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Generalized Eigenfunctions and a Borel
Theorem on the Sierpinski Gasket

Kasso A. Okoudjou, Luke G. Rogers, and Robert S. Strichartz

Abstract. We prove there exist exponentially decaying generalized eigenfunctions on a blow-up of the

Sierpinski gasket with boundary. These are used to show a Borel-type theorem, specifically that for a

prescribed jet at the boundary point there is a smooth function having that jet.

1 Introduction

There is a well developed theory of analysis on certain types of fractal sets, of which
the Sierpinski gasket (SG) is the simplest non-trivial example (see [5,9]). In this the-

ory the fractals are viewed as limits of graphs, and notions analogous to the Dirichlet

energy and the Laplacian are constructed as renormalized limits of the correspond-
ing objects on the approximating graphs. The nature of this construction has natu-

rally led to extensive study of the eigenfunctions of this Laplacian, and to functional-
analytic notions based on the eigenfunctions. However, more recent work has exam-

ined other elementary functions on SG, including analogues of polynomials, analytic

functions and certain exponentials [2, 7]. A forthcoming paper will extend this in-
vestigation to study smooth bump functions and a method for partitioning smooth

functions subordinate to an open cover [8].

In the present work we prove there are exponentially decaying generalized eigen-
functions on a blow-up of SG with boundary (which we denote SG∞), proving:

Theorem 1.1 For each λ < 0 and j ∈ N there is a smooth function E
j
λ on SG∞ such

that for each j we have (∆ + λ)E
j
λ = − jE

j−1
λ . Moreover E

j
λ decays exponentially away

from the boundary point of SG∞ and satisfies |E j
λ| ≤ j!|λ|− j .

There are sufficiently many of these generalized eigenfunctions that they can be

used to prove a Borel-type theorem on SG∞, thereby answering a question asked in

[2] and [7] . Using the term jet for the sequence of values of the natural derivatives
at a junction point of SG, our result may be summarized as follows.

Theorem 1.2 Given an arbitrary jet there is a smooth function on SG∞ with that jet

at the boundary point.

Our motivation for studying generalized eigenfunctions and for proving Theorem

1.1 was to prove Theorem 1.2. The structure of the paper reflects this motivation.

Apart from some background in Section 2, our first results (in Section 3) are those

Received by the editors June 7, 2006; revised December 8, 2006.
Research of third author supported in part by the National Science Foundation, Grant DMS-0140194
AMS subject classification: Primary: 28A80; secondary: 31C45.
c©Canadian Mathematical Society 2009.

105

https://doi.org/10.4153/CMB-2009-013-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2009-013-3


106 K. A. Okoudjou, L. G. Rogers, and R. S. Strichartz

showing that Theorem 1.2 follows from Theorem 1.1 and some known results about
localized eigenfunctions on SG. Section 4 is then devoted to the construction of the

generalized eigenfunctions and the proof of Theorem 1.1.

2 Setting

We give a brief description of some parts of the theory of analysis on the Sierpinski

gasket, more details of which are in [9]. For the general theory of analysis on fractals
the standard reference is [5].

SG and SG∞

The Sierpinski gasket SG is the unique non-empty compact set in R
2 that is invariant

under the iterated function system fi =
1
2
(x + qi), i = 0, 1, 2, in the sense that

SG =
⋃2

i=0 fi(SG), where the points qi are the vertices of an equilateral triangle. For
m ∈ N and (i1, i2, . . . , im) ∈ {0, 1, 2}m we call fi1

◦ fi2
◦ · · · ◦ fim

(SG) a cell of level

m. The points V0 = {qi : j = 0, 1, 2} are the boundary of SG, and we view SG

as the limit of graphs Γm with vertices defined inductively by Vm =
⋃2

i=0 fi(Vm−1)
and edge relation x ∼m y if x and y are in the same m-cell. The set of all vertices is

V∞ =
⋃

m Vm, and the junction points are V∞ \V0. We let µ be the usual self-similar

probability measure on SG with µ( fw(SG)) = 3−|w|, and we also use µ to denote the
obvious extension to SG∞.

