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Abstract

We study a natural generalization of the noncrossing relation between pairs of elements in [n] to
k-tuples in [n] that was first considered by Petersen et al. [J. Algebra 324(5) (2010), 951–969].
We give an alternative approach to their result that the flag simplicial complex on

([n]
k

)
induced

by this relation is a regular, unimodular and flag triangulation of the order polytope of the poset
given by the product [k] × [n − k] of two chains (also called Gelfand–Tsetlin polytope), and that it
is the join of a simplex and a sphere (that is, it is a Gorenstein triangulation). We then observe that
this already implies the existence of a flag simplicial polytope generalizing the dual associahedron,
whose Stanley–Reisner ideal is an initial ideal of the Grassmann–Plücker ideal, while previous
constructions of such a polytope did not guarantee flagness nor reduced to the dual associahedron
for k = 2. On our way we provide general results about order polytopes and their triangulations.
We call the simplicial complex the noncrossing complex, and the polytope derived from it the
dual Grassmann associahedron. We extend results of Petersen et al. [J. Algebra 324(5) (2010),
951–969] showing that the noncrossing complex and the Grassmann associahedron naturally reflect
the relations between Grassmannians with different parameters, in particular the isomorphism
Gk,n

∼= Gn−k,n . Moreover, our approach allows us to show that the adjacency graph of the
noncrossing complex admits a natural acyclic orientation that allows us to define a Grassmann–
Tamari order on maximal noncrossing families. Finally, we look at the precise relation of the
noncrossing complex and the weak separability complex of Leclerc and Zelevinsky [Amer. Math.
Soc. Transl. 181(2) (1998), 85–108]; see also Scott [J. Algebra 290(1) (2005), 204–220] among
others. We show that the weak separability complex is not only a subcomplex of the noncrossing
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complex as noted by Petersen et al. [J. Algebra 324(5) (2010), 951–969] but actually its cyclically
invariant part.

2010 Mathematics Subject Classification: 52B20 (primary); 06A11 (secondary)

1. Introduction and main results

Let [n] denote the (ordered) set {1, . . . , n} of the first n positive integers. Two
pairs (i < i ′) and ( j < j ′) with i 6 j are said to nest if i < j < j ′ < i ′ and cross
if i < j < i ′ < j ′. In other words, they nest and cross if the two arcs nest and,
respectively, cross in the following picture,

1 · · · i < j < j ′ < i ′ · · · n 1 · · · i < j < i ′ < j ′ · · · n.

Nestings and crossings have been intensively studied and generalized in the
literature, see for example [Ath98, PPS10, Pyl09, RS10]. One important context
in which they appear are two pure and flag simplicial complexes ∆NN

n and ∆NC
n .

Recall that a flag simplicial complex is the complex of all vertex sets of cliques
of some graph.∆NN

n is the flag complex having the arcs 1 6 i < j 6 n as vertices
and pairs of nonnesting arcs as edges, while ∆NC

n is the flag complex with the
same vertices and pairs of noncrossing arcs as edges.

It is not hard to see that the maximal faces of ∆NN
n are parametrized by Dyck

paths of length 2(n − 2), while the maximal faces of ∆NC
n are parametrized by

triangulations of a convex n-gon. Thus both complexes have the same number of
maximal faces, the (n−2)nd Catalan number 1/(n − 1)

(2n−4
n−2

)
. Moreover, it can be

shown that their face vectors coincide and that both are balls of dimension 2n− 4.
In addition, the complex∆NC

n is the join of an (n−1)-dimensional simplex and an
ubiquitous (n − 4)-dimensional polytopal sphere ∆̃NC

n , the (dual) associahedron.

1.1. The nonnesting complex. The following generalization of the nonnest-
ing complex is well known. Let Vk,n denote the set of all vectors (i1, . . . , ik),
1 6 i1 < · · · < ik 6 n, of length k with entries in [n].

DEFINITION 1.1. Two vectors I = (i1, . . . , ik) and J = ( j1, . . . , jk) in Vk,n are
nonnesting if for all indices a < b the arcs (ia < ib) and ( ja < jb) are nonnesting.
The (multidimensional) nonnesting complex ∆NN

k,n is the flag simplicial complex
with vertices Vk,n and with edges being the nonnesting pairs of vertices.

By definition, we have ∆NN
2,n = ∆NN

n . Equipped with the component-wise
order, Vk,n becomes a distributive lattice. Moreover, I, J ∈ Vk,n are nonnesting
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Figure 1. An order filter in the poset P3,7, and the corresponding monotone path in
the dual grid. Since the second, fourth and fifth steps on the path are going south,
the corresponding element of V3,7 is (2, 4, 5).

if and only if I > J or J > I component-wise. That is, ∆NN
k,n is the order complex

of the distributive lattice Vk,n .
By Birkhoff’s representation theorem for distributive lattices [Bir37], there is

a poset P such that the distributive lattice Vk,n is isomorphic to the lattice of order
filters of P . Remember that an order filter in P is a subset F ⊂ P satisfying
a ∈ F, a <P b⇒ b ∈ F. It is easy to see that, indeed, Vk,n is the lattice of filters
in the product poset Pk,n of a k-chain and an (n − k)-chain. A graphical way to
set up this bijection between vectors in Vk,n and order filters in Pk,n is illustrated
in Figure 1. To each filter in Pk,n associate a monotone lattice path from (0, 0) to
(k, n − k) in a grid ‘dual’ to the Hasse diagram of Pk,n . The path is defined by
separating the elements in the filter from those not in the filter. Such paths biject
to Vk,n in the usual way by selecting the indices of steps in the direction of the first
coordinate (the south direction in the picture). As long as there is no ambiguity,
we thus consider elements of Vk,n as increasing k-tuples, as k-subsets, or as order
filters in Pk,n .

By a result of Stanley [Sta86, Section 5], ∆NN
k,n is the standard triangulation of

the order polytope Ok,n ⊆ [0, 1]k×(n−k) of Pk,n , where a vector I ∈ Vk,n is mapped
to the characteristic vector χI ∈ NPk,n of the corresponding order filter. We refer
to Section 1.4.4 for basic facts about order polytopes and their triangulations.
It follows that ∆NN

k,n is a simplicial ball of dimension k(n − k). Through this
connection, its h-vector is linked to the Hilbert series of the coordinate ring of
the Grassmannian Gk,n of k-planes in Cn . For details on this connection we refer
to Section 1.3.

Linear extensions of Pk,n , that is, maximal faces of ∆NN
k,n , are in bijection with

standard tableaux of shape k × (n − k). Here, a tableau of shape k × (n − k) is
a matrix in Nk×(n−k) that is weakly increasing along rows from left to right and
along columns from bottom to top. Equivalently, it is a weakly order preserving
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Figure 2. Parts of the nonnesting complex ∆NN
2,5 of the noncrossing complex ∆NC

2,5.

map Pk,n → N. We denote the set of all tableaux of this shape by Tk,n . A tableau
is called standard if it contains every integer 1 through k(n − k) exactly once.
An application of the hook length formula implies that maximal faces of ∆NN

k,n are
counted by the (n − k, k)th multidimensional Catalan number

Catn−k,k := 0!1! · · · (k − 1)!
(n − 1)!(n − 2)! · · · (n − k)! (k(n − k))!.

These numbers were studied for example in [GP13, Sul04], see as well [Slo13,
Seq. A060854]. Denote the h-vector of ∆NN

k,n by (h(k,n)0 , . . . , h(k,n)n(n−k)). It follows
from the connection of ∆NN

k,n to the Hilbert series of the Grassmannian, and it was
also observed in [Sul04] going back to MacMahon’s study of plane partitions,
that its entries are the multidimensional Narayana numbers. We refer to [Sul04]
for an explicit formula of these numbers, which can be combinatorially defined
in terms of standard tableaux of shape k × (n − k) as follows. Call an integer
a ∈ [k(n− k)− 1] a peak of a standard tableau T if a+ 1 is placed in a lower row
than a. Then, h(k,n)i equals the number of standard tableaux with exactly i peaks.
This combinatorial interpretation implies in particular that

h(k,n)i =
{

1 if i = k(n − k)− n + 1
0 if i > k(n − k)− n + 1

. (1)

EXAMPLE 1.2. For n = 5 and k = 2, the vertices of the nonnesting complex∆NN
2,5

are given by V2,5 = {12, 13, 14, 15, 23, 24, 25, 34, 35, 45}, and the 5 maximal
faces are given by the join of the simplex spanned by {12, 13, 35, 45} and the 5
faces

{{14, 15, 25}, {14, 24, 25}, {23, 24, 25}, {23, 24, 34}, {14, 24, 34}}.
This subcomplex is shown in Figure 2 on the left.

1.2. The noncrossing complex. The reformulation of the nonnesting complex
as the standard triangulation of Ok,n raises the question whether an analogous
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construction of a multidimensional noncrossing complex has interesting
properties as well. The main object of study in this paper is the following
slight modification of Definition 1.1, introduced in [PPS10].

DEFINITION 1.3. Two vectors I = (i1, . . . , ik) and J = ( j1, . . . , jk) in Vk,n

are noncrossing if for all indices a < b with i` = j` for a < ` < b, the arcs
(ia < ib) and ( ja < jb) do not cross. The (multidimensional) noncrossing complex
∆NC

k,n is the flag simplicial complex with vertices Vk,n and with edges being the
noncrossing pairs of vertices.

REMARK 1.4. The definition in [PPS10] allows the vectors I and J to have
different lengths, and restricts to our definition in the case of equal lengths. We
discuss this further in Section 1.4.1.

EXAMPLE 1.5. For n = 5 and k = 2, the vertices of the noncrossing complex
∆NC

2,5 are again given by V2,5 = {12, 13, 14, 15, 23, 24, 25, 34, 35, 45}, and the 5
maximal faces are given by the join of the simplex spanned by {12, 23, 34, 45, 15}
and the 5 faces

{{14, 24}, {24, 25}, {13, 25}, {13, 35}, {14, 35}}.

The noncrossing complex is shown in Figure 2 on the right, where the circle
indicates the simplex spanned by {12, 23, 34, 45, 15}.

REMARK 1.6. The reader may wonder why in the noncrossing world one requires
the noncrossing property only for some pairs of coordinates a < b, while in the
nonnesting world the nonnesting property is required for all pairs. One answer
is that the direct noncrossing analogue of Definition 1.1 does not even yield
a pure complex. But another answer is that it would not make a difference
in Definition 1.1 to require the condition only for pairs with i` = j` for
a < ` < b. All other pairs would automatically be nonnesting, thanks to the
following transitivity of nonnestingness: let a < b < c and suppose that the arcs
(ia < ib) and ( ja < jb) are nonnesting, and the arcs (ib < ic) and ( jb < jc) are
nonnesting as well. Then the arcs (ia < ic) and ( ja < jc) are also nonnesting.

The main properties of ∆NC
k,n are summarized in the following statement.

