))KQz(y, x) dz.

A direct calculation shows that the latter equals

(f(x)− f(y)) · 1

2πi

∮
|z|=1

KPz(x, y)KQz(y, x)
dz

z

− 1

2πi

∮
|z|=1

∂

∂z
(KPz(x, y))KQz(y, x) dz. (22)

Because of (20), to complete the calculation of Tr[[P,Q] all we need to do is apply the
(matrix) trace to (22) and integrate it over W0 ×W0. An application of this procedure to the
second term of (22) results in

− 1

2πi

∮
|z|=1

Tr

(
∂Pz
∂z
·Qz

)
dz.

Regarding the first term, we obtain∫∫
W0×W0

(f(x)− f(y)) tr(KPz(x, y)KQz(y, x)) dx dy

=

∫
W0

f(x)

(∫
X

tr(KPz(x, y)KQz(y, x)) dy

)
dx

−
∫
W0

f(y)

(∫
X

tr(KPz(x, y)KQz(y, x)) dx

)
dy,

which equals ∫
W0

f(x) · tr(KPzQz(x, x)−KQzPz(x, x)) dx.

Theorem 4.6. Let P = D− exp(−sD+D−) and Q = D+ exp(−tD−D+) be operators on Z∞;
then

Tr[[P,Q] =
1

2πi

∮
|z|=1

(∫
W0

f(x) · tr(KPzQz(x, x)−KQzPz(x, x)) dx

)
dz

z

− 1

2πi

∮
|z|=1

Tr

(
∂Pz
∂z
·Qz

)
dz.
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Proof. The proof is contained in the lengthy calculation that precedes the statement of this
theorem; here is a summary. We begin by using some elementary calculus of smoothing kernels on
Z∞ to derive formula (18). Lemmas 4.2 and 4.3 show how the right-hand side of that formula can
be expressed in terms of smoothing kernels on X̃. Passing to the limit, we arrive at formula (20).
In § 4.2, that formula is converted into the formula claimed in the theorem using Parseval’s
relation for the Fourier–Laplace transform. 2

5. The end-periodic index theorem

Let Z∞ be an even-dimensional end-periodic manifold whose end is modeled on the infinite
cyclic cover X̃ of X, and assume that the chiral Dirac operators D± = D±(Z∞) : L2

1(Z∞,S±) →

L2(Z∞,S∓) are Fredholm. For the sake of brevity, introduce the notation

Str[(e−tD
2
) = Tr[(exp(−tD−D+))−Tr[(exp(−tD+D−)).

Our calculation of the index of D+ will rely on the following two formulas.
The first formula is obtained by straightforward differentiation using the easily verified

identity D− exp(−tD+D−) = exp(−tD−D+)D−:

d

dt
Str[(e−tD

2
) = −Tr[[D−,D+ exp(−tD−D+)].

The second formula is the formula of Theorem 4.6 with P = D− and Q = D+ exp(−tD−D+).
Since P = D− is not a smoothing operator, this needs a little justification.

Lemma 5.1. The formula of Theorem 4.6 holds as stated for P =D− and Q=D+ exp(−tD−D+).

Proof. Consider the family Ps = D− exp(−sD+D−) of smoothing operators and apply
Theorem 4.6 to Ps and Q to derive a formula for Tr[[Ps, Q]. To obtain the formula for Tr[[P,Q],
simply pass to the limit in this formula as s → 0. The equality

lim
s→0

Tr[[Ps, Q] = Tr[[P,Q]

follows from Lemma 3.2: for any positive t, the regularized trace of PsQ = D−D+

exp(−(s+ t)D−D+) is a continuous function of s > 0, and so is the regularized trace of QPs. 2

Together, the two aforementioned formulas result in

d

dt
Str[(e−tD

2
) =− 1

2πi

∮
|z|=1

∫
W0

f · tr(KD−z D+
z exp(−tD−z D+

z ) −KD+
z D−z exp(−tD+

z D−z )) dx
dz

z

− 1

2πi

∮
|z|=1

Tr(df · D+
z exp(−tD−z D+

z ))
dz

z

because ∂D−z /∂z = −df/z. Since

d

dt
exp(−tD∓z D±z ) = −D∓z D±z exp(−tD∓z D±z ),

we can write
d

dt
Str[(e−tD

2
) =

1

2πi
· d
dt

∮
|z|=1

(∫
W0

f · tr(Kexp(−tD−z D+
z ) −Kexp(−tD+

z D−z )) dx

)
dz

z

− 1

2πi

∮
|z|=1

Tr(df · D+
z exp(−tD−z D+

z ))
dz

z
. (23)

Integrating the latter formula with respect to t ∈ (0,∞), we obtain an identity whose individual
terms are described one at a time in the three subsections that follow.
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5.1 The left-hand side
Integrate the left-hand side of (23) with respect to t ∈ (0,∞) to obtain

lim
t→∞

Str[(e−tD
2
)− lim

t→0+
Str[(e−tD

2
).

Let us first address the limit as t → 0. According to Roe [Roe88a], on any manifold of
bounded geometry (of even dimension n), of which end-periodic manifolds are a special case, we
have an asymptotic expansion

tr(Kexp(−tD−D+)(x, x)) ∼ t−n/2
∑
k>0

tk · ψk(x),

whose remainder terms, implicit in the asymptotic expansion, are uniformly bounded in x. The
same local calculation as in [BGV92, p. 146] then gives an asymptotic expansion

tr(Kexp(−tD−D+)(x, x)−Kexp(−tD+D−)(x, x)) ∼ t−n/2
∑
k>n/2

tk · αk(x),

where αk(x) is locally computable in terms of curvatures and their derivatives, and α0(x) is the
index form. In particular, on the end-periodic manifold Z∞ we have

lim
t→0+

tr(Kexp(−tD−D+)(x, x)−Kexp(−tD+D−)(x, x)) = I(D+(Z∞))(x) (24)

uniformly in x ∈ Z∞, and similarly on X̃.

Proposition 5.2. At the level of regularized traces, we have

lim
t→0+

Str[(e−tD
2
) =

∫
Z

I(D+(Z)).

Proof. Use formula (14) to write

Str[(e−tD
2
) = lim

N→∞
sN (t)

with the functions sN : (0,∞) → R defined by

sN (t) =

∫
ZN

str(t, x) dx− (N + 1)

∫
W0

s̃tr(t, x) dx, (25)

where str(t, x) = tr(Kexp(−tD−D+)(x, x)−Kexp(−tD+D−)(x, x)) for x ∈ Z∞, and s̃tr(t, x) is given

by the same formula for x ∈ X̃. It follows from (24) that, for any fixed N ,

lim
t→0+

sN (t) =

∫
ZN

I(D+(Z∞))− (N + 1)

∫
W0

I(D+(X̃)) =

∫
Z

I(D+(Z)).

On the other hand, it follows as in the proof of Lemma 3.2 that the limit

lim
N→∞

sN (t) = Str[(e−tD
2
)

is uniform on all bounded intervals. Therefore, the repeated limits

lim
N→∞

lim
t→0+

sN (t) and lim
t→0+

lim
N→∞

sN (t)

exist and are equal to each other, which justifies the following calculation:

lim
t→0+

Str[(e−tD
2
) = lim

t→0+
lim
N→∞

sN (t)

= lim
N→∞

lim
t→0+

sN (t) = lim
N→∞

∫
Z

I(D+(Z)) =

∫
Z

I(D+(Z)). 2
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Let us now investigate the limit of Str[(e−tD
2
) as t →∞.

Proposition 5.3. At the level of regularized traces, we have

lim
t→∞

Str[(e−tD
2
) = indD+(Z∞).

Proof. We will only show that lim Tr[(e−tD
−D+

) = dim kerD+(Z∞), since the proof of the
statement with the roles of D− and D+ reversed is identical. Let K0(t;x, y) = K(t;x, y) −
KP+(t;x, y) as in § 10.5, where P+ is the projector onto kerD+(Z∞). Write

lim
t→∞

(Tr[(e−tD
−D+

)− dim kerD+(Z∞))

= lim
t→∞

lim
N→∞

(∫
ZN

tr(K0(t;x, x)) dx− (N + 1)

∫
W0

tr(K̃(t;x, x)) dx

)
= lim

t→∞

( ∞∑
k=0

∫
W0

tr(K0(t;x+ k, x+ k)− K̃(t;x+ k, x+ k)) dx

)
+ lim

t→∞

∫
Z

tr(K0(t;x, x)) dx

as a sum of two limits, by breaking ZN into Z and N + 1 copies of W0. It is immediate from
Proposition 10.11 that the latter limit vanishes. As for the former limit, we have the following
two estimates:

|K0(t;x+ k, x+ k)− K̃(t;x+ k, x+ k)|
6 |K(t;x+ k, x+ k)− K̃(t;x+ k, x+ k)|+ |KP+(t;x+ k, x+ k)|
6 C1e

αte−γk/t + C2e
−δk

by Propositions 10.6 and 10.17, and (assuming without loss of generality that t > 1)

|K0(t;x+ k, x+ k)− K̃(t;x+ k, x+ k)|
6 |K0(t;x+ k, x+ k)|+ |K̃(t;x+ k, x+ k)| 6 Ce−µt

by Propositions 10.11 and 10.16. We will use the latter estimate for the terms in the series
∞∑
k=0

|K0(t;x+ k, x+ k)− K̃(t;x+ k, x+ k)|

with k 6 (α + µ)t2/γ, and the former for the terms with k > (α + µ)t2/γ. The series is then
bounded from above by ∑

k6(α+µ)t2/γ

Ce−µt 6 C(α+ µ)t2e−µt/γ

plus ∑
k>(α+µ)t2/γ

C1e
αte−γk/t 6 C1

∞∑
`=0

eαt−γ((α+µ)t2/γ+`)/t

6 C1e
−µt

∞∑
`=0

e−γ`/t =
C1e

−µt

1− e−γ/t

and plus ∑
k>(α+µ)t2/γ

C2e
−δk 6 C2

∞∑
`=0

e−δ((α+µ)t2/γ+`) =
C2e

−δ(α+µ)t2/γ

1− e−δ
.

It is an easy calculus exercise to show that all of the above three terms go to zero as t →∞,
which completes the proof. 2
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5.2 The first term on the right
Integrating the first term on the right-hand side of (23) with respect to t ∈ (0,∞), we obtain

lim
t→∞

1

2πi

∮
|z|=1

(∫
W0

f · tr(Kexp(−tD−z D+
z ) −Kexp(−tD+

z D−z )) dx

)
dz

z

− lim
t→0+

1

2πi

∮
|z|=1

(∫
W0

f · tr(Kexp(−tD−z D+
z ) −Kexp(−tD+

z D−z )) dx

)
dz

z
.