The infinite blow-up of SG with boundary point q0 is denoted SG∞ and defined
by

SG∞ =

∞
⋃

m=0

f ◦(−m)
0 (SG)

This is the simplest blow-up of SG; we could also consider arbitrary sequences of

blow-ups
⋃∞

m=1 f −1
i1

f −1
i2

· · · f −1
im

(SG), but all that have a boundary point necessarily

have {im} to be constant after some m0 and are isometric, so among those with a
boundary it suffices to consider SG∞ (see Lemma 2.3 in [11]). For results in this

paper it is crucial that we are on a blow-up with boundary. We refer to [10, 11] for
more information about blow-ups and the Laplacian on SG∞.

Laplacian, Derivatives, and Jets

Each graph approximation Γm of SG supports a graph Laplacian ∆m defined at non-
boundary points x ∈ Vm \V0, and we define a Laplacian ∆ at junction points of SG

as a renormalized limit of the graph Laplacians

∆mu(x) =

∑

y∼mx

(u(y) − u(x)),

∆u(x) =
3

2
lim

m→∞
5m

∆mu(x).(2.1)
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A continuous function u is in the domain of the Laplacian, u ∈ dom(∆), if there is a
continuous f such that the right side of (2.1) converges uniformly to f on V∞ \ V0.

Then we write ∆u = f , extending ∆u to all points of SG by continuity. The factor
3/2 in (2.1) is for consistency with an alternative definition of the Laplacian using a

renormalized Dirichlet energy (see [5, 9]). We make the obvious definition of ∆
ku

and dom(∆k), and call a function smooth if it is in dom(∆∞) = ∩k dom(∆k). One
additional property of the Laplacian that we will use extensively is its scaling; it is

immediate from (2.1) that for u ∈ dom(∆)

(2.2) ∆(u ◦ f −1
0 ) = 5(∆u) ◦ f −1

0 on f0(SG)

In addition to the Laplacian there are two derivatives at boundary points, the nor-

mal derivative ∂n and tangential derivative ∂T , defined by

∂nu(qi) = lim
m→∞

( 5

3

)m
(

2u(qi) − u( f ◦m
j (qi+1)) − u( f ◦m

j (qi+2))
)

(2.3)

∂Tu(qi) = lim
m→∞

5m
(

u( f ◦m
j (q j+1)) − u( f ◦m

j (q j+2))
)

(2.4)

(with qi+3 = qi). The former exists for any u ∈ dom(∆), and the latter exists under

the additional assumption that ∆u is Hölder continuous. Both may be localized

to boundary points of cells. The normal derivatives are much better understood
than the tangential derivatives, and have considerable application. For this paper

their important feature is the matching condition for the normal derivatives: if u ∈
dom(∆) then at any junction point of two cells the normal derivatives corresponding
to these cells sum to zero. Conversely, if u is continuous and ∆u = f on each m-cell

then ∆u = f on SG if and only if f is continuous, and the matching condition holds
at each point of Vm \V0.

At a boundary point q we will call the values of ∆
ku(q), ∂n∆

ku(q) and ∂T∆
ku(q)

the Laplacian powers, normal derivatives and tangential derivatives, respectively. The
j-jet of u at q is

(

u(q), ∂nu(q), ∂Tu(q), . . . , ∆ ju(q), ∂n∆
ju(q), ∂T∆

ju(q)
)

and the

infinite jet is the corresponding sequence of Laplacian powers and derivatives.

Spectral decimation

A useful feature of the Laplacian on SG and SG∞ is that restricting a Laplacian eigen-

function Eλ to the graph approximation Γm produces an eigenfunction of the graph

Laplacian, with a shift in the eigenvalue. This phenomenon is known as spectral deci-
mation [3,4,11]. Specifically, if (∆+λ)Eλ = 0 on SG or SG∞, then (∆m +λm)Eλ = 0

on Γm, where

λm−1 = λm(5 − λm)(2.5)

λ =
3

2
lim

m→∞
5mλm(2.6)

Eλ(yi) =
2Eλ(xi) + (4 − λm)(Eλ(xi+1) + Eλ(xi+2))

(2 − λm)(5 − λm)
(2.7)
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in which the points xi are the vertices of an (m − 1)-cell, and each yi is the point
from Vm opposite to xi as shown in Figure 1. For proofs we refer to [3] or [9]; an

explanation of spectral decimation in a more general context is found in [6].
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Figure 1: Points xi in Vm−1 and yi in Vm.

We will need one technical result about spectral decimation on SG that is well

known but for which there does not appear to be a proof in the literature.

Lemma 2.1 For λ < 0 there is an entire function Ψ such that λm = Ψ(5−mλ).