THEOREM 1.7. The noncrossing complex ∆NC
k,n is a flag, regular, unimodular and

Gorenstein triangulation of the order polytope Ok,n . In particular, ∆NC
k,n and ∆NN

k,n
have the same f - and h-vectors.
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This statement, of which we give an independent proof, is already contained
in [PPS10] in the following way. There, the order polytope Ok,n appears as
the Gelfand–Tsetlin polytope of a particular shape (a rectangle). Theorem 8.1
from [PPS10] says that ∆NC

k,n is a regular triangulation of it, and Theorem 8.7 that
it is Gorenstein. Unimodularity is mentioned in the proof of Corollary 8.2.

The claim that ∆NC
k,n is ‘in some respects nicer’ than ∆NN

k,n is justified by the
word ‘Gorenstein’ in the statement, which fails for ∆NN

k,n . Recall that a Gorenstein
triangulation of a polytope is one that decomposes as the join of a simplex and
a sphere (see Section 1.4.4 for details on such triangulations). This property is
related to the last of the following list of purely combinatorial properties of ∆NC

k,n ,
which generalize well known properties of the dual associahedron.

PROPOSITION 1.8. The complex ∆NC
k,n has the following properties.

(i) The map a 7→ n + 1− a induces an automorphism on ∆NC
k,n .

(ii) The map I 7→ [n]\I induces an isomorphism ∆NC
k,n ˜−→∆NC

n−k,n .

(iii) I, J ∈ Vk,n are noncrossing if and only if they are noncrossing when
restricting to the symmetric difference I4J = (I ∪ J )\(I ∩ J ).

(iv) For b ∈ [n] The restriction of∆NC
k,n to vertices with b ∈ I yields∆NC

k−1,n−1. The
restriction of ∆NC

k,n to vertices with b 6∈ I yields ∆NC
k,n−1.

(v) The n vertices in Vk,n obtained by cyclic rotations of the vertex (1, 2, . . . ,
k) ∈ Vk,n do not cross any other vertex in Vk,n and hence are contained in
every maximal face of ∆NC

k,n .

Parts (ii) and (v) are mentioned in [PPS10, Remark 2.7] and [PPS10, Lemma
8.6], where the n vertices in (v) are called solid elements.

Proof. Property (i) is clear from the definition. Property (ii) can be derived from
the observation that a crossing between two vertices I, J ∈ Vk,n induces a crossing
between [n]\I and [n]\J in Vn−k,n . Applying this argument twice, we obtain
that I and J are noncrossing if and only if [n]\I and [n]\J are noncrossing.
To obtain Property (iii), observe that it is clear from the definition that one can
always restrict the attention to the situation where the set [n] is replaced by I ∪ J .
It then follows with Property (ii) that one can as well remove I ∩ J . Property (iv)
is a consequence of Property (iii). For Property (v), let J = ( j1, . . . , jk) and let
I = (i1, . . . , ik) = (c, . . . , c + k) for some 1 6 c 6 n, with elements considered
modulo n. Since the entries in I are as ‘close together’ as possible, it is not
possible to have two crossing arcs (ia < ib) and ( ja < jb) such that i` = j`
for a < ` < b.
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Observe that Properties (ii) and (iv) are natural when considering the
relation between Ok,n and the Grassmannian (see Section 1.3) as they reflect
the isomorphism Gk,n

∼= Gn−k,n and the embeddings Gk−1,n−1 ↪→ Gk,n and
Gk,n−1 ↪→ Gk,n .

Properties (i), (ii), (iii), and (iv) also hold for the nonnesting complex ∆NN
k,n ,

while Property (v) fails to hold. It implies that ∆NC
k,n is the join of an (n − 1)-

dimensional simplex and a complex ∆̃NC
k,n of dimension k(n − k) − n which

has the same h-vector as ∆NC
k,n . Note that in particular, ∆̃NC

2,n is the (dual)
associahedron ∆̃NC

n . Thus the following corollary (which implies that ∆̃NC
k,n is

a Gorenstein triangulation of Ok,n) together with the discussion in Section 1.3
justifies that we call the dual complex of ∆̃NC

k,n the Grassmann associahedron.

COROLLARY 1.9. ∆̃NC
k,n is a flag polytopal sphere of dimension k(n − k) − n.

Moreover, Properties (i), (ii), and (iv) in Proposition 1.8 also hold for ∆̃NC
k,n .

Observe that although [PPS10] show that ∆̃NC
k,n is a sphere (Lemma 8.6 and

Theorem 8.7), polytopality of this sphere is a special case of their Conjecture
8.10. The following arguments, applied to their Theorems 8.1 and 8.7 instead of
our Theorem 1.7 and Proposition 1.8(v), prove that conjecture in full generality.

Proof. ∆̃NC
k,n is clearly a sphere or a ball of dimension k(n − k)− n, since it is the

link of an (n − 1)-simplex in the triangulation ∆NC
k,n of the k(n − k)-dimensional

polytope Ok,n . Since hk,n
k(n−k)−n+1 = 1 it must be a sphere. Flagness is preserved

under taking links and the three operations in the proposition are also preserved
since they leave the set of vertices described in (v) invariant.

Polytopality is an immediate consequence of regularity of ∆NC
k,n , as we now

explain. ∆NC
k,n being regular means that it can be realized as part of the boundary

of a certain convex polytope P . Let F be the (n − 1)-face of that polytope
spanned by the vertices mentioned in Property (v) of Proposition 1.8. Then, ∆̃NC

k,n is
geometrically realized as the face figure of F in P , which is a polytope. (The face
figure of a simplicial face can be defined as the iterated vertex figure of all its
vertices.)

In particular, the Grassmann associahedron can be realized as a simple polytope
of dimension k(n − k)− n + 1 = (k − 1)(n − k − 1).

REMARK 1.10. Proposition 1.8(i) says that ∆NC
k,n possesses the reflection

symmetry present in the associahedron ∆̃NC
n . Of course, another symmetry

of ∆̃NC
n comes from the cyclic rotation i 7→ i + 1 (considered as remainders

1, . . . , n modulo n). That symmetry does not carry over to ∆NC
k,n for k > 3.
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In fact, such a cyclic symmetry cannot carry over to the general situation since
no flag complex on the set of vertices V3,6 that has the h-vector of ∆NN

3,6 can be
invariant under cyclic rotation. To see this, observe that such a complex would
have 155 edges and 35 nonedges. In particular, there should be in

(V3,6
2

)
at least

two rotational orbits of size not a multiple of three (one orbit of edges and one
orbit of nonedges). But an orbit whose size is not divisible by three must have all
its elements fixed by the order three rotation i 7→ i + 2, and the only element of(V3,6

2

)
fixed by this rotation turns out to be {135, 246}.

1.3. Motivation: the Hilbert series of the Plücker embedding. Besides its
well behaved combinatorial properties, our main motivation for studying the
noncrossing complex comes from the connection between the order polytope Ok,n ,
initial ideals of the ideal of Plücker relations, and Hilbert series of Grassmannians.
We refer to [Stu96, GL96, Hib87] for more details of this connection.

Let Gk,n denote the Grassmannian of k-dimensional linear subspaces in Cn , and
let Lk,n be the defining ideal of Gk,n in its Plücker embedding. Thus, Lk,n is the
homogeneous ideal in the polynomial ring

Tk,n = C[xi1,...,ik : 1 6 i1 < · · · < ik 6 n]
generated by the Plücker relations. It follows from work of Sturmfels [Stu96]
that the Stanley–Reisner ideals of all regular unimodular triangulations of Ok,n are
squarefree initial ideals of Lk,n . Indeed, let Mk,n be the ideal in the polynomial ring
with variables {xF : F filter of Pk,n} generated by the binomials xE xF − xE∩F xE∪F

for all choices of order ideals E and F in Pk,n . The ideal Mk,n is known as the
Hibi ideal of the poset Pk,n , or the Ehrhart ideal of the polytope Ok,n . In [Stu96,
Proposition 11.10, Corollary 8.9] it is shown that Mk,n appears as an initial
ideal of Lk,n . In turn, it follows from [Stu96, Ch. 8] that there is a one to one
correspondence between regular unimodular triangulations of Ok,n and squarefree
monomial initial ideals of Mk,n . This correspondence sends a particular regular
unimodular triangulation to its Stanley–Reisner ideal.

• The regular, unimodular, flag triangulation ∆NN
k,n of Ok,n leads to a squarefree

monomial initial ideal of Mk,n studied by Hibi [Hib87].

• The regular, unimodular, flag triangulation ∆NC
k,n provides a new initial ideal

with particularly nice properties and leads to new insight in the Hilbert series
of the coordinate ring Ak,n = Tk,n/Lk,n .

From the relation between initial ideals and unimodular triangulations stated
above it follows that this Hilbert series is given by

HAk,n (t) = H(t)/(1− t)k(n−k)+1,
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where H(t)= h(k,n)0 +h(k,n)1 t+· · ·+h(k,n)k(n−k)t
k(n−k) is the h-polynomial of any regular

unimodular triangulation corresponding of Ok,n . In particular, its coefficients are
the multidimensional Narayana numbers.

In the following, let ∆ be a simplicial complex whose Stanley–Reisner ideal
I∆ appears as an initial ideal of Lk,n . Then the following properties are desirable
for ∆:

• It follows from (1) that there are at most n variables that do not appear in the
set of generators of I∆. Equivalently, if ∆ decomposes into ∆ = 2V ∗∆′ where
2V is the full simplex spanned by V , then #V 6 n. Thus the ‘most factorizable’
complex ∆ should be a join over a simplex spanned by n vertices.

• The fact that Ak,n is Gorenstein should be reflected in ∆. Thus we desire
that ∆ is the join of a simplex with a triangulation of a (homology) sphere
of the appropriate dimension or, even better, the boundary complex of a
simplicial polytope, which would then deserve the name (dual) Grassmann
associahedron.

• Since Ak,n has a quadratic Gröbner basis, it is Koszul. Hence, one could hope
that I∆ is generated by quadratic monomials, or, equivalently, that ∆ is flag.

• One could hope that ∆ reflects the duality between Gk,n and Gn−k,n , as well as
the embeddings Gk−1,n−1 ↪→ Gk,n and Gk,n−1 ↪→ Gk,n .