As t →∞, each of the operators exp(−tD−z D+
z ) on X converges to the orthogonal projection

onto kerD+
z . This projection is zero for all z on the unit circle |z| = 1 because kerD+

z = 0 for
all such z; see Proposition 2.1. Since X is closed, we have the uniform convergence of smoothing
kernels, Kexp(−tD−z D+

z )(x, x) → 0; see for instance [Roe88b, Lemma 1.2]. Similarly, we have a

uniform limit Kexp(−tD+
z D−z )(x, x) → 0. This implies that the first limit in the above formula

vanishes.
Concerning the second limit, note that the operators D±z are Dirac operators twisted by the

connection −ln z df in a complex line bundle Ez. Since we are assuming that |z| = 1, this is a
unitary connection and hence we have (on the closed manifold X)

lim
t→0+

tr(Kexp(−tD−z D+
z ) −Kexp(−tD+

z D−z )) = I(D+(X)) ch(Ez),

which in fact equals simply I(D+(X)) because the line bundles Ez are flat. In particular, the
integrand in the second limit is independent of z, so the z-integration results in∫

W0

f · I(D+(X)). (26)

Since ∫
X

I(D+(X)) = indD+(X) = 0

by Corollary 2.2, the form I(D+(X)) is exact. Choose a differential form ω on X such that

dω = I(D+(X)).

Recall that f : W0 → R is a function on W0 but not on X. Denote the two boundary components
of W0 by ∂−W0 = Y0 and ∂+W0 = Y1 (of course, Y0 = −Y and Y1 = Y ) and observe that
f |Y1 = f |Y0 + 1. Apply Stokes’ theorem to (26) to obtain∫

W0

f · I(D+(X)) =

∫
W0

f · dω =

∫
Y1

fω −
∫
Y0

fω −
∫
W0

df ∧ ω

=

∫
Y

(f |Y1 − f |Y0)ω −
∫
X
df ∧ ω =

∫
Y
ω −

∫
X
df ∧ ω.

Remark 5.4. Suppose that Y has a product neighborhood in X with a product metric, and that
df is supported in that neighborhood. Then one can easily check that∫

Y
ω −

∫
X
df ∧ ω = 0.

5.3 The second term on the right
Integrate the second term on the right-hand side of (23) with respect to t ∈ (0,∞) to obtain

− 1

2πi

∫ ∞
0

∮
|z|=1

Tr(df · D+
z exp(−tD−z D+

z ))
dz

z
dt, (27)

which equals negative one half times the η-invariant η(X) defined in (5). This completes the
proof of Theorem A.
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6. The periodic η-invariant

In this section, we will try to get a clearer idea of what the periodic η-invariant (5) represents,

and how it relates to the classical η-invariant of Atiyah, Patodi, and Singer.

6.1 A spectral interpretation

The classical η-invariant is a spectral invariant; we will obtain a similar, if not as explicit,

formula for the periodic η-invariant. We will continue to assume that the L2-closure of D+(Z∞)

is Fredholm or, equivalently, that the operators D±z = D±(X) − ln z · df are invertible when

|z| = 1.

Theorem 4.6 in [MRS11] states that the family D+
z is meromorphic in the variable z ∈ C∗,

as is the family D−z . The poles zk of the family D−z form the spectral set of D−z ; see § 2.2. Note

that the analysis in [MRS11] was only done for spin Dirac operators in dimension four but it

readily extends to the situation at hand.

We wish to relate (5) to the spectral set of D−z . To this end, observe that

− d

dt
(df · (D−z )−1e−tD

−
z D+

z ) = df · D+
z e
−tD−z D+

z .

Since X is compact, the kernel of df · (D−z )−1e−tD
−
z D+

z converges uniformly to zero as t →∞ as
long as |z| = 1; hence, we can write

η(X) =
1

πi

∫ ∞
0

∮
|z|=1

Tr(df · D+
z e
−tD−z D+

z )
dz

z
dt

= lim
t→0

1

πi

∮
|z|=1

Tr(df · (D−z )−1e−tD
−
z D+

z )
dz

z
.

As we explain next, after passing to the limit as t → 0 under the integral, one can make the

right-hand side of this formula into a series with summation over the spectral set of D−z . The

invariant η(X) can then be viewed as a regularization of this (divergent) series.
A direct calculation shows that, for any z ∈ C∗ away from the spectral set of D−z , we have

df · (D−z )−1 = K · (I − ln z ·K)−1 where K = df · D−(X)−1. (28)

The operator K : L2(X;S+) → L2(X;S+) is compact because both operators df : L2
→ L2

and D−(X)−1 : L2
→ L2

1 are bounded, so that their composition factors through the compact

embedding L2
1 → L2. As a compact operator, K has a discrete spectrum and a basis of generalized

eigenspinors.

Write ln zk = µk + 2πin, n ∈ Z, for a choice of branch of ln z; then the eigenvalues of K are

of the form λk,n = 1/(µk + 2πin). It follows from (28) that, for every z = eis, s ∈ R, the operator

df · (D−z )−1 restricted to the generalized eigenspace of K corresponding to λk,n is isomorphic to

a sum of Jordan cells with 1/(µk+2πin− is) along the diagonal. Also note that, for any given k,

the generalized eigenspaces of K corresponding to λk,n for different n are isomorphic to each

other. These (finite-dimensional) spaces will be denoted by Vk.

Since L2(X;S+) is a sum of the generalized eigenspaces of K, one can formally write

Tr(df · (D−z )−1) =
∑
k

∑
n

1

µk − i(s− 2πn)
dimVk.
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Integrate the right-hand side of this formula with respect to s ∈ [0, 2π] and convert the
summation over n ∈ Z into an improper integral to obtain∑

k

(
1

π

∫ ∞
−∞

1

µk − is
ds

)
dimVk.

The summation here extends over the points zk in the spectral set of the family D−z . Since

1

π

∫ ∞
−∞

ds

µk − is
= sign(Reµk),

we arrive at the promised interpretation of η(X) as a regularization of the divergent series∑
k

sign ln |zk| · dimVk. (29)

This series can be viewed as a ‘spectral asymmetry’ of the family D−z with respect to the unit
circle |z| = 1, that is, informally, the number of spectral points with |z| > 1 minus the number of
spectral points with |z| < 1. The map τ(z) = 1/z̄ establishes a bijection between the spectral sets
of D−z and D+

z ; therefore, the series (29) can also be viewed as minus the ‘spectral asymmetry’
of the family D+

z .

Remark 6.1. We used the notation d(zk) in [MRS11, § 6.3] for the dimension of the solution space
of the system (33) responsible for the asymptotic behavior of the kernel of the spin Dirac operator
D+(Z∞) over the end. It is a straightforward linear algebra exercise to show that d(zk) = dimVk.

6.2 η-invariant and von Neumann trace
Here is another interpretation of the periodic η-invariant using the trace in the von Neumann
algebra of bounded L2-operators on X̃.

Proposition 6.2. Let D+ and D− be periodic Dirac operators on X̃, and τ the von Neumann
trace on X̃; then

η(X) = 2

∫ ∞
0

τ(df · D+ exp(−tD−D+)) dt.

We use the following definition of von Neumann trace; see Atiyah [Ati76]. Let K̃(x, y) be
the smoothing kernel of the operator df ·D+ exp(−tD−D+) on X̃. Then tr(K̃(x, x)) is a periodic
function, see (12), hence it is lifted from a function on X; integrate the latter function over X
to get τ(df · D+ exp(−tD−D+)).

Proof. Integrate equation (11) with x = y ∈W0 to obtain∫
W0

K̃(x, x) dx =
1

2πi

∮
|z|=1

(∫
X
Kz(x, x) dx

)
dz

z
.

If K̃ is the smoothing kernel of df · D+ exp(−tD−D+) on X̃, then Kz is the smoothing kernel of
the operator df · D+

z exp(−tD−z D+
z ). Applying the matrix trace, we obtain∫

W0

tr K̃(x, x) dx =
1

2πi

∮
|z|=1

Tr(df · D+
z exp(−tD−z D+

z ))
dz

z
.

Integration with respect to t completes the proof. 2
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6.3 The product case
Let X = S1 × Y with product metric and orientation, and choose f = θ. Then D+(X) =
dθ · (∂/∂θ −D(Y )); hence, if we write z = eis, 0 6 s 6 2π, we have

D+
z = dθ · (∂/∂θ −D − is) and D−z = (∂/∂θ +D − is) dθ,

where D = D(Y ) is the self-adjoint Dirac operator on Y . To calculate Tr(df · D+
z e
−tD−z D+

z ), we
will take advantage of the basis of eigenspinors ψn,λ = e2πinθϕλ, where n is an arbitrary integer
and Dϕλ = λϕλ (note that λ 6= 0, since we assume that kerD = 0). A direct calculation in this
basis gives

Tr(df · D+
z e
−tD−z D+

z ) =
∑
n,λ

(λ+ i(s− 2πn))e−t(λ
2+(s−2πn)2)

and

1

πi

∮
|z|=1

Tr(df · D+
z e
−tD−z D+

z )
dz

z
=

1

π

∫ 2π

0
Tr(df · D+

z e
−tD−z D+

z ) ds

=
1

π

∑
λ

∫ ∞
−∞

(λ+ is)e−t(λ
2+s2) ds,

where we incorporated the summation over n into the improper integral. Next, use the fact that
se−t(λ

2+s2) is an odd function in s to obtain, after some basic integration,

1

πi

∮
|z|=1

Tr(df · D+
z e
−tD−z D+

z )
dz

z
=

1√
πt

∑
λ

λe−tλ
2
.

Integration with respect to t results in

η(X) =
1√
π

∫ ∞
0

t−1/2

(∑
λ

λe−tλ
2

)
dt,

which gives a well-known formula for the η-invariant of D,

ηD(Y ) =
1√
π

∫ ∞
0

t−1/2 Tr(De−tD2
) dt;

see for instance [Mel93]. Therefore, η(X) = ηD(Y ). That this matches the η-invariant of (2) can
be proved as in [APS75a] using the Mellin transform.

6.4 Non-product examples
In the non-product case, direct computations of spectral sets and periodic η-invariants are very
difficult. In this section, we will obtain partial information about the spectral set of Dirac
operators for a class of examples called Inoue surfaces. These are compact complex surfaces
which belong to type VII0 in Kodaira’s classification. They were constructed by Inoue [Ino74],
and their most remarkable property is that they do not admit any holomorphic curves.

We will study some of the simplest Inoue surfaces, those of class SM . These are compact
quotients of H × C, where H = {w = w1 + iw2 ∈ C | w2 > 0} is the upper half-plane. To
construct X, start with a matrix M = (mij) ∈ SL(3,Z) with one real eigenvalue α > 1 (easily
seen to be irrational) and two complex-conjugate eigenvalues β 6= β̄. Let a = (a1, a2, a3) be a real
eigenvector corresponding to α, and b = (b1, b2, b3) a complex eigenvector corresponding to β.
Let GM be the group of complex analytic transformations of H× C generated by

g0(w, z) = (αw, βz),

gi(w, z) = (w + ai, z + bi), i = 1, 2, 3.
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The group GM acts on H × C freely and properly discontinuously, so that the quotient
X = (H× C)/GM is a compact complex surface.