Proof Considering (2.5) we define functions by 2φ±(ζ) = 5 ±
√

25 − 4ζ, so that

λm is one of φ±(λm−1). Observe that if λm−1 ≥ 0 then λm ≥ 0, so from (2.6) and
λ < 0 we must have λm < 0 and λm = φ−(λm−1) for all m. The renormalized

limit Φ(ζ) =
3
2

limm→∞ 5mφm
−(ζ) is analytic in a neighborhood of the origin and

has Φ
′(0) = 3/2 by virtue of the fact that φ−(ζ) = ζ/5 + O(ζ2) for sufficiently

small ζ. It follows that Φ has an analytic inverse Ψ(ζ) = Φ
−1(ζ) =

∑∞
k=0 αkζ

k in a

neighborhood of 0.

Using (2.5) and (2.6) we find Ψ(5−mλ) = λm for all sufficiently small 5−mλ. This

gives a recursion for the coefficients αk, beginning with α0 = 0, α1 = 2/3 and

continuing according to

(2.8) (5k − 5)αk = −
k−1
∑

l=1

αlαk−l

for k ≥ 2. An almost identical recursion appears for a different purpose in [7] (as
Equation 2.9 and in Theorem 2.7), and their argument shows that

|αk| ≤ C(k!)− log 5/ log 2.

It follows immediately that Ψ is entire, while λm = Ψ(5−mλ) is true by construction.
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3 The Borel Theorem

In this section we prove Theorem 1.2 under the assumption of Theorem 1.1. First

we construct smooth functions with finitely many prescribed values of the Laplacian

powers and tangential derivatives at q0 using known results about the existence of
localized eigenfunctions. Then we use Theorem 1.1 and linear algebra to prove that

there are smooth functions with finitely many prescribed normal derivatives. Finally
we state a precise version of Theorem 1.2 and show that its validity for finite jets gives

the full result by a scaling and convergence argument.

Localized Eigenfunctions

A curious feature of many highly symmetric fractals is that their Laplacians have

localized eigenfunctions. We will not need the details of the theory, for which we
refer to [1, 5], but only the existence of two specific eigenfunctions u1 and u2 on SG.

The values of u1 on V1 and u2 on V2 are shown in Figure 2. From the values shown
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Figure 2: The functions u1 and u2.

we can compute u1 and u2 at any scale by the method of spectral decimation given
in (2.5)–(2.7) (with the caveat that for u1 the positive root must be taken at the first

step of the recursion (2.5)). What is important here is that the normal derivatives of

both ui vanish at the points q1 and q2, which we see from (2.3) and the antisymmetry
of the ui on the cells f1(SG) and f2(SG). Since the ui are eigenfunctions, we then find

that all of the values ∆
kui and ∂n∆

kui vanish at q1 and q2, and (2.2) shows the same

is true for ui ◦ f −m
0 at f m

0 (q1) and f m
0 (q2) for any m. It follows from the matching

condition that

ui,m =

{

ui ◦ f −m
0 on f ◦m

0 (SG),

0 elsewhere,

are smooth functions, and therefore are Laplacian eigenfunctions with eigenvalues
−5mλi . For obvious reasons they are called localized eigenfunctions.

The jets of the ui,m at q0 are easily computed. The eigenfunction equations ∆ui =

−λiui give the higher order terms from the initial ones, so by simple algebra from
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(2.7) and some symmetry arguments,

∆
kui,m(q0) =

{

2(−λ1)k5km i = 1,

0 i = 2,

∂T∆
kui,m(q0) =

{

0 i = 1,

2(−λ2)k5km i = 2,

∂n∆
kui,m(q0) = 0 i = 1, 2.

With these functions as building blocks we show that there is a smooth function with

finitely prescribed values of the Laplacian powers and tangential derivatives at q0, and
whose normal derivatives are all zero.

Lemma 3.1 For n ∈ N and values ζ0, . . . , ζn and θ0, . . . , θn there is u ∈ dom(∆∞)
such that ∆

ku(q0) = ζk, ∂n∆
ku(q0) = 0, and ∂T∆

ku(q0) = θk for all 0 ≤ k ≤ n.