Theorem 1.7, Proposition 1.8, and Corollary 1.9 say that the noncrossing
complex ∆ = ∆NC

k,n fulfils all these properties.
Note that in this algebraic framework the result of Theorem 2.3 translates into

a statement about standard monomials in Tk,n/Mk,n (the Hibi ring of Pk,n , or the
Ehrhart ring of Ok,n). Let� be a term order for Tk,n and suppose the corresponding
initial ideal of Mk,n is squarefree (and monomial). Equivalently, by Sturmfels’
results, the initial ideal comes from a unimodular triangulation of Ok,n . Tableaux
of shape k × (n − k) are nothing but the integer points in dilations of Ok,n (see
Lemma 4.1) and hence they index standard monomials with respect to �. More
precisely, tableaux in the r th dilation of Ok,n correspond to standard monomials
of degree r . (Observe that there is a certain ambiguity here. Since Ok,n contains
the origin, a point in its r th dilation lies also in the sth dilation, for any s > r .
This reflects the fact that multiplying by the generator corresponding to the vertex
(n − k + 1, . . . , n) of Ok,n has no effect in the tableaux and is the reason why
V ∗k,n = Vk,n\{(n − k + 1, . . . , n)} appears in Theorem 2.3 instead of Vk,n .) By
assumption the initial ideal of Mk,n with respect to � is squarefree. Hence there is
a simplicial complex ∆ such that the initial ideal of Mk,n is the Stanley–Reisner
ideal of ∆ and consequently standard monomials for � are the monomials whose
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support is a face in∆. Since each standard monomial is in a unique way a product
of the variables, which are in bijection to the vertices of Ok,n or to Vk,n , standard
monomials of degree r are identified with multisets of r elements from Vk,n

whose support lies ∆. Thus combinatorially we get an identification of tableaux
and multisets. In this perspective Theorem 2.3 provides this identification for
∆ = ∆NN

k,n and ∆ = ∆NC
k,n and the corresponding term orders.

Since Mk,n is an initial ideal of Lk,n , standard monomials for � are also
standard monomials of a Gröbner basis of Lk,n , which links our results to standard
monomial theory (see [LR08]) for Schubert varieties. Among other aspects, this
theory deals with straightening rules for products of standard monomials in the
coordinate rings. For∆NN

k,n we are in the classical standard monomial theory of the
Grassmann variety. It would be interesting to develop straightening laws for our
new set of standard monomials corresponding to ∆NC

k,n .

1.4. Relation to previous work.

1.4.1. Petersen–Pylyavskyy–Speyer’s noncrossing complex. Some of the main
results from this paper were previously proved by Petersen et al. in [PPS10] in
a more general context. Let Vn denote the set of all subsets of [n], which can
be thought of as the disjoint union of Vk,n for all k ∈ [0, n]. Petersen et al. then
define a noncrossing relation among elements of Vn and consider, for each subset
L ⊂ [n], the flag complex m(nc)

L of noncrossing vectors whose length belongs to L .
In particular, m(nc)

{k} is exactly equal to the noncrossing complex ∆̃NC
k,n considered

in this paper.
The main result of [PPS10], as was already mentioned, is the generalization

of Theorem 1.7 to arbitrary L , by changing the order polytope Ok,n to the more
general Gelfand–Tsetlin polytopes of shape L .

Our methods of proof, however, are different, and, as we think, of independent
interest. Our main innovation is the explicit relation of facets of the noncrossing
complex and tableaux that we set up in Section 2. This has several algorithmic
applications, analogous to the driving rules in [PPS10]:
(1) Theorem 2.3 (or, rather, its proof) contains a fast algorithm for point location

in ∆NC
k,n: given a point T in the order polytope Ok,n , the algorithm outputs the

minimal face of ∆NC
k,n containing T (the carrier of T ).

(2) The ‘pushing of bars’ procedure described in the proof of Proposition 2.10
gives an efficient algorithm to construct the noncrossing complex ∆NC

k,n or
the star of any individual face in it. Efficient here means ‘polynomial in the
output size’.

As a by-product of the second item above, we have a natural way to give directions
to the edges in the dual graph of the noncrossing complex. In Section 2.3 we
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show that these directions make the graph acyclic which, in particular, allows
us to define a poset structure on the facets of ∆NC

k,n . We call this the Grassmann–
Tamari poset since it generalizes the classical Tamari poset, and conjecture it to
be a lattice. (After a preprint version of this work was available, this conjecture
was proven by McConville [McC17].)

1.4.2. Pylyavskyy’s noncrossing tableaux. In [Pyl09], Pylyavskyy introduces
and studies what he calls noncrossing tableaux, showing that they are
equinumerous with standard tableaux, hence with facets of∆NC

k,n . The construction
therein does not seem to be directly linked to the multidimensional noncrossing
complex, as already noted in [PPS10]. For example, Pylyavskyy’s noncrossing
tableau are not in general monotone along columns, while the tableaux that we
biject to maximal faces of ∆NC

k,n in Section 2.1 are strictly monotone along rows
and columns.

1.4.3. Weakly separable sets. Closely related to our complex is the notion of
weakly separable subsets of [n], introduced by Leclerc and Zelevinsky in [LZ98]
in the context of quasicommuting families of quantum Plücker coordinates.
Restricted to subsets of the same size k, which is the case of interest to us,
the definition is that two k-subsets X, Y ⊂ [n] are weakly separable if, when
considered as subsets of vertices in an n-gon, the convex hulls of X\Y and
Y\X are disjoint. The flag complex ∆Sep

k,n of weakly separable k-subsets of [n]
was studied by Scott in [Sco05, Sco06], who conjectured that ∆Sep

k,n is pure of
dimension k(n − k), and that it is strongly connected (that is, its dual graph is
connected). Both conjectures were shown to hold by Oh et al. [OPS15], for the
first see also Danilov et al. [DKK10, Proposition 5.9].

It is not hard to see that ∆Sep
k,n is a subcomplex of ∆NC

k,n and it is trivial to
observe that ∆Sep

k,n is invariant under cyclic (or, more strongly, dihedral) symmetry.
As we see in Section 5, it turns out that the weak separation graph is the
intersection of all cyclic shifts of the noncrossingness graph. Since flagness is
preserved by intersection, the same happens for the complexes. We expect our
approach to the noncrossing complex ∆NC

k,n to also shed further light on the
weak separability complex ∆Sep

k,n . In particular, we hope to better understand the
intriguing conjecture about the topology of ∆Sep

k,n and its generalizations that can
be found in a preliminary version [HH11] of [HH13].

1.4.4. Triangulations of order polytopes. Essential for most of our main
conclusions is the fact that ∆NN

k,n and ∆NC
k,n are triangulations of an order polytope.

We recall some basic facts about order polytopes and then give relations to known
results about triangulations of order polytopes or more general integer polytopes.
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Let P be a finite poset. The order polytope of P , introduced by Stanley [Sta86],
is given by

O(P) := {(xa)a∈P ∈ [0, 1]P : xa 6 xb for all a <P b}
= conv{χF : F order filter of P},

where χF ∈ NP is the characteristic vector of the order filter F of P . The
order polytope is a 0/1-polytope of dimension |P|. It has a somehow canonical
triangulation ∆(P), see again [Sta86, Section 5], that we call the standard
triangulation. It is also sometimes called the staircase triangulation of O(P). It
can be described in the following equivalent ways.

• Each of the |P|! monotone paths from (0, . . . , 0) to (1, . . . , 1) in the unit cube
[0, 1]P defines a full-dimensional simplex. These simplices triangulate the cube,
and the subset of them whose vertices lie in O(P) triangulate O(P).

• Each such monotone path is the Hasse diagram of a linear extension of P .
Thus, ∆(P) is the subdivision of O(P) into the order polytopes of the linear
extensions of P .

• Under the correspondence between vertices of O(P) and filters of P , linear
extensions correspond to maximal containment chains of filters. That is, ∆(P)
is the order complex of the lattice of filters of P , where the order complex of
a poset is the flag simplicial complex obtained from the comparability graph
of P .

• Last but not least, the complex ∆(P) can be realized as the partition of O(P)
obtained by slicing it by all the hyperplanes of the form {xa = xb}, a, b ∈ P .
Of course, these hyperplanes only slice O(P) if a and b were incomparable,
in which case the two sides of the hyperplane correspond to the two possible
relative orders of a and b in a linear extension of P .

The third (and also the fourth) description of ∆(P) shows that it is a flag
complex. Any of the first three shows that it is unimodular (all simplices have
euclidean volume 1/|P|), the minimal possible volume of a full-dimensional
lattice simplex in RP . Finally, the last description implies it to be regular.

In [RW05] Reiner and Welker construct, for every graded poset P of rank n, a
regular unimodular triangulation Γ (P) of O(P) that decomposes as 2W ∗ Γ̃ (P)
for a simplex 2W with n vertices and a polytopal sphere Γ̃ (P). Since this
is a Gorenstein simplicial complex we call it a Gorenstein triangulation. The
existence of Gorenstein triangulations was later verified by Athanasiadis [Ath05]
for a larger geometrically defined class of polytopes and then by Bruns and
Römer [BR07] for the even larger class of all Gorenstein polytopes admitting
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a regular unimodular triangulation. A Gorenstein polytope, here, is one whose
unimodular triangulations have a symmetric h-vector, and it was first shown
in [Hib87] that an order polytope O(P) is Gorenstein if and only if P is graded.
The survey article by [CHT06] puts the existence of Gorenstein triangulations in
an algebraic perspective.

In particular, any of [RW05, Ath05, BR07] shows the existence of a
regular, unimodular, Gorenstein triangulation of O(Pk,n). This implies that
the multidimensional Narayana numbers are the face numbers of a simplicial
polytope, and thus satisfy all conditions of the g-theorem. It can be checked
that the triangulation of [RW05] is not flag for Pk,n and neither the results
from [Ath05] nor from [BR07] can guarantee flagness of the triangulation.
The construction in [PPS10] and the present paper does. In particular, the
multidimensional Narayana numbers satisfy all inequalities valid for h-vectors
of flag simplicial polytopes. This includes the positivity of the γ -vector and as
a special case the Charney–Davis inequalities. Note, that the latter implication
are know to hold by [Brä04], where they are shown to hold for all triangulations
of order polytopes of graded posets. Also, it was pointed out by Athanasiadis
to the authors of [RW05] that the Gorenstein triangulation of O2,n obtained
from their construction is not isomorphic to a dual associahedron. To our best
knowledge, neither the construction from [Ath05] nor from [BR07] can be used
to obtain such a triangulation. Thus, the ∆NC

k,n from [PPS10] studied in this paper
appears to be more suited for a combinatorial analysis, and more closely related
to Grassmannians, than these previous constructions.

2. Combinatorics of the noncrossing complex

This section is devoted to the combinatorics of the noncrossing complex and
its close relationship with the combinatorics of the nonnesting complex. We study
nonnesting and noncrossing decompositions of tableaux, which will later be the
main tool in Section 4 to understand the geometry of these complexes. We then
deduce several further combinatorial properties of these complexes directly from
the tableau decompositions. In the final part of this section, we define and study
the Grassmann–Tamari order on maximal faces of the noncrossing complex.