Inoue [Ino74] showed that X is smoothly a 3-torus bundle over a circle whose monodromy is
given by the matrix M , and that b1(X) = 1 and b2(X) = 0. Remarkably, these same manifolds
occur in the study of high-dimensional knots and four-dimensional manifolds [CS76a, CS76b].
Define a function f : H × C → R by the formula f(w, z) = lnw2/lnα. One can easily see that
df is a well-defined 1-form on X whose cohomology class generates H1(X;Z) = Z.

The surface X admits no global Kähler metric. We will however consider the following
Hermitian metric on H× C, called the Tricerri metric [Tri82, DO98],

g =
dw ⊗ dw̄
w2

2

+ w2 dz ⊗ dz̄.

For the Kähler form ω of this metric on H× C, we find dω = d lnw2 ∧ ω with the exact torsion
form d lnw2 = lnαdf . The metric g is GM -invariant, and so it defines a metric on X which
makes X into a locally conformal Kähler manifold.

As a complex surface, X admits a canonical Spinc structure with respect to which

S+ = Λ0,0(X)⊕ Λ0,2(X) and S− = Λ0,1(X).

Let D±(X) be the Dirac operators associated with the Tricerri metric and the canonical Spinc

structure on X. According to Gauduchon [Gau97, p. 283], there is an isomorphism

D−(X) + 1
4 lnα · df =

√
2(∂̄ ⊕ ∂̄∗), (30)

where

∂̄ ⊕ ∂̄∗ : Ω0,1(X) −→ Ω0,2(X)⊕ Ω0,0(X) (31)

is the Dirac–Dolbeault operator on the complex surface X. This identity implies that the spectral
set of D−(X) is obtained from that of ∂̄ ⊕ ∂̄∗ via multiplication by α−1/4.

One can check directly that the sections dw̄/w2 and dz̄ give rise to the spectral points z = 1
and z = αβ of the Dirac–Dolbeault operator, and hence to the spectral points α−1/4 and α3/4β
of the operator D−(X). We see in particular that, unlike in the product case, spectral points
need not be real.

The two spectral points we found above lie on the boundary of the annulus α−1/4 6 |z|6 α1/4.
We can prove that there are no other spectral points inside this annulus via a much more involved
argument, which uses Fourier analysis on X viewed as a 3-torus bundle over a circle to reduce
the calculation to solving a Sturm–Liouville problem on the real line. We plan to give the details
of this argument in a subsequent paper.

The infinite cyclic cover of X is a product R×T 3 topologically even though it is not metrically.
Manifolds with periodic ends that are not products even topologically have recently appeared in
our paper [MRS14], which studied the index of the de Rham complex; the examples there include
manifolds whose ends arise from the infinite cyclic covers of 2-knot exteriors in the 4-sphere.

7. Non-Fredholm case

In this section, we will extend Theorem A to the case when the L2-closure of the operator
D+(Z∞) is not necessarily Fredholm. This extension will correspond, in the product end case,
to the general case of the Atiyah–Patodi–Singer index theorem as stated in (2), without the
assumption that kerB = 0.
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7.1 Fredholm theory
We begin by reviewing some material from our paper [MRS11] regarding the family D+

z (X) =
D+(X)−ln z ·df . In [MRS11], we only dealt with spin Dirac operators in dimension four; however,
all of the results easily extend to cover the more general case at hand. We will restrict ourselves
to stating a few relevant results, and refer to [MRS11] for proofs.

Let us assume that the spectral set of the family D+
z (X) is discrete, which will be the case,

for example, if the conditions of Theorem 2.3 are fulfilled. Since we no longer assume that the
L2-closure of the operator D+(Z∞) is Fredholm, some of the spectral points may land on the unit
circle |z| = 1.

For any choice of δ ∈ R that makes the operator (7) Fredholm, denote the index of (7) by
indδ D+(Z∞). Given two choices δ < δ′, we have the following change of index formula:

indδ D+(Z∞)− indδ′ D+(Z∞) =
∑

eδ<|z|<eδ′
d(z); (32)

see [MRS11, formula (20)]. Here, the integer d(z) is defined as in [MRS11, § 6.3] to be the
dimension of the space of solutions (ϕ1, . . . , ϕm) of the system

D+
z (X)ϕ1 = df · ϕ2,

...

D+
z (X)ϕm−1 = df · ϕm,

D+
z (X)ϕm = 0.

(33)

Equivalently, d(z) is the number of linearly independent vectors in the kernel of the operator
D+(X̃) that have the form

z−f(x)
m∑
p=1

(−1)p−1f(x)p−1ϕp(x)/(p− 1)!. (34)

7.2 Statement of the theorem

We will say that ε ∈ R is small if the only complex numbers z in the annulus e−2|ε| < |z| < e2|ε|

for which D+
z (X) is non-invertible are those with |z| = 1. Formula (32) with δ = ε then implies

that the index indεD+(Z∞) is independent of ε as long as ε is small and stays on the same side
of zero. We denote this index by ind±D+(Z∞) according to whether ε is positive or negative.

Our extension of Theorem A will give a formula for ind+D+(Z∞). In order to state it, we
need to introduce two new quantities. First, let

h =
∑
|z|=1

d(z), (35)

where d(z) is defined by (33). Equivalently, h is the term on the right-hand side of the change
of index formula (32) with small negative δ and small positive δ′. This second definition implies,
in particular, that h is independent of the choice of f .

The integer (35) will play the role of hB = dim kerB of the Atiyah–Patodi–Singer theorem (2)
in the product case. To be precise, if X = S1×Y with product metric and f = θ, then D+(X) =
dθ · (∂/∂θ − D(Y )); see § 6.3. A straightforward calculation using Fourier analysis then shows
that d(z) = 0 for all z 6= 1 on the unit circle |z| = 1, and h = d(1) = dim kerD(Y ). Second, let

ηε(X) =
1

πi

∫ ∞
0

∮
|z|=eε

Tr(df · D+
z exp(−t(D+

z )∗D+
z ))

dz

z
dt, (36)

421

https://doi.org/10.1112/S0010437X15007502 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007502


T. Mrowka, D. Ruberman and N. Saveliev

where the integral is understood in a regularized sense: for small positive t, the integral

1

πi

∫ ∞
t

∮
|z|=eε

Tr(df · D+
z exp(−t(D+

z )∗D+
z ))

dz

z
dt

has an asymptotic expansion in powers of t, and we let ηε(X) equal the constant term in this
expansion. Define

η±(X) = lim
ε→0±

ηε(X) and η(X) = 1
2(η+(X) + η−(X)). (37)

Since (D+
z )∗ = D−z on the unit circle |z| = 1, this definition of η(X) matches that in the

Fredholm case. Similarly to (29), one can interpret η(X) defined by (37) as a regularization of

the series ∑
|zk|6=1

sign ln|zk| · d(zk).

The equality η(X) = ηD(Y ) proved in § 6.3 for product manifolds X = S1× Y continues to hold

in the non-Fredholm case.

Theorem C. Let D+(Z∞) be such that the spectral set of D+
z (X) is a discrete subset of C∗,

and let ω be a form on X such that dω = I(D+(X)). Then

ind+D+(Z∞) =

∫
Z

I(D+(Z))−
∫
Y
ω +

∫
X
df ∧ ω − h+ η(X)

2
.

7.3 Sketch of the proof

Given ε ∈ R, consider the operators Dε = eεfDe−εf = D− ε df on each of the manifolds Z∞, X̃,

and X, where f stands for both the function f : X̃ → R and its extension to Z∞. If ε is small,

the operator D+
ε is Fredholm on Z∞, and its index can be computed mainly as before. The few

changes that arise are due to the fact that the full Dirac operator Dε is no longer self-adjoint.

To be precise, we have D∗ε = D−ε and (D+
ε )∗ = D−−ε; hence, indD+

ε (Z∞) = dim kerD+
ε (Z∞) −

dim kerD−−ε(Z∞).

The proof now goes as follows. Define the regularized trace as in § 3 and introduce the

notation

Str[(ε, t) = Tr[(exp(−tD−−εD+
ε ))− Tr[(exp(−tD+

ε D−−ε))

for operators on Z∞. Essentially the same argument as in the proof of Proposition 5.3 shows

that

lim
t→∞

Str[(ε, t) = indεD+(Z∞).

On the other hand, the limit

lim
t→0

Str[(ε, t) =

∫
Z

I(D+(Z))

of Proposition 5.2 now needs to be understood in a regularized sense, as the constant term in the
asymptotic expansion of Str[(ε, t) in the powers of t. It turns into a true limit as ε → 0. A direct
calculation with the easily verified formula exp(−tDεD∗ε)Dε = Dε exp(−tD∗εDε) shows that

d

dt
Str[(ε, t) = −Tr[[D−−ε,D+

ε exp(−tD−−εD+
ε )]. (38)
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Repeat the argument of § 4 to derive a commutator trace formula with P = D−−ε and Q =
D+
ε exp(−tD−−εD+

ε ), and integrate (38) with respect to t ∈ (0,∞), in a regularized sense. Passing
to the limit as ε → 0, we arrive as in § 5 at the formula

ind±D+(Z∞) =

∫
Z

I(D+(Z))−
∫
Y
ω +

∫
X
df ∧ ω − 1

2
η±(X). (39)

Assume now that ε > 0; then, according to the change of index formula (32),

ind+D+(Z∞)− ind−D+(Z∞) = −h

and hence
1
2(ind+D+(Z∞) + ind−D+(Z∞)) = ind+D+(Z∞) + 1

2h.

Substituting (39) into the left-hand side of this identity completes the proof.

7.4 Dependence of η(X) on orientations

The invariant η(X) defined by (5) and, in general, by (37), depends on two choices of orientation:

the orientation ofX itself, and the sign of the primitive cohomology class γ ∈H1(X;Z) associated

with the infinite cyclic cover of X. In applications, it is useful to know how changing these two

orientations affects η(X).

Proposition 7.1. Let X be an oriented compact manifold with a choice of primitive class

γ ∈ H1(X;Z), and η(X) the periodic η-invariant of a Dirac operator D+(X). Then negating γ

changes the sign of η(X).

Proof. Changing the sign of γ = [df ] amounts to replacing f by −f ; this has the effect of changing

the family D±z to the family D±1/z. The change of variables w = 1/z in the integral (36) then

changes η±(X) to −η∓(X); hence, the invariant η(X) defined by (37) changes sign. 2

Proposition 7.2. Let X be an oriented spin compact manifold and η(X) the periodic η-

invariant of a spin Dirac operator D+(X). Denote by −X the manifold X with reversed

orientation. Then

η(X) + η(−X) = −2h.

Proof. First assume that our η-invariant arises from an index problem for a spin Dirac operator
on an end-periodic manifold Z∞. Apply Theorem C to this spin Dirac operator twice, first on
Z∞ and then on Z∞ with reversed orientation, to obtain the index formulas

indD+(Z∞)=

∫
Z

I(D+(Z))−
∫
Y
ω +

∫
X
df ∧ ω − 1

2
(h+ η(X))

−indD+(Z∞)=−
∫
Z

I(D+(Z)) +

∫
Y
ω −

∫
X
df ∧ ω − 1

2
(h+ η(−X)).