Proof We observe that the vectors

(

u1,m(q0), ∆u1,m(q0), . . . , ∆nu1,m(q0)
)

= 2
(

1, (−λ1)5m, . . . , (−λ1)n5nm
)

are linearly independent with respect to m. A similar result is true for the vector of

tangential derivatives of u2,m. We may then obtain the desired u as a linear combina-
tion of the functions ui,m for 0 ≤ m ≤ n by linear algebra.

We remark that this method cannot be applied to prescribe values of the normal
derivatives at q0 using localized eigenfunctions. The structure of the localized eigen-

functions is well understood (see [9]), and non-zero normal derivatives can occur

only in “closed loops” circling the holes in the gasket. As each junction point cor-
responds to a hole of precisely one size, our scaling arguments are not applicable.

Similar arguments are needed in Lemma 3.4 below, so any proof of Theorem 1.2

using only localized eigenfunctions would need to be quite different from ours.

Generalized Eigenfunctions and Normal Derivatives

The generalized eigenfunctions produced in Theorem 1.1 are a sufficiently rich class

that we can use a finite linear combination of them to match finitely many prescribed
normal derivatives at q0.

Lemma 3.2 For n ∈ N, λ < 0, and values η0, . . . , ηn, there is u ∈ dom(∆∞) which

is a finite linear combination of the E
j
λ, 0 ≤ j ≤ n, and has ∂n∆

ku(q0) = ηk for all

0 ≤ k ≤ n.

Proof Let a j,k = ∂n∆
kE

j
λ(q0). Clearly, it suffices to show that the matrix

[

a j,k

] n

j,k=0

is invertible, so we examine its determinant. Writing the generalized eigenfunction

equation (∆ + λ)E
j
λ = − jE

j−1
λ in terms of a j,k we have a j,k + λa j,k−1 = − ja j−1,k−1,

which suggests a column operation on [a j,k]. For all columns k ≥ 1 we replace

a j,k with − ja j−1,k−1, which makes the first row zero except in the first place simply
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because j = 0 on this row. For concreteness, the result of this computation for the
determinant in the case n = 2 is given below.

∣

∣

∣

∣

∣

∣

a0,0 a0,1 a0,2

a1,0 a1,1 a1,2

a2,0 a2,1 a2,2

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

a0,0 0 0

a1,0 −a0,0 −a0,1

a2,0 −2a1,0 −2a1,1

∣

∣

∣

∣

∣

∣

= a0,0

∣

∣

∣

∣

−a0,0 −a0,1

−2a1,0 −2a1,1

∣

∣

∣

∣

.

This operation can be repeated inductively, because it shows

det
[

a j,k

] n

0
= a0,0 det

[

− ja j−1,k−1

] n

1
= a0,0 det

[

−( j + 1)a j,k

] n−1

0
,

and the only change to the matrix at each stage is to multiply each row by a constant

and reduce the degree, so the same column operations apply each time. We conclude

that det
[

a j,k

] n

0
= (−1)nn!an+1

0,0 and is non-zero by (4.2) below.

Corollary 3.3 Given values (ζk, ηk, θk) for 0 ≤ k ≤ n, there is a finite linear combi-

nation u of localized eigenfunctions and generalized eigenfunctions such that ∆
ku(q0) =

ζk, ∂n∆
ku(q0) = ηk and ∂T∆

ku(q0) = θk for all 0 ≤ k ≤ n.

Proof Apply Lemma 3.2 to match the normal derivatives and then Lemma 3.1 to

correct the Laplacian powers and tangential derivatives without affecting the values
of the normal derivatives.

Proof of the Borel Theorem

Corollary 3.3 supplies the natural building blocks for obtaining a smooth function

with any given jet at q0. We define functions F j from which we will determine the
Laplacian powers, G j for the normal derivatives and H j for the tangential derivatives,

by requiring that for all 0 ≤ k ≤ j,

∆
kF j(q0) = δ j,k, ∂n∆

kF j(q0) = 0, ∂T∆
kF j(q0) = 0,

∆
kG j(q0) = 0, ∂n∆

kG j(q0) = δ j,k, ∂T∆
kG j(q0) = 0,

∆
kH j(q0) = 0, ∂n∆

kH j(q0) = 0, ∂T∆
kH j(q0) = δ j,k,

where δ j,k is the Kronecker delta. The natural goal is to construct a smooth func-

tion with prescribed (infinite) jet by using the terms of the jet as coefficients in a
series with functions like the F j , G j and H j . To make the series converge to a smooth

function we will need some estimates on these functions and their Laplacian pow-

ers. What we know so far is that they are finite linear combinations of the localized
eigenfunctions ui,m with 0 ≤ m ≤ j and i = 1, 2, and the generalized eigenfunctions