2.1. The nonnesting and noncrossing decompositions of a tableau. As
defined in the introduction, a tableau of shape k×(n−k) is a matrix T ∈ Nk×(n−k)

that is weakly increasing along rows from left to right and along columns from
bottom to top. Recall also that we denote the set of all tableaux of shape k×(n−k)
by Tk,n . We still consider rows as labelled from top to bottom (that is, the top row
is the first row). This unusual choice makes tableaux of zeros and ones correspond
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to vectors in Vk,n . For each weakly increasing vector (b1, . . . , bk) ∈ [0, n−k]k , the
tableau having as its ath row ba zeroes followed by n − k − ba ones corresponds
to the increasing vector I = (b1 + 1, . . . , bk + k) ∈ Vk,n via the bijection sending
I ∈ Vk,n to its characteristic vector χI ∈ NPk,n .

We now show how to go from a multiset of vectors in Vk,n to a tableau, and
vice versa. The geometric interpretation of tableaux as integer points in the cone
spanned by the order polytope Ok,n as discussed in Section 4 (see in particular
Lemma 4.1) will then lead to a proof that the nonnesting and the noncrossing
complexes triangulate Ok,n .

Let L be a multiset of ` vectors (i1 j , . . . , ik j) ∈ Vk,n (1 6 j 6 `). The summing
tableau T = (tab) of the multiset L is the k × (n − k)-matrix

tab = #{ j ∈ [`] : iaj 6 b + a − 1}.

Note that if L = {I } is a single vector, then the summing tableau has only zeroes
and ones and coincides with χI , the characteristic vector of a filter in Pk,n . The
following lemma can be seen as a motivation for the definition of the summing
tableau, and is a direct consequence thereof.

LEMMA 2.1. The summing tableau T of a multiset L of vectors in Vk,n equals

T =
∑
I∈L

χI ∈ NPk,n .

In particular, T is a weakly order preserving map from Pk,n to the nonnegative
integers and thus a tableau in Tk,n .

It follows directly from this description of the summing tableau that the two
maps described in Proposition 1.8(i) and (ii) translate to natural actions on
summing tableaux; see also Figure 1.

COROLLARY 2.2. The action on ∆NC
k,n induced by a 7→ n + 1 − a corresponds

to a 180◦ rotation of the summing tableau. The map from ∆NC
k,n to ∆NC

n−k,n induced
by I 7→ [n]\I corresponds to transposing the summing tableau along the north-
west-to-south-east diagonal.

It will be convenient in the following to represent an `-multiset L of vectors
in Vk,n as the (k×`)-table containing the vectors in L as columns, in lexicographic
order. For example, let n = 7 and k = 3, and consider the multiset given by the
(3× 9)-table
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3

2

1

1 2 3 4 5 6 7 8 9

1 1 1 2 2 2 2 3 5

2 2 3 3 4 4 5 5 6

3 4 5 5 5 5 7 7 7

L =

Its summing tableau is

3 7 8 8

2 4 6 8

1 2 6 6

T =

For example, the first row of T says that the first row of L contains three 1’s,
four 2’s, and one 3, while the last vector (5, 6, 7) does not contribute to T
as χ(5,6,7) = 0 ∈ NP3,7 . As in this example, if L contains the vector I1̂ :=
(n − k + 1, . . . , n) ∈ Vk,n , that vector does not contribute to the summing tableau
since χI1̂

= 0 ∈ NPk,n . We thus set V ∗k,n = Vk,n\{(n − k + 1, . . . , n)} for later
convenience.

The following statement is at the basis of our results about the two simplicial
complexes ∆NN

k,n and ∆NC
k,n .

THEOREM 2.3. Let T ∈ Tk,n . Then there is a unique multiset ϕNN(T ) and a unique
multiset ϕNC(T ) of vectors in V ∗k,n whose summing tableaux are T , and such that

• the vectors in ϕNN(T ) are mutually nonnesting; and

• the vectors in ϕNC(T ) are mutually noncrossing.

In order to prove this, we provide two (almost identical) procedures to construct
ϕNN(T ) and ϕNC(T ).

Let T = (tab) ∈ Tk,n be a tableau, and let ` = max(T ) = t1,n−k be its maximal
entry. We are going to fill a (k×`)-table whose columns give ϕNN(T ) and ϕNC(T ),
respectively. Since we want each column to be in V ∗k,n , we have to fill the ath row
(a ∈ {1, . . . , k}) with numbers in {a, . . . , a+n−k}. Moreover, in order to have T
as the summing tableau of the multiset of columns, the number a+b must appear
in the ath row exactly ta,b+1− ta,b times, where we use the convention ta,0 = 0 and
ta,n−k+1 = max(T ). That is, we do not have a choice of which entries to use in each
row, but only on where to put them. Our procedure is to fill the table row by row
from top to bottom, inserting the entries a + 1, . . . , a + n − k in increasing order
(each of them the prescribed number of times) placing them one after the other
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into the ‘next’ column in the ath row of the table. The only difference between
ϕNN and ϕNC is how the term ‘next’ is defined.

• To obtain ϕNN , ‘next’ is simply the next free box from left to right. In the above
example, the table gets filled as follows.

3

2

1

1 2 3 4 5 6 7 8

1 1 1 2 2 2 2 3

2 2 3 3 4 4 5 5

3 4 5 5 5 5 7 7

ϕNN(T ) =

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

To help the reader, in the top-left corner of each box we indicate the order in
which a given entry is inserted into its row of the table. Also, we have marked
with a circle the last occurrence of each entry in each row. These circle marks
are not needed for the proof of Theorem 2.3 but will become important later.

• To obtain ϕNC, ‘next’ is slightly more complicated. For two vectors v,w ∈ Nk

we say that v precedesw in revlex order if the rightmost entry ofw−v different
from 0 is positive. We chose the revlex-largest vector whose ath entry has not
yet been inserted and for which the property of strictly increasing entries in a
column is preserved. In other words, inserting an integer i into row a is done by
looking at the first a − 1 entries v = (v1, . . . , va−1) of all vectors that have not
been assigned an ath entry yet and such that va−1 < i . Among those, we assign i
to the revlex-largest free box, that is, to that v for which va−1 is maximal, then
va−2 is maximal, and so on. If this revlex-largest vector is not unique, we fill
the box of the left most of the choices, in order to maintain the table columns in
lexicographic order. In the above example, the table now gets filled as follows.

3

2

1

1 2 3 4 5 6 7 8

1 1 1 2 2 2 2 3

2 2 5 3 3 4 5 4

3 5 7 4 5 5 7 5

ϕNC(T ) =

1 2 3 4 5 6 7 8

1 2 8 3 4 6 7 5

1 6 8 2 5 4 7 3

Observe that we could have described the choice of ‘next’ position in the
procedure ϕNN by saying that it means the revlex-smallest vector (in the same
sense as above for ϕNC) for which the property of strictly increasing entries
in a column is preserved. This makes both procedures almost identical, only
interchanging revlex-smallest and revlex-largest in the choice of the box to insert
the next integer.
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REMARK 2.4. Observe that these procedures could, by Proposition 1.8(i), also
be applied ‘from bottom to top’ by first inserting the last row, and then filling the
table row by row by the analogous lex- and revlex-insertions.

DEFINITION 2.5. The multisets ϕNN and ϕNC obtained from a tableau T by the
above procedures are called the nonnesting decomposition and the noncrossing
decomposition of T .

Proof of Theorem 2.3. We start with proving that the procedures give what they
are supposed to: every two columns of ϕNN(T ) are nonnesting, and every two
columns of ϕNC(T ) are noncrossing. To this end, let I = (i1, . . . , ik) and
J = ( j1, . . . , jk) be two such columns, and let a, b be two indices such that i` = j`
for all ` such that a < ` < b. To show that if I and J in ϕNN(T ) (respectively in
ϕNC(T )) are nonnesting (respectively noncrossing), we have to show that ia < ja
implies ib 6 jb (respectively ib > jb). When assigning row b in the table, we
see ia, ia+1, . . . , ib−1 in the column containing I , and similarly ja, ja+1, . . . , jb−1

in the column containing J . In this situation, the column containing I is filled
before the column containing J for ϕNN and after the column J for ϕNC. Thus,
ib 6 jb for ϕNN and ib > jb for ϕNC.

To show uniqueness, suppose that we would have not chosen the revlex-
smallest (respectively revlex-largest) column at some point in the procedure. The
same argument as before then implies that we then would have created two nesting
(respectively crossing) columns.

2.2. Further properties of the complexes∆NN
k,n and∆NC

k,n. We emphasize that
Theorem 2.3 alone, suitably interpreted, implies that the complexes∆NN

k,n and∆NC
k,n

are unimodular triangulations of the order polytope Ok,n . This interpretation is
carried out in Section 4, after some preliminaries on triangulations and order
polytopes that we briefly survey in Section 3. Before getting there, we prove
in the remainder of this section further combinatorial properties of the two
complexes ∆NN

k,n and ∆NC
k,n . Some of these properties (for example the pureness

of the complexes in Corollary 2.12) follow also from the geometric results in
the subsequent sections, but we think that it is interesting to have independent
combinatorial proofs.

To further understand the combinatorics of ∆NN
k,n and ∆NC

k,n , we mark (indicated
by a circle in the figures) the last occurrence of every nonmaximal integer placed
in each row of ϕNN(T ) and of ϕNC(T ) in the above construction procedure. We call
them the marked positions. In symbols, for each a ∈ [k] and b ∈ [n− k] we mark
the last occurrence of a + b − 1 that is placed in row a. Here, ‘last occurrence’
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is meant in the order the integer is inserted into the given row. For two examples,
see the above instances of ϕNN(T ) and of ϕNC(T ).

REMARK 2.6. One can ask in which way the marked positions differ if we fill
the table from bottom to top according to Remark 2.4. If the position of the last
occurrence of the maximal integer a + n − k in row a is marked, it turns out that
both procedures provide the same marked positions. In other words, the marked
positions do not depend on the procedure, but can be described purely in terms of
the table L , except that the rule is different when describing the marked positions
of a noncrossing table or a nonnesting table. In both cases, we assume that the
table L has no repeated columns (if it has, only one copy carries marks). There
is going to be one mark for each row a ∈ [k] and each b ∈ [n − k + 1]. The mark
will be in one of the vectors in

La,b := {(i1, . . . , ik) ∈ L : ia = a + b − 1}.
The rule to decide which vector carries the mark is:

• For the marks in the nonnesting table, the mark lies in the vector I =
(i1, . . . , ik) ∈ La,b for which (i1, . . . , ia) is smallest and (ia+1, . . . , ik) is
smallest. Observe that there is no inconsistency on what of the two rules we
look at first, since nonnesting vectors are component-wise comparable. For the
same reason, ‘smallest’ means both lex-smallest and revlex-smallest.

• For the marks in the noncrossing table, the mark lies in the vector I =
(i1, . . . , ik) ∈ La,b for which (i1, . . . , ia) is revlex-smallest and (ia+1, . . . , ik)

is lex-largest.

In the following three lemmas, we collect further properties of the tables
ϕNN(T ) and ϕNC(T ), some of which can be detected using the information where
the last occurrences of the entries are placed.