Adding these formulas together, we obtain the desired formula η(X)+η(−X) = −2h. In general,

use the fact that the spin cobordism group in odd dimensions vanishes over the rationals, and

apply the above argument to an end-periodic manifold Z∞ with multiple ends. 2

423

https://doi.org/10.1112/S0010437X15007502 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007502


T. Mrowka, D. Ruberman and N. Saveliev

7.5 Spectral flow
Let D+

t (Z∞) be a family of Dirac operators parameterized by t ∈ [0, 1] to which Theorem C
applies, leading to the formula

ind+D+
t (Z∞) =

∫
Z

I(D+
t (Z))−

∫
Y
ωt +

∫
X
df ∧ ωt −

ht + ηt(X)

2
.

As t varies, the integral terms in this formula vary continuously while ind+D+
t (Z∞) may have

integer jumps at the values of t for which the operator D+
t (Z∞) fails to be Fredholm. Following

Atiyah et al. [APS76, (7.1)], separate the function ξ(t) = (ht + ηt(X))/2 into its continuous part
g(t) and the integer-valued part j(t),

ξ(t) = g(t) + j(t), j(0) = 0.

In favorable circumstances, j(t) can be interpreted as the net number of the spectral points
z of the family D+

t (X) − ln z · df crossing the unit circle |z| = 1 as t varies. This ‘spectral
flow across the unit circle’ generalizes the spectral flow of [APS76, § 7], and reduces to it in
the product end case. We studied this spectral flow in [MRS11] for the spin Dirac operators
associated to a family of Riemannian metrics gt on a spin 4-manifold X, and showed that under
certain regularity assumptions it coincides with the change in the count of solutions to the
Seiberg–Witten equations.

8. Periodic ξ̃-invariants

An important extension of the classical Atiyah–Patodi–Singer η-invariant ηB(Y ) involves a twist
of the operator B by a unitary representation α : π1(Y ) → U(k), yielding invariants

ηBα(Y ) and ξBα(Y ) = 1
2(hBα + ηBα(Y )).

Comparing the untwisted and twisted versions yields the ξ̃-invariant

ξ̃α(Y,B) = ξBα(Y )− k · ξB(Y ), (40)

see [APS75b, § 3], which has had many applications in geometry and topology. (In the literature,
ξ̃ is denoted variously by ρ, η, eta, and perhaps other symbols.) When B is the odd signature
operator on an oriented (4n − 1)-dimensional manifold Y , as defined in [APS75a, (4.6)], the
invariants ξ̃α(Y,B) are metric independent, and so give smooth invariants of Y . When B is the
Dirac operator, only the reduction of ξ̃α(Y,B) modulo integers is metric independent.

We will use the same procedure to define periodic ξ̃-invariants for chiral Dirac operators on
even-dimensional manifolds X equipped with a unitary representation. This section contains the
definition and basic properties of these periodic ξ̃-invariants. In the following § 9, they are used
to study metrics of positive scalar curvature on X.

8.1 Definition of periodic ξ̃-invariants
Let X be a compact even-dimensional Riemannian manifold with a choice of a primitive
cohomology class γ ∈ H1(X;Z), and let D+ = D+(X) be a chiral Dirac operator associated
with a Dirac bundle on X with the property that the spectral set of D+

z is discrete. Suppose that
in addition we have a representation α : π1(X) → U(k) such that the twisted Dirac operator
D+
α = D+

α (X) has the property that the spectral set of (D+
α )z = D+

zα is discrete. Let

ξ(X,D+
α ) = 1

2(h(D+
α ) + η(X,D+

α ))
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and define the periodic ξ̃-invariant by

ξ̃α(X,D+) = ξ(X,D+
α )− k · ξ(X,D+)

with the periodic η-invariants defined as in (37) and the h-invariants as in (35). The notation
we used there did not include the dependence on various choices that we have made, as these
did not play much of a role in the analysis. We will now need to keep track of the Riemannian
metric g on X and the function f : X̃ → R such that γ = [df ]. We will incorporate these into
our notation as needed, by writing (for example) ξ̃α(X,D+, f, g).

In the special case when the operators D+
z and D+

zα are invertible on the unit circle |z| = 1,
which is equivalent to the L2-closures of the operators D+(X̃) and D+

α (X̃) being Fredholm, one
can use formula (5) for the η-invariants in the above definition instead of (37).

8.2 Two special cases
Let X = S1 × Y for some odd-dimensional manifold Y . Equip X with a product metric
g = dθ2 + gY and let f = θ. If α : π1(X) → U(k) factors through α : π1(Y ) → U(k), the
spectral sets of D+

z and D+
zα are automatically discrete, and we have

ξ̃α(X,D+, f, g) = ξ̃α(Y,D, gY ), (41)

where D is the self-adjoint Dirac operator on Y . This follows from §§ 6.3 and 7.2 in which the
periodic η-invariants and h-invariants of X were identified with those of Y .

Another important special case comprises spin Dirac operators on manifolds with metrics
of positive scalar curvature. Since such metrics are of particular interest in both this and next
sections, we will record the following simple lemma.

Lemma 8.1. Let Z∞ be an end-periodic spin manifold with an end-periodic metric g of positive
scalar curvature. Then the L2-closure of the associated spin Dirac operator D+(Z∞) is Fredholm
and has zero index. The same is true for the twisted operator D+

α (Z∞) associated with any
representation α : π1(Z∞) → U(k).

Proof. Since the end-periodic metric g has positive scalar curvature, the operators D+(Z∞) and
D+
α (Z∞) are uniformly invertible at infinity, which implies that their L2-closures are Fredholm;

see Gromov and Lawson [GL83]. Alternatively, assume that the end of Z∞ is modeled on X̃ →X,
and use the Lichnerowicz formula [Lic63] on X to prove that D+

z (X) and D+
zα(X) are invertible

on the unit circle |z| = 1. The statement about Fredholmness now follows from Proposition 2.1.
Applying the Lichnerowicz formula once more, this time on Z∞, we conclude that the operators
D+(Z∞) and D+

α (Z∞) are invertible and hence their indices vanish. 2

It follows from the proof of Lemma 8.1 that, whenever X is a spin manifold with a metric
g of positive scalar curvature and the associated spin Dirac operator D+, the operators D+

z and
D+
zα are invertible on the unit circle and hence the invariants ξ̃α(X,D+, f, g) are well defined for

all representations α : π1(X) → U(k).

8.3 Dependence on choices

In this section, we will use Theorem C to study how the invariants ξ̃α(X,D+, f, g) depend on
the choices of f and g.

Choose a submanifold Y ⊂ X dual to the generator γ ∈ H1(X;Z). Then

X̃ = ( · · · ∪W−2 ∪W−1︸ ︷︷ ︸
X−

) ∪W0 ∪ (W1 ∪W2 ∪ · · ·︸ ︷︷ ︸
X+

), (42)
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where Wk are isometric copies of the fundamental segment W obtained by cutting X open
along Y . We will view X̃ as the union of W0 with two ends X+ and X− and use Theorem C to
compute the indices of the operators D+(X̃) and D+

α (X̃).
The statement of Theorem C makes use of functions f± : X̃ → R associated with the ends

X+ and X− such that γ = [df+] and −γ = [df−] ∈ H1(X;Z), respectively. For example, given
a function f : X̃ → R with γ = [df ], one could use f+ = f and f− = −f as such functions.
In addition, Theorem C requires a choice of local index forms and transgressed classes. Denote
by I(D+(X)) the local index form for D+(X); then I(D+

α (X)) = k · I(D+(X)). Our assumption
that the spectral sets of D+

z (X) and D+
zα(X) are discrete ensures that the operators D+(X)

and D+
α (X) have zero index and hence the forms I(D+(X)) and I(D+

α (X)) are exact. If ω is a
transgressed class such that dω = I(D+(X)), then evidently d(k · ω) = I(D+

α (X)).

Lemma 8.2. The invariant ξ̃α(X,D+, f, g) does not depend on the choice of the function f .

Proof. Suppose that f0 and f1 : X̃ → R are two choices of function f such that γ = [df0] = [df1].
Then we can compute the index of D+(X̃) in two different ways. One, as described above, will
use f− = −f0 and f+ = f0. The other will continue to use f− = −f0 but will use f+ = f1. For
the first choice, using Theorem C and taking advantage of Proposition 7.1, we obtain

ind+D+(X̃) =

∫
W0

I(D+(X))

−
∫
Y
ω +

∫
X
df0 ∧ ω −

1

2
(h+ η(X,D+, f0, g))

+

∫
Y
ω −

∫
X
df0 ∧ ω −

1

2
(h− η(X,D+, f0, g)).

Since
∫
W0

I(D+(X)) = 0, this implies that ind+D+(X̃) = −h. Note that the same answer could

also be obtained from the change of index formula (32). Now we use the second choice to obtain

ind+D+(X̃) =

∫
W0

I(D+(X))

−
∫
Y
ω +

∫
X
df1 ∧ ω −

1

2
(h+ η(X,D+, f1, g))

+

∫
Y
ω −

∫
X
df0 ∧ ω −

1

2
(h− η(X,D+, f0, g)),

from which it follows that

ξ(X,D+, f1, g)− ξ(X,D+, f0, g) =

∫
X
df1 ∧ ω −

∫
X
df0 ∧ ω. (43)

Here, we used the fact that h is independent of f ; see the discussion following (35). Repeating
this argument with D+ replaced by D+

α , and taking advantage of the relation between the index
forms and transgressed classes for the two operators described above, we obtain

ξ(X,D+
α , f1, g)− ξ(X,D+

α , f0, g) = k

(∫
X
df1 ∧ ω −

∫
X
df0 ∧ ω

)
. (44)

Subtracting k times (43) from (44) yields the result. 2

From this point on, we remove the function f from the notation for the periodic ξ̃-invariant,
and turn our attention to the metric dependence. Except in those circumstances where the kernel
and cokernel of D+(X) have topological interpretations, we do not expect that the ξ̃-invariant
is metric independent. Indeed, this is not true even in the product case.
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Lemma 8.3. Let g0 and g1 be Riemannian metrics on X with respect to which the spectral sets
of D+

z and D+
zα are discrete. Then

ξ̃α(X,D+, g1) = ξ̃α(X,D+, g0) (mod Z).

Proof. We again consider X̃ as an end-periodic manifold with two ends, but now use a lift of the
metric g0 on X− and a lift of the metric g1 on X+, with a metric g on W0 interpolating between
the two. Using f− = −f and f+ = f for a choice of function f , we obtain

ind+D+(X̃) =

∫
W0

I(D+(X, g))

−
∫
Y
ω1 +

∫
X
df ∧ ω1 −

1

2
(h1 + η(X,D+, f, g1))

+

∫
Y
ω0 −

∫
X
df ∧ ω0 −

1

2
(h0 − η(X,D+, f, g0))

with a similar expression for ind+D+
α (X̃). Subtract k times the first expression from the second

and take into account the behavior of the local index forms and transgressed classes to conclude
that

ξ̃α(X,D+, g1)− ξ̃α(X,D+, g0)

is an integer. 2

Remark 8.4. It is worth pointing out that the periodic ξ̃-invariant is also a diffeomorphism
invariant in the same sense as the classical ξ̃-invariant is; see Botvinnik and Gilkey [BG95, p. 516].
Let H ⊂ Diff(X) denote the group of orientation-preserving diffeomorphisms F : X → X that
preserve the class γ ∈ H1(X;Z) and all spin structures. Then, for any F ∈ H, any representation
α : π1(X) → U(k), and any metric g on X for which ξ̃ is defined, we have

ξ̃α(X,D+, g) = ξ̃F ∗α(X,D+, F ∗g). (45)

Note that the pull back of representations is only well defined on conjugacy classes (because of
base point issues) but changing α within its conjugacy class does not affect ξ̃α.