Ek
λ for a fixed λ and 0 ≤ k ≤ j. All of these functions and their Laplacian powers of

order at most j are bounded: for the localized eigenfunctions this is obvious, while
for the generalized eigenfunctions it follows from the bound in Theorem 1.1 and the

recursion (4.3). We conclude that for each j there is a constant C( j) such that for all
0 ≤ k ≤ j,

|∆kF j| ≤ C( j), |∆kG j| ≤ C( j), |∆kH j | ≤ C( j),

and turn now to a scaling argument that allows us to make these as small as desired.
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Lemma 3.4 If m ∈ N then the functions

F j,m = 5− jmF j ◦ f −m
0 , G j,m = 5− jmG j ◦ f −m

0 , H j,m = 5− jmH j ◦ f −m
0 ,

have the same j-jets at q0 as F j , G j and H j respectively, but for 0 ≤ k ≤ j they satisfy

the following estimates on SG∞

|∆kF j,m| ≤ C( j)5(k− j)m, |∆kG j,m| ≤ C( j)5(k− j)m, |∆kH j,m| ≤ C( j)5(k− j)m.

Proof The result is an elementary consequence of the scaling property of the Lapla-
cian. By induction from (2.2) we see that ∆

k(u ◦ f −m
0 ) = 5km(∆ku) ◦ f −m

0 . Both

statements of the lemma are immediate consequences of this and the definitions (2.3)
and (2.4) of the normal and tangential derivatives.

Proof of Theorem 1.2 We are supplied with values (ζk, ηk, θk) for k ∈ N and seek a
smooth function u such that ∆

ku(q0) = ζk, ∂n∆
ku(q0) = ηk and ∂T∆

ku(q0) = θk

for all k. This will be certainly be the case for the function

(3.1) u =

∞
∑

j=0

(

ζ jF j,m j
+ η jG j,m j

+ θ jH j,m j

)

provided that applying any power of the Laplacian yields a uniformly convergent se-

ries. However by Lemma 3.4 we may choose the sequence m j such that terms after the
j-th have only a small effect on the Laplacian powers of order at most j. Specifically,

given any ǫ > 0 we may make m j so large that for 0 ≤ k ≤ j − 1,

∣

∣

∣
∆

k
(

ζ j5
− jm j F j,m j

+ η j5
− jm j G j,m j

+ θ j5
− jm j H j,m j

)

∣

∣

∣

≤ C( j)5(k− j)m j max
{

|ζk|, |ηk|, |θk| : 0 ≤ k ≤ j − 1
}

≤ ǫ2k− j ,

providing a bound on the tail of the series obtained by applying ∆
k to (3.1). We

conclude that u is smooth, that it has the desired jet at q0, and moreover that most of
the contribution to the k-th jet is from the first k terms in the sum

∣

∣∆
ku

∣

∣ ≤ ǫ + C(k)

k
∑

j=0

(

|ζ j | + |η j | + |θ j |
)

.

4 Generalized Eigenfunctions with Decay

In this section we prove Theorem 1.1, showing that there are exponentially decaying

generalized eigenfunctions E
j
λ of the Laplacian on SG∞. Our results depend on work

in [7], where the negative-eigenvalue eigenfunctions of −∆ were studied using spec-

tral decimation. Using notation from (2.5), the results we need may be summarized

as follows.
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Proposition 4.1 ([7], Section 6) For each λ < 0 there is an eigenfunction Eλ on

SG∞ which is symmetrical under the reflection that fixes q0 and exchanges q1 with q2,

and which satisfies (∆ + λ)Eλ = 0. There is an explicit formula for Eλ at the points

zm = f −m
0 (q1)

(4.1) Eλ(zm) = 1 − λm

4
+

λm

4

∞
∏

j=0

(

1 +
4

2 − λm− j

)

which is uniformly continuous on compacta in Vm, and Eλ is the limit of this on SG∞.

These functions have exponential decay |Eλ(zm)| = O(|λm|−1) = O(2−2−m

) as m →
−∞, and the normal derivative at q0 is given by

(4.2) ∂nEλ(q0) = λ
∞
∏

m=0

(

1 +
4

2 − λ−m

)

∞
∏

n=1

( 6 − λn

6 − 3λn

)

> 0.