LEMMA 2.7. Let T ∈ Tk,n , and let L be either ϕNN(T ) or ϕNC(T ). We then have
the following properties for L.

(i) The columns in L are ordered lexicographically.

(ii) Tk,1 > 0 if and only if the vector (1, . . . , k) is a column of L.

(iii) Let L i and L i+1 be two consecutive columns of L. Then the first row in which
L i and L i+1 differ is equal to the first row in which L i has a marked position.
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(iv) Two consecutive columns L i and L i+1 coincide if and only if L i has no
marked position.

Proof. These properties can be directly read off the insertion procedures
for ϕNN(T ) and for ϕNC(T ) and the definition of the marked positions.

LEMMA 2.8. Let T ∈ Tk,n . We have the following property for ϕNN(T ) which does
not hold for ϕNC(T ).

(i) Two consecutive columns of ϕNN(T ) differ in exactly those positions in which
the left of the two has marked positions.

Proof. This is also a direct consequence of the procedure and the definition of the
marked positions.

LEMMA 2.9. Let T ∈ Tk,n . We have the following properties for ϕNC(T ) that do
not hold for ϕNN(T ).

(i) T is strictly increasing along rows if and only if all vectors of the form
(b + 1, . . . , b + k) for b ∈ [n − k − 1] appear as columns in ϕNC(T ).

(ii) T is strictly increasing along columns if and only if all vectors of the form
(1, . . . , a, n−k+a+1, . . . , n) for a ∈ [k−1] appear as columns in ϕNC(T ).

Proof. Observe that the revlex-max insertion ensures that the first insertion of a
given integer a + b − 1 into row a yields a partial vector (of length a) of the
form (b, . . . , a + b − 1). This implies that for fixed b ∈ [n − k − 1], we have
that Ta,b < Ta,b+1 for all a ∈ [k] if and only if (b + 1, . . . , b + k) is a column
of ϕNC(T ), thus implying (i). A similar observation holds as well for the columns
of T . For fixed a ∈ [k−1], we have that Ta,b < Ta+1,b for all b ∈ [n−k] if and only
if (1, . . . , a, n− k+ a+ 1, . . . , n) is a column of ϕNC(T ), thus implying (ii).

We are now ready to prove the following proposition from which we then derive
the pureness and the dimension of the nonnesting and the noncrossing complexes.

PROPOSITION 2.10. Let T ∈ Tk,n , and let L be either ϕNN(T ) or ϕNC(T ). If a
column of L contains more than one marked position, then there exists a vector
in V ∗k,n that is not contained in L and which does not nest or cross, respectively,
with any vector in L, depending on L being ϕNN(T ) or ϕNC(T ).

Proof. In the case of L = ϕNN(T ), this is a direct consequence of Lemma 2.8:
Given a column with multiple marked positions, we can always insert a new
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column to the right of this column where only the last marked position is changed.
This vector is nonnesting with all other vectors by construction. For example, the
second column in the above example for ϕNN(T ) has the second and the third
position marked. We can thus insert a new column between the second and the
third where only the last position is changed, thus being the vector (1, 2, 5).

The case of L = ϕNC(T ) is a little more delicate. First, we can assume
that Tk,1 > 0, and that T is strictly increasing along rows and columns. Otherwise,
we can, according to Lemmas 2.7(ii) and 2.9, together with Proposition 1.8(v),
always insert the missing cyclic intervals as columns into ϕNC(T ) and modify T
accordingly.

Given this situation and a column containing more than one marked position,
one can ‘push’ marked position to obtain a new vector in V ∗k,n that is not yet
contained in L , and which is noncrossing with every column of L . Since it is
enough for our purposes here, we describe the procedure of pushing the last
marked position, similarly to the situation for ϕNN(T ). To this end, let b be the
column containing more than a single marked positions, and let the last marked
position be in row a. Moreover, let the value of this last marked position be x .
Now, pretend that we had one more x to be inserted into row a in this table.
The condition that T is strictly increasing along rows and columns implies that
it would indeed be possible to insert another x into row a. Let b′ be the column
in which this next x would be inserted. Then, it would be possible to add a new
column between columns b′ − 1 and b′ containing the vector given by the first
a − 1 entries of the previous column b′ together with the remaining entries of
column b. Call the resulting table L ′. Observe that by construction, L ′ equals the
revlex-max insertion table of its summing tableau. This implies that all columns
in L ′ are noncrossing. Moreover, the marked positions of L ′ are exactly those
of L , except that the last marked position in the previous column b has moved to
the new column b′. As an example, we consider the following table (which is the
previously considered table with all extra vectors inserted as described earlier in
this proof).

3

2

1

1 2 3 4 5 6 7 8 9 10 11

1 1 1 1 1 2 2 2 2 3 4

2 2 2 5 6 3 3 4 5 4 5

3 5 7 7 7 4 5 5 7 5 6

1 2 3 4 5 6 7 8 9 10 11

1 2 3 10 11 4 5 7 9 6 8

1 6 11 10 8 2 5 4 9 3 7

L =

Now, consider the last column b = 11, having marked positions in rows 1
and 3, with values 4 and 6, respectively. So, a new last 6 would be inserted into
column b′ = 9. The resulting table L ′ has a new column between columns 8 and 9
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consisting of the first 2 entries of the previous column 9 and the last entry of the
previous column 11, thus being the vector (2, 5, 6). We therefore get the following
table, extending L by one column.

3

2

1

1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 1 2 2 2 2 2 3 4

2 2 2 5 6 3 3 4 5 5 4 5

3 5 7 7 7 4 5 5 6 7 5 6

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 11 12 4 5 7 9 10 6 8

1 6 12 11 9 2 5 4 8 10 3 7

L ′ =

REMARK 2.11. Observe that a procedure similar to the pushing procedure of
the last marked position can be used to push the first marked position. More
concretely, we have seen in Remark 2.6 that filling the table top to bottom or
bottom to top produces the same marked positions. The first marked position in a
column of the top to bottom procedure can thus be seen as the last marked position
of the same column of the bottom to top procedure. Thus, it can be pushed in the
analogous way as the last bar is pushed.

The following corollary is well known for∆NN
k,n . For∆NC

k,n it can also be deduced
from results in [PPS10].

COROLLARY 2.12. The simplicial complexes ∆NN
k,n and ∆NC

k,n are pure of
dimension k(n − k).

Proof. Consider a face Fof ∆NN
k,n not containing the vector (n − k + 1, . . . , n).

This is, F is a set of mutually nonnesting elements in V ∗k,n . As we have
seen in Theorem 2.3, F can be recovered from its summing tableau T , that
is, F = ϕNN(T ). Thus, we can recover the marked positions in the table as
described before. Alternatively, one can as well obtain the marked positions using
the procedure described in Remark 2.6. Since the number of inserted marked
positions equals k(n − k) (assuming without loss of generality that T is strictly
increasing along rows), we have |F | 6 k(n − k), as otherwise, we would have
repeated columns in F by Lemma 2.7(iv). Moreover, if |F | < k(n− k) then there
is a column containing more than one marked position. Thus, Proposition 2.10
implies that there is a vector I ∈ V ∗k,n that is not contained in F such that F ∪ {I }
is again mutually nonnesting and thus a face of ∆NN

k,n . This implies the corollary
for ∆NN

k,n . The argument for ∆NC
k,n is word by word the same.

REMARK 2.13. The proof of Corollary 2.12 contains an implicit characterization
of the tableaux that correspond to maximal faces of the nonnesting (respectively,
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noncrossing) complex: they are those for which the nonnesting (respecti-
vely, noncrossing) decompositions result in exactly one marked position in
each column of the table. For the nonnesting complex, in which all rows of the
table are filled from left to right, this condition is clearly equivalent to saying that
T contains each entry in [k(n − k)] exactly once. That is, ϕNN gives a bijection
between Standard Young Tableaux of shape k× (n− k) with max(T ) = k(n− k)
and maximal faces of ∆NN

k,n .
For∆NC

k,n we do not have a simple combinatorial characterization of the tableaux
that arise. According to Lemmas 2.7(ii) and 2.9, it is however easy to see that they
must be strictly increasing along rows and columns.

In the approach taken in [PPS10] the next two corollaries follow from their
Theorem 8.7.

COROLLARY 2.14. Every face of the reduced noncrossing complex ∆̃NC
k,n of

codimension-1 is contained in exactly two maximal faces.

Proof. Let L be the table of a maximal face of ∆NC
k,n , let b be the index of one

column of L , and let L ′ be the table of the codimension one face of ∆NC
k,n obtained

from L by deleting a column b that does not contain a vector that is a cyclic
rotation of the vector (1, . . . , k). Observe that it follows from Corollary 2.12
that every pair L ′ ⊂ L of a codimension one face contained in a maximal face
is obtained this way. Now, every marked position in a column of L different
from column b is as well a marked position in L ′. Moreover, there is a unique
column of L ′ that contains a unique second marked position. Following the
pushing procedure described above, we obtain that pushing this marked position
again yields the table L . Since the marked positions in L ′ are independent
of L , and since we can push exactly those two marked positions in the unique
column containing them, we conclude that L ′ is contained in exactly two maximal
faces.

Corollaries 2.12 and 2.14 together can be rephrased as follows.

COROLLARY 2.15. ∆̃NC
k,n is a pseudomanifold without boundary. ∆NC

k,n is a
pseudomanifold with boundary, its boundary consisting of the codimension one
faces that do not use all the cyclic intervals.

2.3. The Grassmann–Tamari order. Based on our approach to the combi-
natorics and on the geometry (developed in the next section) of the noncrossing
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complex ∆NC
k,n , we consider a natural generalization of the Tamari order on

triangulations of a convex polygon. To this end let the dual graph G(∆) of a pure
simplicial complex ∆ be the graph whose vertices are the maximal faces of ∆,
and where two maximal faces F1 and F2 share an edge if they intersect in a face
of codimension one.

We start with recalling the definition of the Tamari order. For further
background and many more detailed, see for example [Rea12], and the Tamari
Festschrift containing that article. Fix n > 2. The elements of the Tamari poset Tn

are triangulations of a convex n-gon and the Hasse diagram of Tn coincides, as a
graph, with the dual graph of∆NC

n = ∆NC
2,n . To specify Tn we thus need to orient its

dual graph. Let T and T ′ be two triangulations which differ in a single diagonal.
We then have that T4T ′ = {[i1, i2], [ j1, j2]}, and observe that (i1, i2) and ( j1, j2)

cross, so we can assume without loss of generality that i1 < j1 < i2 < j2. We say
that T ≺Tn T ′ form a cover relation in Tn if [i1, i2] ∈ T and [ j1, j2] ∈ T ′.

We next extend this ordering to the dual graph of∆NC
k,n for general k. Let F be a

face of∆NC
k,n of codimension one that uses all the cyclic intervals. Equivalently, by

Corollary 2.15, let F be a codimension one face that is not in the boundary of∆NC
k,n .