8.4 Reduction to the classical ξ̃-invariant

We saw in § 8.2 that the periodic ξ̃-invariant reduces to the classical ξ̃-invariant on product
manifolds X = S1 × Y ; see formula (41). We will now show that a similar reduction holds for
more general manifolds X.

Let X have a metric g which restricts to a product metric g = dθ2 + gY on a product region
I × Y ⊂ X. Recall from § 6.3 that the operator D+(X) has the form dθ · (∂/∂θ − D(Y )) on
I × Y . Similarly, for any representation α : π1(X) → U(k), the operator D+

α (X) has the form
dθ · (∂/∂θ −Dα(Y )), where we use the same symbol α to denote the restriction of α to π1(Y ).

Proposition 8.5. Let X be a manifold as above, and suppose that the L2-closures of the
operators D+(X̃) and D+

α (X̃) are Fredholm.

(i) If both operators D(Y ) and Dα(Y ) are invertible, then

ξ̃α(X,D+, g) = ξ̃α(Y,D, gY ) (mod Z). (46)

(ii) If both metrics g and gY have positive scalar curvature, then (46) holds as an equality
of real numbers.
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Proof. Consider an end-periodic manifold Z∞ = ((−∞, 0]×Y )∪W0∪X+. Because of the product
region I × Y ⊂ X, the metric g on X induces an obvious metric on Z∞. Choose the function
f on X+ so that df has support in the product region. By Remark 5.4, the terms involving the
integrals of ω and df ∧ω that appear in the index theorem all vanish. Using Theorem A and the
result of § 6.3, we obtain

indD+(Z∞) =

∫
W0

I(D+(X, g))− 1

2
(η(X,D+)− ηD(Y )),

and a similar formula for indD+
α (Z∞). Formula (46) follows by subtraction as in the proof of

Lemma 8.3. If g has positive scalar curvature, the indices of D+(Z∞) and D+
α (Z∞) vanish by

Lemma 8.1, and it follows that ξ̃α(X,D+, g) = ξ̃α(Y,D, gY ). 2

Remark 8.6. It is standard in the field [Gil89] to extend the definition (40) to the ring R0(π1(Y ))
of virtual unitary representations of π1(Y ) of virtual dimension zero. Given α ∈ R0(π1(Y )) of
the form α = α1 − α2, where α1 and α2 : π1(Y ) → U(k) are representations, one defines

ξ̃α(Y,B) = ξ̃α1(Y,B)− ξ̃α2(Y,B).

Our definition of the periodic ξ̃-invariant can similarly be extended to the ring R0(π1(X))
of virtual unitary representations of π1(X) of virtual dimension zero. All properties of the
ξ̃-invariant hold in this extended setting.

9. Metrics of positive scalar curvature

One of the main applications of the ξ̃-invariant of the spin Dirac operator on odd-dimensional
manifolds has been to the study of Riemannian metrics of positive scalar curvature (PSC for
short). In this section, we will use our periodic ξ̃-invariant to study PSC metrics on certain
even-dimensional manifolds.

Denote the space of PSC metrics on a manifold M by R+(M). The quotient of R+(M) by the
group of self-diffeomorphisms of M is called the moduli space of PSC metrics on M and is denoted
by M+(M). These spaces may be empty: obstructions to the existence of PSC metrics on a
manifold arise both from index theory [Lic63, Hit74] and from minimal surface arguments [SY79].
However, if a manifold M admits a PSC metric, refinements of these techniques show that the
spaces R+(M) and M+(M) are often disconnected and may have non-trivial higher homotopy
groups. An introduction to the area may be found in [LM89], and the papers [RS01, Ros07]
survey some more recent results.

For certain odd-dimensional spin manifolds Y , one can show that R+(Y ) and M+(Y ) have
infinitely many components using the ξ̃-invariants associated to the spin Dirac operator on Y .
The main result of this section is that our periodic ξ̃-invariants can be used to a similar effect for
a class of 4n-dimensional manifolds X: we will show that the spaces R+(X) and M+(X) may
have infinitely many components when n > 1, and arbitrarily many components when n = 1.
The proofs will differ somewhat for n > 1 and n = 1 but both will rely on the result of the
following section.

9.1 Homotopies through PSC metrics
Throughout this section, X will be a closed spin manifold of dimension 4n with a choice of a
primitive class γ ∈ H1(X;Z), and D+ will denote a chiral spin Dirac operator on X.
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Figure 2. Decomposition of X̃.

Theorem 9.1. Suppose that g0 and g1 are metrics on X with positive scalar curvature, so that
the invariants ξ̃α(X,D+, g0) and ξ̃α(X,D+, g1) are defined for any α ∈ R0(π1(X)). If g0 and g1

are homotopic through metrics of positive scalar curvature, then

ξ̃α(X,D+, g1) = ξ̃α(X,D+, g0). (47)

Moreover, let F : X → X be a diffeomorphism preserving γ and spin structure, and such that
F ∗α = α up to conjugation. If g0 and F ∗g1 are homotopic through metrics of positive scalar
curvature, then (47) still holds.

Proof. We will treat the infinite cyclic cover X̃ → X classified by γ as an end-periodic manifold
with two ends, as described in (42). We claim that for some N > 0, there exists a PSC metric
g on X̃ which is equal to g0 on

⋃
i60Wi and to g1 on

⋃
i>N Wi. Given this, the equality (47)

of ξ̃-invariants will follow from Lemma 8.1 using a slight modification of the argument proving
Lemma 8.3.

We now construct the metric g, starting with a family gt, 0 6 t 6 1, of PSC metrics on
X providing the homotopy between g0 and g1. Fix an oriented, connected submanifold Y ⊂ X
whose homology class is dual to γ, and a lift of Y to X̃ so that Y is the right-hand boundary of
W0. Fix a smooth neighborhood U = [−1, 1]×Y of Y in X; the lift of Y gives a lift of U that we
label U0. The translates of U0 by the covering translations T j will be labeled Uj ; these overlap
Wj and Wj+1 as shown in Figure 2. Finally, fix a smooth function β : U → [0, 1] such that β = 0
near {−1} × Y and β = 1 near {1} × Y ; translation gives a similar function on each Uj .

For an arbitrary N > 0, consider the end-periodic metric on X̃ defined as follows. Start with
an initial metric g̃N defined on individual Wj by

g̃N (x) =


g0(x) if x ∈Wj , j < 0,

gj/N (x) if x ∈Wj , 0 6 j 6 N,

g1(x) if x ∈Wj , j > N.

(48)

These of course do not match up on the intersections Wj−1∩Wj , so we modify them by defining
the metric gN to be

(1− β(u)) · gj/N (u) + β(u) · g(j+1)/N (u) (49)

on Uj for j = 0, . . . , N − 1. The metric gN is then well defined as an end-periodic metric on X̃.
On the complement of Uj , the metric gN equals gt for some t ∈ [0, 1] and hence has positive

scalar curvature by hypothesis. We will establish that, for N sufficiently large, the metric defined
by (49) has positive scalar curvature throughout. This follows from two straightforward facts.
First, the path gt (restricted to U) is uniformly continuous as a function from [0, 1] to the space
R(U) of Riemannian metrics on U with the C∞ topology. Therefore, if N is sufficiently large,
the metric defined by (49) will be in any prescribed neighborhood of gj/N on U . Second, the
minimum (over U) of the scalar curvature is a continuous function of the metric. By compactness
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of X, the minimum of the scalar curvature of gt is bounded away from 0, and this implies that
for N sufficiently large, the scalar curvature of gN is positive everywhere on X̃.

The second statement of the theorem (concerning diffeomorphisms) follows from the first
after taking Remark 8.4 into account. 2

9.2 The 4n-dimensional case with n > 1
Our result will be an even-dimensional version of [BG95, Theorem 0.3], which holds for odd-
dimensional closed spin manifolds Y with a non-trivial finite fundamental group G.

Theorem 9.2. Let Y be a closed connected spin manifold of dimension 4n− 1 with n > 1 and
with a non-trivial finite fundamental group G, and let M be a closed spin manifold of dimension
4n. If both Y and M admit metrics of positive scalar curvature, then π0(M+((S1× Y ) #M)) is
infinite.

Proof. Start with the product metrics dθ2 + gYj on S1×Y , where gYj is an infinite family of PSC
metrics used in [BG95, Theorem 0.3] to prove the non-finiteness of π0(M+(Y )) by showing that

ξ̃α(Y,D, gYi ) 6= ξ̃α(Y,D, gYj ) for i 6= j

for an explicitly constructed α ∈ R0(G). Note that the condition rm(G) > 0 of that theorem is
automatically satisfied because m = 4n− 1 = 3 (mod 4); see the remark following the statement
of [BG95, Theorem 0.1].

Next, fix a PSC metric gM on M and equip XM = (S1 × Y ) # M with PSC metrics gj =
(dθ2 + gYj ) # gM constructed from PSC metrics on the two summands via connected sum using
modifications supported in small neighborhoods of points in the summands. That this can be
done follows from [GL80, SY79]. Note that Y continues to have a product neighborhood in XM ;
therefore,

ξ̃α(XM ,D+, gj) = ξ̃α(Y,D, gYj )

by part (2) of Proposition 8.5. Theorem 9.1 then immediately implies that the metrics gj lie in
different components of R+(XM ), and indeed of R+(XM )/H, where H ⊂ Diff(XM ) is the group
discussed in Remark 8.4. Since H is a subgroup of finite index, this implies as in Botvinnik
and Gilkey [BG95] that there are infinitely many path components in R+(XM )/Diff(XM ) =
M+(XM ). 2

Remark 9.3. Note that the metrics gYj used in the above proof were constructed in [BG95]
(based on [Miy84, Ros86]) by pushing PSC metrics across a cobordism, which necessitates the
hypothesis that n > 1.

Remark 9.4. Theorem 9.2 illustrates an important point about the periodic ξ̃-invariants. By
Proposition 8.5, when Y ⊂ X has a metric product neighborhood, ξ̃α(X,D+, g) reduces to the
classical ξ̃-invariant of the odd-dimensional manifold Y . However, even if such a neighborhood is
present for the PSC metrics g0 and g1, there is no reason it would be present for all PSC metrics
in a homotopy gt. Hence, it is crucial for the proof of Theorem 9.2 that we are able to define
ξ̃α(X,D+, g) for arbitrary PSC metrics on X.