Our construction is motivated as follows. Formally setting E
j
λ =

(

d
dλ

) j
Eλ we find

that the E
j
λ satisfy the generalized eigenfunction equation

(4.3) (∆ + λ)E
j
λ = − jE

j−1
λ ,

and we hope that the decay of Eλ will ensure exponential decay for E
j
λ. This argument

is made rigorous by Lemma 4.2, but it will initially be simpler to construct the E
j
λ

from (4.3) than by proving Eλ can be differentiated with respect to λ.

Observe that on SG we can inductively obtain solutions E
j
λ of (4.3) for j ∈ N

starting with E0
λ = Eλ, merely because λ < 0 and the spectrum of ∆ is positive. The

resulting functions are clearly in dom(∆∞) and depend on the boundary data we

assign. Guided by the formal idea that E
j
λ should be

(

d
dλ

) j
Eλ, we set

(4.4) E
j
λ(z) =

( d

dλ

) j

Eλ(z)

at each of the three boundary points z = q0, q1, q2. The definition is legitimate be-

cause λm = Ψ(5−mλ) and Ψ is entire (Lemma 2.1), so the rapid growth of λm ensures

the expression (4.1) is analytic with respect to λ.

Lemma 4.2 Using the supremum norm, the functions E
j
λ are differentiable with re-

spect to λ and d
dλ E

j−1
λ = E

j
λ.

Proof We require a standard estimate (like Lemma 5.2.8 of [5]). Let u be in dom(∆)

and subtract the harmonic function u0 with the same boundary values. It is well

known that ‖u − u0‖∞ ≤ c‖∆u‖2, and by the maximum principle we conclude
‖u‖∞ ≤ c‖∆u‖2 + maxV0

|u|. Let λ < 0, and let κ1 > 0 be the first Dirichlet

eigenvalue of −∆. The spectral representation of ∆ immediately shows

(4.5) ‖u‖∞ ≤ c
(

1 +
|λ|
κ1

)

∥

∥ (∆ + λ)u
∥

∥

2
+ max

V0

|u|.
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Now suppose inductively that the lemma is true up to j − 1. For the difference

between E
j
λ and the Newton quotient for the derivative of E

j−1
λ , we have

(∆ + λ)
(

E
j
λ − 1

t

(

E
j−1
λ+t − E

j−1
λ

)

)

= − jE
j−1
λ − 1

t

(

−( j − 1)E
j−2
λ+t − tE

j−1
λ+t + ( j − 1)E

j−2
λ

)

=
(

E
j−1
λ+t − E

j−1
λ

)

+ ( j − 1)
1

t

(

E
j−2
λ+t − E

j−2
λ

)

− ( j − 1)E
j−1
λ

→ 0 in L2(SG)

by induction. From (4.5) and the fact that the boundary data varies analytically with

λ, we conclude
∥

∥

∥
E

j
λ −

1

t

(

E
j−1
λ+t − E

j−1
λ

)

∥

∥

∥

∞
→ 0.

The same reasoning reduces the base case of the induction to showing ‖Eλ+t−Eλ‖2 →
0, which is a consequence of the fact (from Proposition 4.1) that Eλ is uniformly

approximated by the analytic function of λ in (4.1).

With this lemma in hand we can describe the natural scaling behavior of the E
j
λ.

From (2.2) we know that E5λ = Eλ ◦ f −1
0 , whence on f0(SG)

E
j
λ ◦ f −1

0 =

( d

dλ

) j

Eλ ◦ f −1
0 =

( d

dλ

) j

E5λ = 5 jE
j
5λ,

and therefore, the natural definition of E
j
λ on f −1

0 (SG) is to set E
j
λ = 5 jE

j
5λ ◦ f0.

Inductively, for each n ∈ N we let

E
j
λ = 5 jnE5nλ ◦ f n

0 on f −n
0 (SG)

to extend E
j
λ to all of SG∞. We remark that this gives the same result as solving (4.3)

on f −n
0 (SG) with boundary data (4.4) at the points z = q0, f −n

0 (q1), f −n
0 (z2).

Combining the above results we have proven the existence statements of Theorem

1.1. What remains to be proven is the content of the following lemma, which is
regrettably but perhaps unavoidably technical.