Given the procedure we used in the proof of Proposition 2.10 we have that the
table of F contains exactly one column with more than a single marked position.
This column contains exactly two marked positions. By Corollary 2.14, F is
contained in exactly two maximal faces, obtained by ‘pushing’ one of those two
marked positions.

DEFINITION 2.16. The Grassmann–Tamari digraph EG(∆NC
k,n) is the orientation on

the dual graph G(∆NC
k,n) given by the following rule. Let F1 and F2 be two maximal

faces sharing a codimension one face F . We orient the edge F1−F2 from F1 to F2

if F1 is obtained by pushing the lower of the two marked positions in the column
of F that has two marks. The Grassmann–Tamari order Tk,n is the partial order
on the maximal faces of ∆NC

k,n obtained as the transitive closure of EG(∆NC
k,n). That

is, we have F1 <Tk,n F2 for two maximal faces if there is a directed path from F1

to F2 in EG(∆NC
k,n).

Of course, the Grassmann–Tamari order will only be well defined if the
Grassmann–Tamari digraph is acyclic (meaning that it does not contain directed
cycles).

THEOREM 2.17. The Grassmann–Tamari digraph is acyclic, hence the
Grassmann–Tamari order Tk,n is well defined. Moreover, Tk,n has a linear
extension that is a shelling order of ∆NC

k,n .
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Figure 3. The Grassmann–Tamari posets for ∆NC
5,2 and for ∆NC

5,3.

Our proof of this theorem relies on the geometry of the noncrossing complex.
It is thus postponed to Section 4.4.

EXAMPLE 2.18. Figure 3 shows the Grassmann–Tamari posets for n = 5,
k ∈ {2, 3}.

PROPOSITION 2.19. The Grassmann–Tamari order has the following properties:

(1) The map on Tk,n induced by a 7→ n + 1− a is order reversing. In particular,
Tk,n is self-dual.

(2) The map from Tk,n to Tn−k,n induced by I 7→ [n]\I is order reversing. In
particular, Tk,n

∼= Tn−k,n .

Proof. Both parts of (1) follow from the discussion in Remarks 2.4, 2.6, and 2.11.
For (2), let F1 and F2 be two maximal faces of∆NC

k,n sharing a face F = F1 ∩ F2

of codimension one, and let G i = [n]\Fi , i = 1, 2, and G = G1 ∩ G2 be the two
complementary maximal faces in ∆NC

n−k,n and their intersection. Proposition 1.8(ii)
implies that G is a face of codimension one as well. It is thus left to show that
if F1 is obtained from F by pushing the lower of the two marked positions in the
appropriate column of the table for F , then G1 is obtained from G by pushing
the higher of the two marked positions again in the appropriate column of G.

https://doi.org/10.1017/fms.2017.1 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.1


Noncrossing sets and a Grassmann associahedron 25

To prove this, recall first that any column in any maximal face of ∆NC
k,n and of

∆NC
n−k,n (except the last) contains a unique marked position, and this column and

the column to its right coincide above this marked position by Lemma 2.7(iii).
This implies that the values of the two marked positions in the table for F and
in the table for G coincide. Since one of these two values is also the value of the
marked position in F1, the other value must be the value of the marked position
in G1 (since G1 = [n]\F1). This finally yields that if pushing the lower entry in F
yields F1, then pushing the higher entry in G yields G1, as desired. As an example,
consider the cover relation on the left in the two Grassmann–Tamari posets in
Figure 3, and call the maximal faces F1 ≺T2,5 F2 in the left poset, and G2 ≺T3,5 G1

in the right poset. Then F = F1 ∩ F2 and of G = G1 ∩ G2 are given by and the

1 1 2 2 3 4
2 5 3 4 4 5F =

1 1 1 1 2 3
2 2 3 4 3 4
3 5 5 5 4 5

G =

values of the two marked positions in unique columns of F and G containing two
marked positions are 2 and 4. Pushing the 4 in F yields F1, and pushing the 2
in G yields G1, as desired.

It is straightforward to see that the Grassmann–Tamari order restricts to the
usual Tamari order for k = 2. The latter is well known to be a self-dual lattice.
We conjecture this as well for the Grassmann–Tamari order for general k, tested
for n ∈ {6, 7, 8} and k = 3.

CONJECTURE 2.20. The Grassmann–Tamari poset Tk,n is a lattice.

This conjecture was recently proven by McConville in [McC17] in a more
general setting of Grid–Tamari posets. We refer to this paper for further details.

REMARK 2.21. It would be interesting to extend other properties of the (dual)
associahedron or the Tamari lattice to ∆NC

k,n . An example of such a property
concerns the diameter. The diameter of the dual associahedron ∆NC

2,n is known to
be bounded by 2n − 10 for every n (Sleator et al. [STT88]) and equal to 2n − 10
for n > 12 (Pournin, [Pou14]).

Although the proof of the 2n − 10 upper bound needs the use of the cyclic
symmetry of ∆NC

2,n (and, as we have seen in Remark 1.10, this symmetry does not
carry over to higher k), an almost tight bound of 2n − 6 can be derived from
the very simple fact that every maximal face (triangulation of the n-gon) is at
distance at most n − 3 = (k − 1)(n − k − 1) from the minimal element in Tn .
Unfortunately, the similar statement does not hold for Tk,n: For k = n − k = 3,
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the above formula would predict that every maximal face can be flipped to the
unique minimal element in Tk,n in 4 steps, but there are elements that need 5 such
flips. Moreover, there is no maximal face in ∆NC

3,6 that is connected to every other
maximal face by 4 or less flips.

Observe that Theorem 2.17 implies that the h-vector of the noncrossing
complex ∆NC

k,n is the generating function of out-degrees in the Grassmann–Tamari
digraph. In particular,

h(k,n)i = |{T ∈ ∆NC
k,n : T has i upper covers}|,

are the multidimensional Narayana numbers, and also equal to the number of
standard Young tableaux with exactly i peaks; see Equation (1) in the Introduction
and the preceding discussion. This raises the following problem.

OPEN PROBLEM 2.22. Is there an operation on peaks of standard Young tableaux
(or, equivalently, on valleys of multidimensional Dyck paths) that

• describes the Grassmann–Tamari order directly on standard Young tableaux
(or on multidimensional Dyck paths), thus also providing a bijection between
maximal faces of ∆NN

k,n and of ∆NC
k,n , and

• which generalizes the Tamari order as defined on ordinary Dyck paths?

3. Order polytopes and their triangulations

3.1. Cubical faces in order polytopes. Let E and F be two order filters in a
poset P , and let F(E, F) denote the minimal face of the order polytope O(P)
containing the corresponding vertices χE and χF . It turns out that F(E, F) is
always (affinely equivalent to) a cube. Although this is not difficult to prove, it
was new to us and is useful in some parts of this paper.

To prove it, we start with the case when E and F are comparable filters. In the
next statement we use the notation EX for the segment going from the origin to
X ∈ RP .

LEMMA 3.1. Let E ⊂ F be two comparable filters in a finite poset P and let
P ′1, . . . , P ′d be the connected components of P|F\E . Then the minimal face
F(E, F) of the order polytope O(P) containing the vertices χE and χF is the
Minkowski sum

χE + EχP ′1 + · · · + EχP ′d .

In particular, combinatorially F(E, F) is a cube of dimension d.
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Proof. Observe that F(E, F) is contained in the face of O(P) obtained by setting
the coordinates of elements in E ∩ F = E to be 1 and those of elements not in
E∪F = F to be 0. That face is just the order polytope of P|F\E (translated by the
vector χE ). For the rest of the proof there is thus no loss of generality in assuming
that E = ∅ and F = P . We claim that the set of vertices of F(∅, P) is

{x = (xa)a∈P ∈ {0, 1}P : xa = xb if a and b are in the same component of P}.

To see that every vertex of F(∅, P)must have this form, observe that the equality
xa = xb for two comparable elements defines a face of the order polytope and it
is satisfied both by χE and χF , so it is satisfied in all of F(∅, P). Moreover, since
connected components are the transitive closure of covering relations, the equality
xa = xb for two elements of the same connected component is also satisfied
in F(∅, P). For the converse, let x ∈ {0, 1}P be such that xa = xb when a and b
are in the same component of P . Put differently, x is the sum of the characteristic
vectors of some subset S of the components,

x =
∑
b∈S

χP ′b , for some S ⊂ [d].

Clearly, x is a vertex of O(P), since a union of connected components is a filter.
Consider the complementary vertex

y =
∑
b 6∈S

χP ′b .

We have x + y = χ∅ + χP , which implies that the minimal face containing χ∅
and χP contains also x and y (and vice versa).

The description of the vertices of F(∅, P) automatically implies the
Minkowski sum expression for F(∅, P). Moreover, since the different segments
EχP ′1, . . . , EχP ′d have disjoint supports, their Minkowski sum is a Cartesian
product.

The last part of the proof has the following implications.

COROLLARY 3.2. Let E, F, E ′ and F ′ be four filters. Then the following
properties are equivalent:

(1) F(E, F) = F(E ′, F ′).

(2) (χE ′, χF ′) is a pair of opposite vertices of the cube F(E, F).
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(3) χE + χF = χE ′ + χF ′ .

(4) E ∩ F = E ′ ∩ F ′ and E ∪ F = E ′ ∪ F ′.

In particular, we have that F(E, F) = F(E ∩ F, E ∪ F) which, by the previous
lemma, is combinatorially a cube.

3.2. Triangulations. Unimodularity, regularity, and flagness. Let Q be a
polytope with vertex set V . A triangulation of Q is a simplicial complex ∆
geometrically realized on V (by which we mean that V is the set of vertices of ∆,
and that the vertices of every face of ∆ are affinely independent in Q) that covers
Q without overlaps. A triangulation T of a polytope Q is called regular if there is
a weight vector w : V → R such that T coincides with the lower envelope of the
lifted point configuration

{(v,w(v)) : v ∈ V } ⊂ R|Q|+1.

See [DRS10] for a recent monograph on these concepts. Another way to express
the notions of triangulations and regularity, more suited to our context, is as
follows.

• An abstract simplicial complex ∆ with its vertices identified with those of Q
is a triangulation of Q if and only if for every x ∈ conv(Q) there is a unique
convex combination of vertices of some face σ of ∆ that produces x . That is,
there is a unique σ ∈ ∆ (not necessarily full dimensional) such that

x =
∑
v∈σ

αvv

for strictly positive αv with
∑

v αv = 1.

• ∆ is the regular triangulation of Q for a weight vector w : V → R if, for every
x ∈ Q, the expression of the previous statement is also the unique one that
minimizes the weighted sum

∑
v∈V αvw(v), among all the convex combinations

giving x in terms of the vertices of Q.