9.3 The four-dimensional case
The proof of Theorem 9.2 for higher-dimensional manifolds does not extend to manifolds of
dimension four due to the breakdown in the topological arguments used to push PSC metrics
across a cobordism; see Remark 9.3. These arguments, which go back to [Gaj87, GL80, SY79],
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do not work for surgeries along spheres of co-dimension one or two, and these are often
unavoidable when dealing with manifolds of dimensions four and five. Indeed, Seiberg–Witten
theory shows [Wit94] that there are 4-manifolds that do not carry PSC metrics, but are cobordant
to manifolds that do carry such metrics. One dimension down, Ricci flow techniques show [Mar12]
that π0(M+(Y )) vanishes for any 3-manifold Y carrying a PSC metric.

In this section, we will adapt the argument for Theorem 9.2 to produce a class of orientable
4-manifolds X for which π0(M+(X)) may be arbitrarily large. Non-orientable 4-manifolds having
this property were constructed in [Rub01].

Theorem 9.5. Let Y be a closed connected oriented 3-manifold with non-trivial finite
fundamental group, and let M be a closed spin 4-manifold which admits a metric of positive
scalar curvature. Then, for any positive integer N , there exists mN such that

π0(M+(S1 × Y ) #mN · (S2 × S2) #M)

has at least N elements.

Before we go on to prove Theorem 9.5, we need to review some basic handlebody
theory [RS72].

Lemma 9.6. Let n > 4, and suppose that (W,X0, X1) is an (n+ 1)-dimensional cobordism with
connected X0 and X1. Assume that the map π1(X0) → π1(W ) is a surjection and the map
π1(X1) → π1(W ) is an isomorphism. Then W has a handle decomposition relative to X0 such
that:

(i) there are no handles of index 0 or 1;

(ii) there are no handles of index n+ 1 or n; and

(iii) for each handle h of index n − 1, its belt sphere (or attaching circle for h viewed as a
2-handle relative to X1) is null-homotopic in X1.

Proof. Item (1) is standard: 0-handles are canceled by 1-handles, and one can use the surjectivity
of π1(X0) → π1(W ) to trade 1-handles for 3-handles as in [RS72, Lemma 6.15]. Turning over
the handle structure yields item (2); note that one needs n > 4 to ensure that this step does not
introduce any new 1-handles. If item (3) failed to hold, the inclusion π1(X1) → π1(W ) would
have non-trivial kernel. 2

We also need a simple fact about the non-triviality of ξ̃α(Y,D, gY ) in the three-dimensional
case. Although such calculations are well known to experts in the field, we could not find the
precise statement in the literature so we supply a quick proof here.

Lemma 9.7. Let Y be a three-dimensional spherical space form, with a spherical metric gY

(i.e. pushed down from S3). Then, for any spin structure on Y , there is a representation α :
π1(Y ) → U(k) such that ξ̃α(Y,D, gY ) 6= 0.

Proof. We will first prove this for lens spaces L(p, q). Let p > 1 be an odd integer and view
L(p, q) as the quotient of the unit sphere S3 ⊂ C2 by the cyclic group action

t(z1, z2) = (e2πi/pz1, e
2πiq/pz2).

Let α1 : π1(L(p, q)) → U(1) be the representation sending t to e2πi/p. Then, for the unique spin
structure and the spherical metric g, we have

ξ̃α1(L(p, q),D, g) = −(d/p) · (p+ 1)/2 (mod Z),
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where d is a certain integer relatively prime to 48 p; see [Gil84, Theorem 2.5]. One can easily see
that ξ̃α1(L(p, q),D, g) is never zero modulo the integers and hence it is not zero as a real number.
The same theorem tells us that, for L(2, 1) = RP3, the invariants ξ̃α1(L(2, 1),D, g) are equal to
±1/4 (mod Z), depending on the spin structure.

Any other spherical space form Y is finitely covered by a lens space L(p, q) with a spin
structure pulled back from Y . Let α be the representation of π1(Y ) induced by the representation
α1 on the finite index subgroup π1(L(p, q)) ⊂ π1(Y ). Then, according to [Gil89, Lemma 2.5.6],
we have

ξ̃α(Y,D, gY ) = ξ̃α1(L(p, q),D, g),

which is not zero. 2

Proof of Theorem 9.5. Being a spherical space form, the manifold Y admits a metric gY of
positive constant sectional curvature. Fix a spin structure on Y and choose, via Lemma 9.7, a
representation α : π1(Y ) → U(k) with ξ̃α(Y,D, gY ) 6= 0. Via the connected sum construction,
the metric gY gives rise to a PSC metric g0 on the connected sum m · Y for any integer m > 1.
Positive scalar curvature metrics proving the theorem will be constructed by pushing the product
metric dθ2 +g0 on S1×m ·Y across a carefully chosen cobordism, and using periodic ξ̃-invariants
associated with α to distinguish their moduli.

We begin our construction of the cobordism with the observation that, due to the finiteness
of π1(Y ), the spin cobordism group Ωspin

3 (Bπ1(Y )) is finite and hence there is a positive integer
d annihilating its every element. It then follows that, for any n, there are a spin cobordism Vn
and a representation α̃ : π1(Vn) → U(k) such that

∂(Vn, α̃) = (Y, α)− (nd+ 1) · (Y, α),

where r · (Y, α) stands for the connected sum of r copies of Y with representation α on each
summand. One may further assume, after killing the kernel of the map π1(Vn) → π1(Y ) by
surgery on some circles in Vn, that the inclusion of Y into Vn induces an isomorphism on the
fundamental groups, and that the same is true for each summand of (nd+ 1) · Y .

Next, endow S1 with a non-bounding spin structure and consider the spin cobordism Wn =
S1 × Vn with boundary

∂Wn = S1 × Y − S1 × (nd+ 1) · Y.

Since this cobordism satisfies the hypotheses of Lemma 9.6, we will assume that Wn has a
handle decomposition with only 2- and 3-handles. Let kn be the number of the 3-handles, and
view them as 2-handles relative to S1 × Y . By item (iii) of Lemma 9.6, the attaching maps of
these 2-handles are null-homotopic in S1 × Y , so the result of adding them is a spin cobordism
from (S1 × Y ) # kn · (S2 × S2) to S1 × Y . Note that we are taking the connected sum with
S2 × S2 rather than the non-trivial S2-bundle over S2, which is not a spin manifold.

Attaching the original 2-handles of Wn to S1 × (nd+ 1) · Y then results in a spin cobordism
Un with boundary

∂Un = (S1 × Y ) # kn · (S2 × S2)− S1 × (nd+ 1) · Y.

One can easily check that the inclusion of (S1×Y )#kn·(S2 × S2) into Un induces an isomorphism
on the fundamental groups, and so there is a surjection ϕ : π1(Un) → Z whose restriction to the
other boundary component of Un is the obvious projection π1(S1 × (nd+ 1) · Y ) → π1(S1) = Z.
Under this projection, the attaching circle of any 2-handle must map to zero because H1(Un;Q)
= Q. It then follows that this attaching circle is homotopic to a curve in (nd + 1) · Y . Since
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homotopy implies isotopy in dimension four, we may assume that all of the attaching circles of
the 2-handles of Un (relative to S1×(nd+1)·Y ) live outside of some product region I×(nd+1)·Y .
Since Un has only 2-handles, the construction of Gajer [Gaj87] gives it a PSC metric, which
extends the product metric on S1 × (nd + 1) · Y and which is a product metric near both
boundary components. The construction involves modifying the metric on S1 × (nd + 1) · Y in
some neighborhood of the attaching maps of the 2-handles and hence does not affect the metric
in the aforementioned product region.

Let g be the metric obtained by restricting this metric to (S1 × Y ) # kn · (S2 × S2). It has
positive scalar curvature and also contains a product neighborhood of (nd+1) ·Y . Using part (ii)
of Proposition 8.5 and formula (41), we calculate

ξ̃α((S1 × Y ) # kn · (S2 × S2),D+, g) = ξ̃α((nd+ 1) · Y,D, g0).

To calculate the latter ξ̃-invariant, consider a standard spin cobordism between the disjoint
union of nd + 1 copies of Y and the connected sum (nd + 1) · Y obtained by adding 1-handles
to the disjoint union. According to Gajer [Gaj87], this cobordism has a metric of positive scalar
curvature which restricts to a product metric near its boundary. The representation α extends
over this cobordism; hence, it follows from [APS75b] that

ξ̃α((nd+ 1) · Y,D, g) = (nd+ 1) · ξ̃α(Y,D, gY ).

Since S2 × S2 has a metric of positive scalar curvature, the connected sum construction gives us
a natural PSC metric on (S1 × Y ) # k · (S2 × S2) with

ξ̃α((S1 × Y ) # k · (S2 × S2),D+, g) = (nd+ 1) · ξ̃α(Y,D, gY )

for any k > kn. These ξ̃-invariants are distinct for different n because ξ̃α(Y,D, gY ) 6= 0.
To complete the proof of the theorem, letN be a positive integer, and letmN be the maximum

of {kn | n = 1, . . . , N}. Then, by adding more copies of S2 × S2 if necessary to the manifolds
(S1 × Y ) # kn · (S2 × S2), we obtain metrics on (S1 × Y ) #mN · (S2 × S2) with ξ̃-invariants

(nd+ 1) · ξ̃α(Y,D, gY ), n = 1, . . . , N.

As in the proof of Theorem 9.2, these metrics are distinct up to homotopy, even after connected
sum with an arbitrary spin manifold M carrying a PSC metric. 2

10. Heat kernel estimates

Let M be a Riemannian manifold of dimension n, and S a Dirac bundle with associated Dirac
operator D = D(M). In this section, we derive estimates on the smoothing kernel of the operator
exp(−tD2), as well as estimates on its derivatives. These were needed in the proof of Theorem A
but were postponed for the sake of the exposition. In the first two subsections, we make only the
assumption (cf. Roe [Roe88a, § 2]) that the pair (M ;S) has bounded geometry. This means that
the injectivity radius of M is bounded from below, and that the norm of its curvature tensor
(and its covariant derivatives) is bounded from above. Similarly, the curvature of the Clifford
connection (along with its covariant derivatives) on S has bounded norm. Of course, end-periodic
manifolds and end-periodic Dirac operators satisfy these conditions. The last three subsections
will be specific to operators on end-periodic manifolds. We will work most of the time with full
Dirac operators; their chiral counterparts can be treated in similar fashion.
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Heat kernel estimates similar to ours but in the context of relative index theory can be found
in [Bun92]; see also [Don87, CLY81] for the case of a scalar Laplacian. We have chosen to give
a full treatment here because we need stronger results regarding the behavior of heat kernels
at t → ∞ than the relative index theory provides; in addition, there are essential differences
with [Bun92] in how we arrive at our estimates, including our use of gradient estimates and of
Taubes’ trick [Tau07] for converting estimates for the scalar heat kernel to such estimates for
more general operators.

10.1 Smoothing kernels
The paper of Roe [Roe88a] explains the basic analytical properties of Dirac operators D = D(M)
that hold whenever (M ;S) has bounded geometry. Most important for us is the construction
of the smoothing kernel for operators of the form h(D) for h a rapidly decaying function. We
briefly summarize some properties we will use, referring to [Roe88a] for more details.