Lemma 4.3 The generalized eigenfunctions satisfy |E j
λ| ≤ j!|λ|− j and have decay

∣

∣E
j
λ(zm)

∣

∣ = O
(

2−2−m)

as m → −∞.

Proof We first prove the decay. Recall that the recursion (2.5) guarantees |λm| ≥
C22−m

as m → −∞. Set β
j
m = (d/dλ) jλm. It is elementary to verify that |β j

m| =

O(|λm|) as m → −∞ from the definition of Ψ and the recursion (2.8). Using the

explicit formula (4.1) we write Eλ(zm) = 1 + (Pm − λm)/4, where

Pm = λm

∞
∏

n=0

(

1 +
4

2 − λm−n

)

,
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and define S
j
m by (d/dλ) jPm = PmS

j
m. Examining S1

m we have

S1
m =

β1
m

λm
+

∞
∑

n=0

4β1
m−n

(2 − λm−n)(6 − λm−n)

=
β1

m

λm
+

4β1
m

λ2
m

+ O(λ−2
m ) +

∞
∑

n=1

4β1
m−n

(2 − λm−n)(6 − λm−n)

=
β1

m

λm
+

4β1
m

λ2
m

+ O(λ−2
m ),

where the penultimate estimate uses the series expansion for 1/(2 − λm)(6 − λm),

and the final one uses the structure of the series. This series consists of terms which
are rational functions of λm−n and β1

m−n, and in which the degree of the denomina-

tor strictly exceeds that of the numerator. The rapid growth of |λm| ensures this is

bounded by a multiple of the first term, which is O(|λm−1|−1) = O(|λm|−2).
We will call a series in which the terms are rational functions that depend on

λm−n, β
1
m−n, . . . , β

j
m for n ≥ 1, but must always have the degree of the denominator

to be strictly greater than that of the numerator, a good rational series or GRS. Notice
that the derivative of a GRS is a GRS, and that the product of a GRS with a GRS or

a rational function in which the numerator has the same or lesser degree than the

denominator is also a GRS. Our estimates on λm−n and β1
m−n guarantee that any

GRS sums to a value which is O(|λm|−2).

Using induction over j we see that the function S
j
m − β

j
m/λm − 4β

j
m/λ2

m is always
a GRS, and so is O(|λm|−2). Indeed, this is true for j = 1, and if we assume it to be

true for j − 1 and apply the recursion S
j
m = S1

mS
j−1
m + (dS

j−1
m /dλ), then both

S1
mS j−1,m

=

(

β1
m

λm
+

4β1
m

λ2
m

+ GRS

)(

β
j−1
m

λm
+

4β
j−1
m

λ2
m

+ GRS

)

=
β1

mβ
j−1
m

λ2
m

+
8β1

mβ
j−1
m

λ3
m

+ GRS

and

dS j−1,m

dλ
=

β
j
m

λm
− β

j−1
m β1

m

λ2
m

+
4β

j
m

λ2
m

− 8β
j−1
m β1

m

λ3
m

+ GRS

hold, so we may sum them to complete the induction. In particular we conclude that

4E
j
λ(zm) =

d jPm

dλ j
− β j

m

= PmS j
m − β j

m

= Pm

(

S j
m − β

j
m

λm
− 4β

j
m

λ2
m

)

+
β

j
m

λm
(Pm − λm + 4) +

4β
j
m

λ2
m

(Pm − λm)

= O(|λm|−1) = O(2−2−m

),
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where in the last step we used that the first bracketed term is O(|λm|−2), and that
Pm = O(|λm|), (Pm − λm + 4) = O(|λm|−1), and (Pm − λm) = O(1), all of which are

from the fact that |Eλ(zm)| = O(|λm|−1) (see Proposition 4.1) and the definition of
Pm.

Now that we know |E j
λ| has exponential decay it must be the case that its maximum

occurs at an interior point of some f −m
0 (SG). It is well known (see [7] Proposition

2.11) that E
j
λ and ∆E

j
λ must have opposite signs at any local extreme point of |E j

λ|.
Since ∆E

j
λ = −λE

j
λ − jE

j−1
λ and λ < 0, we find that sgn(∆E

j
λ) = − sgn(E

j
λ) implies

|λE
j
λ| ≤ | jE

j−1
λ |. The bound on E

j
λ follows by induction and the fact that |Eλ| ≤

|Eλ(q0)| = 1.
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