Observe that for some choices ofw (most dramatically, whenw is constant) the
weighted sum of coefficients may not always have a unique minimum. In this case
w does not define a regular triangulation of Q but rather a regular subdivision. It
is still true that the support of every minimizing convex combination is contained
in some cell of this regular subdivision, but it may perhaps not equal the set of
vertices of that cell.
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If the vertices V of the polytope Q are contained in Zd (or, more generally, in
a point lattice) we call a full-dimensional simplex unimodular when it is an affine
lattice basis and we call a triangulation unimodular when all its full-dimensional
faces are. All unimodular triangulations of a lattice polytope have the same f -
vector and, hence, the same h-vector. See, for example, [DRS10, Section 9.3.3].
This h-vector can be easily computed from the Ehrhart polynomial of Q and is
usually called the Ehrhart h∗-vector of Q.

If we know a triangulation of a lattice polytope Q to be unimodular and flag,
then checking its regularity is easier than in the general case. The minimality of
weighted sum of coefficients in convex combinations of points x ∈ Q needs to be
checked only for very specific choices of x and very specific combinations.

LEMMA 3.3. Let Q be a lattice polytope with vertices V , let ∆ be a flag
unimodular triangulation of Q, and let w : V → R be a weight vector. Then
the following two statements are equivalent:

(i) The complex ∆ is the regular triangulation corresponding to w,

(ii) For every edge v1v2 of the complex ∆ and for every pair of vertices {v′1, v′2}
6= {v1, v2} with v1 + v2 = v′1 + v′2, we have w(v1)+w(v2) < w(v

′
1)+w(v′2).

Proof. Let ∆w be the regular triangulation (or subdivision) produced by the
weight vector w. Consider ∆w as a simplicial complex, even if it turns out not to
be a triangulation, taking as maximal faces the vertex sets of the full-dimensional
cells (simplices or not) of ∆w. We are going to show that this simplicial complex
is contained in ∆. The containment cannot be strict because ∆w covers Q, so this
will imply ∆ = ∆w.

Since ∆ is flag, to show that ∆w ⊂ ∆ it suffices to show that every edge
of ∆w is an edge in ∆. So, let v′1v

′
2 be an edge of ∆w. For the rest of the

proof, we consider our polytope Q embedded in Rd × {1} ⊂ Rd+1. We regard
the vertices {v1, . . . , v`} of each unimodular simplex in ∆ as vectors spanning a
cone C , where spanning means not only linearly but also integrally (because of
unimodularity): every integral point in C is a nonnegative integral combination
of the vi ’s.

Consider then the point v′1 + v′2. It lies at height two in one of those cones,
because v′1 + v′2 ∈ Rd × {2}. Thus, v′1 + v′2 = v1 + v2 for some edge v1v2 of
∆. The hypothesis in the statement is then that either {v′1, v′2} = {v1, v2} (as we
claim) or w(v1)+w(v2) < w(v

′
1)+w(v′2). The latter is impossible because then,

letting x = (v1+ v2)/2 = (v′1+ v′2)/2 be the midpoint of the edge v′1v
′
2 of∆w, the

inequality contradicts the fact that ∆w is the regular subdivision for w.
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3.3. Central orientations of the dual graph and line shellings. Every
regular triangulation of a polytope is shellable. We sketch here a proof, adapted
from [DRS10, Section 9.5]. The ideas in it will be used in Section 4.4 for the
proof of Theorem 2.17.

Let ∆ be a triangulation (regular or not) of a polytope Q, and let o be a point
in the interior of Q. We moreover assume o ∈ Q to be sufficiently generic so that
no hyperplane spanned by a codimension one face of ∆ contains o. We can then
orient the dual graph G(∆) ‘away from o’, in the following well-defined sense.
Let σ1 and σ2 be two adjacent maximal faces in ∆ and let H be the hyperplane
containing their common codimension one face. We orient the edge σ1σ2 of G(∆)
from σ1 to σ2 if o lies on the same side of H as σ1. We call the digraph obtained
this way the central orientation from o of G(∆) and denote it EG(∆, o).

LEMMA 3.4. If ∆ is regular then EG(∆, o) is acyclic for every (generic) o.
Moreover, the directions in EG(∆, o) are induced by a shelling order in the
maximal faces of ∆.

Proof. We are going to prove directly that there is a shelling order in ∆ that
induces the orientations EG(∆, o). This implies EG(∆, o) to be acyclic.

The idea is the concept of a line shelling. One way to shell the boundary
complex of a simplicial polytope Q is to consider a (generic) line ` going through
the interior of Q and taking the maximal faces of Q in the order that the facet-
defining hyperplanes intersect `. The line ` is considered to be closed (its two
ends at infinity are glued together) and the maximal faces are numbered starting
and ending with the two maximal faces intersecting `. Put differently, we can
think of the process as moving a point p = p(t), t ∈ [0, 1] along the line `,
starting in the interior of Q, going through infinity, then back to the interior of Q,
and recording the facets of Q in the order their facet-defining hyperplanes are
crossed by p(t). See Figure 4 (left) for an illustration and [Zie94, Ch. 8] for
more details.

For a regular triangulation ∆, let ∆̃ be the convex hypersurface that projects
to ∆, and let ` be the vertical line through o. If we order the facets of ∆̃ (hence,
the maximal faces of∆) in their line shelling order with respect to `, this ordering
is clearly inducing the central orientation EG(∆, o) of G(∆). Moreover, it is a
shelling order of the boundary of ∆̃ (and hence of ∆) because it is an initial
segment in the line shelling order of conv(∆̃) with respect to the line `. See
Figure 4 (right) for an illustration.

REMARK 3.5. If the triangulation ∆ is not regular, then the central orientation
EG(∆, o) may contain cycles.
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Figure 4. The idea behind a line shelling, and the line shelling associated to
a central orientation from a generic interior point o.

4. Geometry of the nonnesting and noncrossing complexes

The goal of this section is to show that the noncrossing complex ∆NC
k,n is a

regular, unimodular, flag triangulation of the order polytope of the product of
two chains. The method presented also yields the same result for the nonnesting
complex ∆NN

k,n , which is well known.

4.1. The order polytope of the product of two chains. Recall from Section
1.4.4 that the vertices of Ok,n (characteristic vectors of filters in Pk,n) are in
bijection with the vertices of ∆NN

k,n (elements of Vk,n). As before, we use the same
symbol (typically I or J ) to denote an element of Vk,n and its associated filter.

To show that ∆NC
k,n is a triangulation of Ok,n let us understand a bit more the

combinatorics of the maximal faces of Ok,n . These are of the following three
types:

(1) There are two maximal faces corresponding to the unique minimal vector
I0̂ := (1, . . . , k) and the unique maximal vector I1̂ := (n + 1 − k, . . . , n).
Each of these maximal faces contains all but one vertex, namely either χI0̂

=
(1, . . . , 1) or χI1̂

= (0, . . . , 0). In particular, Ok,n is an iterated pyramid over
these two vertices.
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(2) Each of the k(n−k−1) covering relations (a, b)l(a, b+1) in Pk,n produces
a maximal face containing all χ(i1,...,ik ) with ik+1−a not equal to k + 1− a+ b.

(3) Each of the (k − 1)(n − k) covering relations (a, b)l (a + 1, b) produces a
maximal face containing all χ(i1,...,ik ) not satisfying ik−a < k−a+b < ik+1−a .
(That is, vectors in Vk,n not containing the entry k−a+b and having exactly
a − 1 elements greater than k − a + b).

4.2. Tableaux as lattice points in the cone of Ok,n. Denote by O∗k,n the
maximal face containing all vertices of Ok,n except the origin χI1̂

= (0, . . . , 0).
Its vertex set is V ∗k,n = Vk,n\{(n − k + 1 · · · n)}, considered in Section 2. Since
Ok,n is a pyramid over O∗k,n with apex at the origin, it is natural to study the cone
Ck,n over O∗k,n . That is,

Ck,n := R>0Ok,n = {λv ∈ RPk,n : λ ∈ [0,∞), v ∈ Ok,n}.

Equivalently, Ck,n is the polyhedron obtained from the inequality description
of Ok,n by removing the inequality xk,n−k 6 1.

Let us now look at the set Tk,n of all tableaux of shape k × (n − k). It is clear
that the inequalities describing weak increase are the same as those defining the
maximal faces of the cone Ck,n . We hence have the following lemma.

LEMMA 4.1. Tk,n is the set of integer points in Ck,n .

Moreover, the summing tableau associated to a list of vectors I1, . . . , I` ∈ V ∗k,n is
nothing but the sum of the characteristic vectors χI1, . . . , χI` of the corresponding
vertices of Ok,n , see Lemma 2.1. With this in mind, Theorem 2.3 can be rewritten
as follows.

PROPOSITION 4.2. For every integer point T ∈ Ck,n there is a unique nonnegative
integer combination of characteristic vectors χI for I ∈ V ∗k,n with noncrossing
support that gives T , and another unique combination with nonnesting support
that gives T .

When translated into geometric terms and identifying faces of ∆NN
k,n and ∆NC

k,n
with the convex hulls of the corresponding characteristic vectors, this proposition
has the following consequence.

COROLLARY 4.3. The restrictions of ∆NN
k,n and ∆NC

k,n to V ∗k,n are flag unimodular
triangulations of O∗k,n .
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Proof. We provide the proof for ∆NC
k,n . The claim for ∆NN

k,n follows in the same
way. We use the characterization of triangulations via uniqueness of the convex
combination of each x ∈ O∗k,n as a convex combination of vertices of a face in
∆NC

k,n (see Section 3.2). Assume, to seek a contradiction, that there is an x ∈ O∗k,n
that admits two different combinations whose support is a face in ∆NC

k,n . That is,
there are faces S1 and S2 in ∆NC

k,n and positive real vectors λ ∈ RS1 , µ ∈ RS2 , such
that ∑

I∈S1

λIχI =
∑
I∈S2

µIχI .

Assume further that S1 and S2 are chosen minimizing |S1| + |S2| among the faces
in ∆NC

k,n with this property. This implies that S1 and S2 are disjoint since common
vertices can be eliminated from one side of the equality, and that conv{χI : I ∈ S1}
and conv{χI : I ∈ S2} intersect in a single point. This, in turn, implies that this
point, and the vectors λ andµ, are rational. Multiplying them by suitable constants
we consider them integral. But then the tableau

T :=
∑
I∈S1

λIχI =
∑
I∈S2

µIχI

turns out to have two different noncrossing decompositions, contradicting
Proposition 4.2.

Since Ok,n is a pyramid over χ(n−k+1,...,n) = (0, . . . , 0) and (n − k + 1, . . . , n)
is noncrossing and nonnesting with every element of Vk,n , Corollary 4.3 implies
that both are unimodular triangulations of Ok,n .

THEOREM 4.4. ∆NN
k,n and ∆NC

k,n are flag unimodular triangulations of Ok,n .

The theorem follows from Stanley’s work in [Sta86] for∆NN
k,n and from [PPS10,

Corollary 7.2] together with a mention of unimodularity in the proof of [PPS10,
Corollary 8.2] for ∆NC

k,n .