Let h : R → R be a continuous function with the property that for each integer k > 0, there
exists a constant Ck such that |h(s)| 6 Ck(1 + |s|)−k. Then the operator h(D) defined by the
spectral theorem can be represented by its smoothing kernel K(x, y) as in (10). With respect
to topologies described on [Roe88a, pp. 93–94], the map that associates its smoothing kernel
to such an operator is continuous; see [Roe88a, Proposition 2.9]. In particular, the operators
Dm exp(−tD2) are represented by such smoothing kernels for all t > 0 and m > 0.

10.2 Estimates for the kernel of exp(−tD2)
In this subsection, we establish estimates, valid whenever (M ;S) has bounded geometry, for the
smoothing kernel of the operator exp(−tD2). This kernel will be denoted K = K(t;x, y) and
viewed as a smooth section of the bundle Hom(π∗RS, π

∗
LS) over (0,∞)×M ×M . As a function

of t and x with y fixed, it solves the initial value problem(
∂

∂t
+D2

)
K = 0, lim

t→0
K = δy · I, (50)

where I is the identity automorphism.
We begin with short-term Gaussian estimates on K and its derivatives.

Proposition 10.1. Let (M ;S) have bounded geometry and let K(t;x, y) be the smoothing
kernel of the operator exp(−tD2) on M . Then, for any T > 0, there is a positive constant C such
that ∣∣∣∣ ∂i∂ti∇jx∇kyK(t;x, y)

∣∣∣∣ 6 Ct−n/2−i−|j|−|k|e−d
2(x,y)/4t (51)

for all t ∈ (0, T ]. Here, j and k are multi-indices, and the constant C depends only on T .

Proof. The proof is essentially the same as that for scalar heat kernels; see for instance
Donnelly [Don79, § 3] and Donnelly [Don88, § 4]. 2

Note that, for any m > 0, the smoothing kernels of Dm exp(−tD2) are of the form Dm
K(t;x, y), where D is the Dirac operator acting on the x-variable. In particular, we see that
estimates similar to (51) hold as well for the smoothing kernels of the operators Dm exp(−tD2)
and their chiral versions.

We turn next to Gaussian estimates on |K(t;x, y)|, valid for all t > 0, using the well-known
results of Li and Yau [LY86, Corollary 3.1] on the scalar heat kernel and Taubes’ trick [Tau07,
Proposition 2.1]. More precisely, we will prove the following result.
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Proposition 10.2. Let (M ;S) have bounded geometry and let K(t;x, y) be the smoothing
kernel of the operator exp(−tD2) on M . There exist positive constants α, γ, and C such that

|K(t;x, y)| 6 Ceαtt−n/2e−γd
2(x,y)/t for all t > 0. (52)

The rest of this subsection will be dedicated to the proof of this proposition. We begin with
the generalized Bochner formula [LM89, ch. II, § 8],

D2 = ∇∗∇+ R,

where R is defined in terms of the curvature of the connection on S. In the special case when
M is a spin manifold and D the spin Dirac operator, R is just 1/4 times the scalar curvature of
M . Inserting this into (50), we obtain

∂K

∂t
+∇∗∇(K) + R ·K = 0

and (
∂K

∂t
,K

)
+ (∇∗∇(K),K) + (R ·K,K) = 0. (53)

Here, the parentheses stand for the fiberwise inner product on the vector bundle Hom(π∗RS,
π∗LS). Let ∆ = d∗d = − ∗ d ∗ d be the scalar Laplace operator.

Lemma 10.3. For any section s of a Euclidean bundle with the compatible connection ∇, one
has

∆(|s|2) = 2(∇∗∇s, s)− 2|∇s|2.

Using Lemma 10.3 with s = K, the formula (53) can easily be converted into

1

2
· ∂|K|

2

∂t
+

1

2
∆(|K|2) + |∇(K)|2 + (R ·K,K) = 0,

which, after another application of Lemma 10.3 with s = |K|, becomes

|K| · ∂|K|
∂t

+ |K| ·∆(|K|)− |d|K| |2 + |∇K|2 + (R ·K,K) = 0. (54)

Lemma 10.4. For any section s of a Euclidean vector bundle with the compatible connection ∇,
one has |d|s| | 6 |∇s|.

Proof. This is known as Kato’s inequality; see for instance formula (3.3) in Taubes [Tau89]. 2

Proof of Proposition 10.2. Together, Lemma 10.4 and formula (54) yield the differential
inequality

∂|K|
∂t

+ ∆(|K|) 6 ‖R‖ |K|.

Since (M ;S) has bounded geometry, the curvature operator R is bounded and hence there is a
constant α > 0 such that

∂|K|
∂t

+ ∆(|K|) 6 α|K|.

For any fixed y ∈ M , let us consider the function h(t, x) = e−αt|K|. A straightforward
calculation shows that h satisfies the differential inequality

∂h

∂t
+ ∆(h) 6 0
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with the initial condition
lim
t→0

h = lim
t→0
|K| = |δy · I| = κ · δy

for some positive constant κ. Let H(t;x, y) be the scalar heat kernel, that is, the smoothing
kernel of the operator exp(−t∆). As a function of t and x with y fixed, H solves the initial value
problem

∂H

∂t
+ ∆(H) = 0, lim

t→0
H = δy.

Then the difference k = h− κ ·H, as a function of t and x, solves the initial value problem

∂k

∂t
+ ∆(k) 6 0, lim

t→0
k = 0.

The maximum principle can be applied to k even though the manifold M is not compact
because estimates (51) and similar estimates for H(t;x, y) ensure that, for any fixed t and y,
the function k approaches zero when x runs off to infinity. The maximum principle implies that
k(t, x) 6 0 for all t > 0 and x ∈M , which of course translates into the inequality

|K(t;x, y)| 6 κeαt ·H(t;x, y).

Now the Gaussian estimates on the scalar heat kernel H(t;x, y) found in [LY86, Corollary 3.1]
complete the proof. 2

10.3 Long-term derivative estimates

The results of this subsection are specific to the periodic manifold X̃ and do not necessarily
extend to general manifolds of bounded geometry.

Proposition 10.5. Let K̃(t;x, y) be the smoothing kernel of the operator exp(−tD2) on X̃.
There exist positive constants α, γ, and C such that

|∇K̃(t;x, y)| 6 Ceαtt−n/2−1e−γd
2(x,y)/t for all t > 0. (55)

Proof. Differentiate equation (50) with respect to t to conclude that K̃ ′ = ∂K̃/∂t solves the
equation (

∂

∂t
+D2

)
K̃ ′ = 0

with the initial condition

lim
t→0

K̃ ′ = − lim
t→0
D2K̃ = −D2(δy · I) = −(∆δy) · I.

Similarly, the time derivative H̃ ′ of the scalar heat kernel H̃ on X̃ solves the initial value problem

∂H̃ ′

∂t
+ ∆(H̃ ′) = 0, lim

t→0
H̃ ′ = −∆δy.

The argument of the previous section can now be applied to the time derivatives of K̃ and H̃ to
deduce that

|K̃ ′(t;x, y)| 6 κeαtH̃ ′(t;x, y)

for some positive constants κ and α. The Gaussian estimates on the time derivatives of H̃,
see [Dav89, Theorem 3] and also [Gri95], ensure that there exist positive constants γ and C such
that

|K̃ ′(t;x, y)| 6 Ceαtt−n/2−1e−γd
2(x,y)/t for all t > 0.
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Using this estimate, one can argue as in [CD99, Lemma 2.3] that there are positive constants β
and C such that ∫

X̃
eβd

2(x,y)/t|∇K̃(t;x, y)|2 dx 6 Ce2αtt−n/2−1.

With this weighted L2-estimate in place, one can follow the argument of [Dun04] to derive the
pointwise estimates (55). The caveat is that both [CD99, Dun04] deal with scalar heat kernels but
the aforementioned arguments go through with little change to cover the case of K̃(t;x, y). 2

10.4 On-diagonal estimates

Let Z∞ = Z ∪ X̃+ be a manifold with periodic end, where X̃+ = W0 ∪W1 ∪ · · · . Let K(t;x, y)
and K̃(t;x, y) be the smoothing kernels of the operators exp(−tD2) on, respectively, Z∞ and X̃.
This subsection is devoted to the proof of the following result.

Proposition 10.6. There are positive constants α, γ, and C such that, for all t > 0 and all
x ∈Wk with k > 1, one has

|K(t;x, x)− K̃(t;x, x)| 6 Ceαte−γ d
2(x,W0)/t.

Proof. The proof will rely on the construction of the heat kernel on Z∞ via the Duhamel principle;
cf. [BW93, § 22C] in the product end case. We will use the intersection (Z ∪W0) ∩ X̃+ = W0 as
the gluing region for patching the heat kernel on DZ = Z ∪W0∪ (−W0)∪ (−Z) with that on X̃.

Let h : X̃ → R be a smooth function such that h(x + 1) = h(x) + 1, h(W0) ⊂ [0, 1], and
h equals zero on ∂−W0 = −Y and one on ∂+W0 = Y . The restriction of h to X̃+ is nowhere
negative; we extend it to a smooth function on Z∞ = Z ∪ X̃+ (called again h), so that it is
negative on the interior of Z. For any real numbers a < b, let ρa,b be an increasing smooth
function of the real variable u such that

ρa,b(u) =

{
0 for u 6 a,

1 for u > b.

Define smooth cut-off functions ϕ1, ϕ2, ψ1, ψ2 : Z∞ → [0, 1] by defining them first on W0 by the
formulas

ϕ1 = 1− ρ5/7,6/7 ◦ h, ϕ2 = ρ1/7,2/7 ◦ h,
ψ1 = 1− ρ3/7,4/7 ◦ h, ψ2 = 1− ψ1,

and then extending to the entire Z∞ by 0 or 1 in an obvious way; see the schematic picture
in Figure 3 below. The functions ψ1 and ψ2 form a partition of unity subordinate to the open
covering Z∞ = {h(x) < 5/7} ∪ {h(x) > 2/7}. In addition, ϕj = 1 on suppψj and the distance
between h(supp∇ϕj) and h(suppψj) is no less than 1/7 for both j = 1 and j = 2.

Let K1(t;x, y) and K2(t;x, y) = K̃(t;x, y) be smoothing kernels of the operators exp(−tD2)
on DZ and X̃, respectively. Define an approximate smoothing kernel Ka(t;x, y) of exp(−tD2)
on Z∞ by the formula

Ka(t;x, y) =

2∑
j=1

ϕj(x)Kj(t;x, y)ψj(y). (56)

Note that Ka(t;x, y) = K1(t;x, y) when (x, y) ∈ Z × Z and Ka(t;x, y) = K2(t;x, y) when
(x, y) ∈ (X̃+ −W0) × (X̃+ −W0) and also that Ka(t;x, y) = 0 when (x, y) ∈ Z × (X̃+ −W0)
or (x, y) ∈ (X̃+ − W0) × Z. In addition, limKa(t;x, y) = δy(x) · I when t → 0 for all (x, y).
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Figure 3. (Colour online) Bump functions.

This means that Ka solves the initial value problem (50) for most (x, y) ∈ Z∞ × Z∞. To be
precise, let us consider the error term induced by the approximate smoothing kernel Ka(t;x, y)
on Z∞,

−E(t;x, y) =

(
∂

∂t
+D2

)
Ka(t;x, y), (57)

where the operator D acts on the x-variable for any fixed t and y.

Lemma 10.7. The error term E(t;x, y) vanishes unless h(x) ∈ (1/7, 6/7) and the distance
between h(x) and h(y) is greater than 1/7. There are positive constants α, γ, and C such
that, for all t > 0 and all x, y ∈ Z∞, the following estimate holds:

|E(t;x, y)| 6 Ceαtt−n/2−1e−γ d
2(x,y)/t. (58)

Proof. Apply the formula of [Roe98, Lemma 7.13] to the spinor ϕjKj to obtain

D2(ϕjKj) = (∆ϕj)Kj − 2∇∇ϕjKj + ϕjD2Kj .

Since both Kj satisfy (50), we calculate

−E(t;x, y) =
∑
j

(∆ϕj(x)Kj(t;x, y)ψj(y)− 2∇∇ϕj(x)Kj(t;x, y)ψj(y)).

The claim now follows by applying (52) to K1 and K2 and (55) to ∇K2, and using the standard
estimates on ∇K1 on the closed manifold DZ. 2

Denote by K(t) = exp(−tD2) and Ka(t) the operators on Z∞ with smoothing kernels
K(t;x, y) and Ka(t;x, y), respectively. Because of the initial conditions K(t) → I and Ka(t) → I
as t → 0, we can write at the operator level

K(t)−Ka(t) =

∫ t

0

d

ds
(K(s) · Ka(t− s)) ds

=

∫ t

0

d

ds
K(s) · Ka(t− s) ds+

∫ t

0
K(s) · d

ds
Ka(t− s) ds.

Since
d

ds
K(s) = −D2K(s) = −K(s)D2,
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the above can be written as

K(t)−Ka(t) =

∫ t

0
K(s) ·

(
−D2 +

d

ds

)
Ka(t− s) ds

=

∫ t

0
K(s) ·

(
−D2 − d

d(t− s)

)
Ka(t− s) ds =

∫ t

0
K(s) · E(t− s) ds, (59)

where E(t) is the operator with the smoothing kernel E(t;x, y). At the level of smoothing kernels,
formula (59) implies that

K(t;x, x)−Ka(t;x, x) =

∫ t

0

∫
Z∞

K(s;x, z)E(t− s; z, x) dz ds.

The z-integration in this formula extends only to suppz E(t− s; z, x) ⊂ {z ∈ W0 | 1/7 6 h(z) 6
6/7}. In particular, there exists ε > 0 such that suppz E(t−s; z, x)⊂N , where N = {z ∈W0 | d(z,
∂W0) > ε}, and

K(t;x, x)−Ka(t;x, x) =

∫ t

0

∫
N
K(s;x, z)E(t− s; z, x) dz ds. (60)

Let z ∈ N and restrict ourselves to x ∈ Wk with k > 1. Then ε2 + d2(x,W0) 6 d2(x, z) and we
have the estimates

|K(s;x, z)| 6 Ceαss−n/2e−γε
2/se−γd

2(x,W0)/s 6 C1e
αse−γd

2(x,W0)/s

for all s > 0 (see (52)) and

|E(t− s; z, x)|6 Ceα(t−s)(t− s)−n/2−1e−γε
2/(t−s)e−γd

2(x,W0)/(t−s)

6 C2e
α(t−s)e−γd

2(x,W0)/(t−s)

for all s ∈ (0, t) (see (58)). Combining these estimates with (60), we obtain

|K(t;x, x)−Ka(t;x, x)|

6 C3e
αt

∫ t

0

∫
N
e−γd

2(x,W0)(1/s+1/(t−s)) dz ds 6 C4e
αte−γd

2(x,W0)/t,

where we used the inequality 1/t 6 1/s+ 1/(t− s), which obviously holds for all s ∈ (0, t). This
completes the proof of Proposition 10.6. 2

Corollary 10.8. For any given T > 0, there are positive constants γ and C such that, for all
t ∈ (0, T ] and all x ∈Wk with k > 1, one has

|K(t;x, x)− K̃(t;x, x)| 6 Ce−γd
2(x,W0)/t.

The following result is a slight generalization of the above corollary; it provides a good
estimate on |K(t;x, y)− K̃(t;x, y)| when (x, y) is not necessarily on the diagonal but sufficiently
close to it.

Proposition 10.9. For any given T > 0, there are positive constants γ and C such that, for all
t ∈ (0, T ] and all x ∈Wk and y ∈W` with k, ` > 1, one has

|K(t;x, y)− K̃(t;x, y)| 6 Ce−γd
2/t,

where d2 is the minimum of d2(x,W0) and d2(y,W0).
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Proof. We will essentially follow the proof of Proposition 10.6 with the factor eαt replaced by a
constant on the bounded time interval. For any x and y as in the statement of the proposition,
formula (59) implies that

K(t;x, y)−Ka(t;x, y) =

∫ t

0

∫
N
K(s;x, z)E(t− s; z, y) dz ds; (61)

compare with (60). We can estimate

|K(s;x, z)| 6 C1e
−γd2(x,W0)/s, |E(t− s; z, y)| 6 C2e

−γd2(y,W0)/(t−s)

and use the obvious inequalities

−d2(x,W0)/s− d2(y,W0)/(t− s) 6 −d2(1/s+ 1/(t− s)) 6 −d2/t

to arrive at the desired estimate. 2

Remark 10.10. For any integer m > 0, the statements of Corollary 10.8 and Proposition 10.9
also hold if K(t;x, y) and K̃(t;x, y) are the smoothing kernels of the operators Dm exp(−tD2)
on respectively Z∞ and X̃. The above proofs work with little change once we observe that both
K and K̃ solve the initial value problem (50) on their respective manifolds with matching initial
conditions.

10.5 Long-time behavior

In this section, we will assume that the L2-closure of D+(X̃) is invertible and derive certain
uniform estimates on heat kernels over Z∞.

Let K(t;x, y) be the smoothing kernel of the operator e−tD
−D+

on Z∞ and let
K0(t;x, y) = K(t;x, y) − KP+(x, y), where P+ is the projector onto (the finite-dimensional)
kerD+(Z∞).

Proposition 10.11. There exist positive constants µ and C such that, for all x, y ∈ Z∞ and all
t > 1,

|K0(t;x, y)| 6 Ce−µt.

Before we go on to prove this proposition, we will need a few preliminary results. The operator
D−D+ on Z∞ will be temporarily called Q; note that kerQ = kerD+. We will first estimate the
operator norm of e−tQ and then use the bounded geometry condition to derive the pointwise
estimate as claimed.

Lemma 10.12. Suppose that D+(X̃) is invertible; then Q has only a discrete spectrum near zero
(the ‘discrete spectrum’ here means ‘finitely many eigenvalues of finite multiplicity’).

Proof. Since the operator D+(X̃) has bounded inverse, one can rely on the usual parametrix
argument; see for instance [DW91, Lemma 6.2]. 2

Lemma 10.13. Let µ > 0 be the smallest non-zero eigenvalue of Q. For any integer k > 0, there
is a constant C1 > 0 such that ‖Qk(e−tQ − P+)‖ 6 C1e

−µt for all t > 1.

Proof. From functional analysis, we obtain ‖Qk(e−tQ − P+)‖ 6 sup{λke−λt | µ 6 λ}. This
supremum equals µke−µt if t > k/µ, and (k/t)ke−k otherwise. The result now follows. 2

This completes the derivation of the operator norm estimates. To pass to pointwise estimates,
we need two more lemmas.
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Lemma 10.14. For all even integers k > 0, the operator (I + Q)k/2 : L2
m+k(Z∞;S+) →

L2
m(Z∞;S+) is an isomorphism.

Proof. Since ker(I + Q) = 0, this is immediate if we define the Sobolev space L2
m(Z∞;S+) for

m > 0 as the completion of C∞0 (Z∞;S+) in the norm

‖s‖L2
m

= (‖s‖2 + ‖Ds‖2 + · · ·+ ‖Dms‖2)1/2,

and for m < 0 as the dual space of L2
−m(Z∞;S+); cf. [Roe88a, Definition 2.6]. This definition is

equivalent to the standard one because of the bounded geometry condition. 2

Lemma 10.15. For any k > n/2 and x ∈ Z∞, we have δx ∈ L2
−k(Z∞;S+). Moreover, there is a

constant C2 > 0 such that, for all x ∈ Z∞,

‖δx‖L2
−k

6 C2.

Proof. The first claim is standard. The second follows using the bounded geometry condition as
in the proof of [Roe88a, Proposition 5.4]. 2

Proof of Proposition 10.11. Let k > n/2 be an even integer. Since (I + Q)k/2 : L2(Z∞;S+) →

L2
−k(Z∞;S+) is an isomorphism, we conclude that

‖(I +Q)−k/2δx‖L2 6 C3‖δx‖L2
−k

and therefore
‖(I +Q)−k/2δx‖L2 6 C4.

Next, write

K0(t;x, y) = (δx, (e
−tQ − P+)δy) = (δx, (I +Q)−k/2(I +Q)k(e−tQ − P+)(I +Q)−k/2δy)

using the fact that Q and e−tQ − P+ commute with each other. Since I + Q is self-adjoint, we
can write

K0(t;x, y) = ((I +Q)−k/2δx, (I +Q)k(e−tQ − P+)(I +Q)−k/2δy)

and estimate
|K0(t;x, y)| 6 C2

4‖(I +Q)k(e−tQ − P+)‖ 6 Ce−µt. 2

Proposition 10.16. There exist positive constants µ and C such that, for all x, y ∈ X̃ and all
t > 1,

|K̃(t;x, y)| 6 Ce−µt.

Proof. This is identical to the proof of Proposition 10.11, keeping in mind that X̃ has bounded
geometry and that kerD+(X̃) = 0. 2

Proposition 10.17. There exist positive constants C and δ such that, for all x ∈W0 and k > 1,
one has

|KP+(x+ k, x+ k)| 6 Ce−δk.

Proof. Let ϕi be an orthonormal basis in kerD+(Z∞); then |KP+(x, x)| =
∑
|ϕi(x)|2. Let

h : Z∞ → R be a smooth function whose restriction to X̃+ has the property that h(x + 1) =
h(x) + 1 with respect to the covering transformation action. According to [MRS11], the
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invertibility of D+(X̃) implies that there is a small δ > 0 such that the spinors eδh(x)ϕi(x) form
a basis in ker(D+(Z∞)− δdh). The kernel of the projector onto ker(D+(Z∞)− δ df) is uniformly
bounded by [Roe88a, Proposition 2.9] and hence so are the spinors eδh(x)ϕi(x). Therefore, one
can find C > 0 such that

|KP+(x, x)| =
∑
|ϕi(x)|2 = e−2δh(x)

∑
|eδh(x)ϕi(x)|2 6 Ce−2δh(x),

and the result follows. 2
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