4.3. ∆NC
k,n as a regular triangulation of Ok,n. For real parameters α1, . . . ,

αk−1 consider the following weight function on the set of vertices Vk,n of Ok,n .
For each I = (i1, . . . , ik) ∈ Vk,n let

w(I ) = w(i1, . . . , ik) :=
∑

16a<b6k

αb−aiaib.

We assume that the values α1, . . . , αk−1 are positive and we require that αi+1� αi .
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LEMMA 4.5. Let I, J and X, Y be two different pairs of elements of Vk,n . If I and
J are noncrossing and χI + χJ = χX + χY then X and Y are crossing and

w(I )+ w(J ) < w(X)+ w(Y ).

Proof. We set I = (i1, . . . , ik), J = ( j1, . . . , jk), X = (x1, . . . , xk) and Y = (y1,

. . . , yk). Observe that χI + χJ = χX + χY implies {ia, ja} = {xa, ya} for every
a ∈ [k]. Since the pairs are different it follows that X and Y cross. For each pair
a, b ∈ [k] we then have two possibilities:

• {{xa, xb}, {ya, yb}} = {{ia, ib}, { ja, jb}}. We then say that (X, Y ) is consistent
with (I, J ) on the coordinates a and b.

• {{xa, xb}, {ya, yb}} = {{ia, jb}, { ja, ib}}. We then say that (X, Y ) is inconsistent
with (I, J ) on the coordinates a and b.

Observe that the difference w(X)+ w(Y )− w(I )− w(J ) equals∑
a,b

αb−a(ia jb + jaib − iaib − ja jb) = −
∑
a,b

αb−a(ia − ja)(ib − jb),

where the sum runs over all inconsistent pairs of coordinates with 1 6 a < b 6 k.
Observe also that, by the choice of parameters αb−a the sign of this expression
depends only on the inconsistent pairs that minimize b − a. We claim that all
such ‘minimal distance inconsistent pairs’ have the property that i` = j` for all
a < ` < b. This follows from the fact that if a < c < b and ic 6= jc then (a, b)
being inconsistent implies that one of (a, b) and (b, c) is also inconsistent.

Then, the fact that I and J are not crossing implies that, for all such a and b,
we have that

ia < ja < jb < ib or ja < ia < ib < jb.

In any case, (ia − ja)(ib − jb) < 0, so that w(X)+ w(Y ) > w(I )+ w(J ).

The regularity assertion of the following corollary was proved in [PPS10,
Theorem 8.1].

COROLLARY 4.6. ∆NC
k,n is the regular triangulation of Ok,n induced by the weight

vector w.

Proof. This follows from Lemmas 3.3 and 4.5.
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REMARK 4.7. The same ideas show that the nonnesting complex is the regular
triangulation of Ok,n produced by the opposite weight vector −w. The only
difference in the proof is that at the end, since (I, J ) is now the nonnesting pair,
we have that

ia < ja < ib < jb or ja < ia < jb < ib,

so that (ia − ja)(ib − jb) > 0 and w(X)+ w(Y ) < w(I )+ w(J ), as needed.

This means that ∆NN
k,n and ∆NC

k,n are in a sense ‘opposite’ regular triangulations,
although this should not be taken too literally. What we claim for this particularw
and its opposite −w may not be true for other weight vectors w producing the
triangulation ∆NC

k,n . Anyway, since ∆NN
k,n is the pulling triangulation of Ok,n with

respect to any of a family of orderings of the vertices (any ordering compatible
with comparability of filters), this raises the question whether ∆NC

k,n is the pushing
triangulation for the same orderings. See [DRS10] for more on pushing and
pulling triangulations.

4.4. Codimension one faces of ∆NC
k,n, and the Grassmann–Tamari order.

Here we prove Theorem 2.17; that is, that the Grassmann–Tamari order is well
defined, and that any of its linear extensions is a shelling order for ∆NC

k,n .
The key idea is the use a central orientation of the dual graph, as introduced

in Section 3.3, by explicitly describing the hyperplane containing interior
codimension one faces in the triangulation of Ok,n by ∆NC

k,n .
First we define the bending vector b(I,X) ∈ RPk,n of a segment X = (ia1, . . . , ia2)

(where 1 6 a1 < a2 6 k) of an element I = (i1, . . . , ik) ∈ Vk,n . We assume
ia2 < a2 + (n − k). That is, X does not meet the east boundary of the grid.
This technical condition is related to the convention that, when marking the last
occurrence of each inter in a row of a noncrossing table, we omit the mark for the
maximal integer a + n − k in row a; compare Remark 2.6.

The definition heavily relies on looking at I as a monotone path in the dual
grid of Pk,n as explained in Figure 1, and X as a connected subpath in it, starting
and ending with a vertical step. See Figure 5 where X is represented as a thick
subpath in a longer monotone path. Along X we have marked certain parts with a
	-dot or a ⊕-dot. Namely when traversing the path from top to bottom:

• the first and the last step in X (both vertical) are marked with a 	-dot and with
a ⊕-dot, respectively, and

• the corners X turns left or right are also marked with a⊕-dot and with a	-dot,
respectively.
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Figure 5. A segment of a path in the dual grid of P10,18 and the corresponding
bending vector in RPk,n .

Observe that the dots alternate between ⊕ and 	, and that there is the same
number of both along X .

The bending vector b(I,X) is the vector in {−1, 0,+1}Pk,n obtained as indicated
on the right side of Figure 5. We start with the zero vector {0}Pk,n . Every time X
bends to the right or to the left, we add a (+1,−1)-pair to the squares north-east
and south-west to the corner, with the −1 added to the square inside and the +1
added to square outside the corner. Equivalently, the north-east square gets a +1
added in left turns (⊕-corners) and a −1 added in right turns or (	 corners) and
vice versa for the south-west square. Additionally, we add +1 to the square west
of the first step and −1 to the square east of the first step and the other way round
for the last step. Observe that if the first (or last) vertical step in X directly ends in
a corner, then there is a cancellation of a +1 and a −1, see Example 4.10 below.

Let now J = ( j1, . . . , jk) ∈ Vk,n be another vector, thought of as another
monotone path in the dual grid of Pk,n . Then the scalar product of the bending
vector b(I,X) and the characteristic vector χJ is, by construction, given by the
number of⊕-dots minus the number of	-dots of the path X that J goes through.
Indeed, a (+1,−1)-pair in the bending vector b(I,X) contributes to the scalar
product if and only if J goes through the corresponding dot, and with the stated
sign. In particular, the scalar product depends only on the intersection of the paths
corresponding to X and to J . The next lemma explains how to compute the scalar
product by summing over the contributions from the connected components of
this intersection. Observe that a connected component may be a single point.
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LEMMA 4.8. Let I, J ∈ Vk,n be noncrossing and let X = (ia1, . . . , ia2) be a
segment in I . Considering the connected components of the intersection of the
paths corresponding to X and to J , we have that

(1) a component contributes −1 to 〈b(I,X), χJ 〉 if and only if this component
starts with ja1 = ia1 and this component of J leaves X to the left,

(2) a component contributes 1 to 〈b(I,X), χJ 〉 if and only if this component ends
with ja2 = ia2 and this component of J enters X from the right,

(3) all other components contribute zero to 〈b(I,X), χJ 〉.

Proof. First, consider a component that passes neither through the initial 	-dot
nor through the final ⊕-dot. Since I and J are noncrossing, J enters and exits X
on opposite sides. It therefore passes through equally many ⊕- and 	-dots, so its
contribution is zero. Next, consider a component that passes through the initial
	-dot. Equivalently, this component starts with ja1 = ia1 . Then there are two
possibilities. Either this component of J leaves X to the left, in which case it
contains one more 	-dot than ⊕-dots, that is, it contributes −1 to 〈b(I,X), χJ 〉.
Or this component of J leaves X to the right and then this component contains
as many 	-dots as it contains ⊕-dots, that is, it does not contribute to 〈b(I,X),
χJ 〉. The argument for a component that passes through the final ⊕-dot, is
analogous.

Let F be an interior face of codimension one. Represent F by a table with two
marked positions in a certain column I = (i1, . . . , ik) and exactly one marked
position in the others, as in the proofs of Proposition 2.10 and of Corollary 2.14.
Let a1 < a2 be the rows containing the two marked positions in I , and let F1

and F2 be the two maximal faces obtained from F by pushing the marked position
in the a1th row and in the a2th row, respectively. We then have the following
lemma.

LEMMA 4.9. The vector orthogonal to the hyperplane containing F is the
bending vector b(I,X) where X = (ia1, . . . , ia2) is the segment of I starting
with the first marked position and ending with the second (and last) marked
position.

Moreover, F2 is on the same side of that hyperplane as b(I,X), while F1 is on the
opposite side.

Proof. Let J be another column in the table for F . Since I and J are noncrossing
we can use Lemma 4.8 to compute 〈b(I,X), χJ 〉. The result is zero since the
intersection of the paths corresponding to X and to J cannot contain a component
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as described in Lemma 4.8(1) or (2), as a direct consequence of the description
of the marked positions given at the end of Remark 2.6. Observe here that if
there was a component as described in Lemma 4.8(1), then ia1 = ja1 , and (ia1+1,

. . . , ik)would be lexicographically smaller than ( ja1+1, . . . , jk), contradicting that
description. Similarly, if there was a component as described in Lemma 4.8(2),
then ia2 = ja2 , and (i1, . . . , ia2−1) is larger than ( j1, . . . , ja2−1) in reverse
lexicographic order, again contradicting that description.

Moreover, the same argument shows that if J1 and J2 are the new elements
in F1 and in F2 that were obtained by the pushing procedure, then the scalar
product of b(I,X) and F1 is negative, while the scalar product of b(I,X) and F2 is
positive.

EXAMPLE 4.10. Consider the following summing tableau.

5 8 9 11

3 4 8 9

1 3 5 7

T =

Its associated noncrossing table, corresponding to a codimension one face in∆NC
3,7,

is given as follows.

1 1 1 1 1 2 2 2 3 4 4

2 2 2 4 6 3 4 4 4 5 6

3 4 7 7 7 4 5 6 5 6 7

F =

The doubly marked column is I = (2, 4, 6), with X = (2, 4, 6) as well. But
observe that, as monotone paths, X is a strict subpath of I since the initial and
final horizontal steps in I are not part of X . The bending vector of X equals

1 0 -1 0

-1 1 1 -1
0 -1 0 1

b(I,X) =

Observe that two of the zeroes are obtained by cancelling a +1 and a −1 in the
definition of the bending vector).

This is indeed orthogonal to the 11 tableaux corresponding to the columns of
F , which are given as follows.
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1 1 1 1

1 1 1 1
1 1 1 1

1

2

3

1 1 1 1

1 1 1 1
0 1 1 1

1

2

4

1 1 1 1

1 1 1 1
0 0 0 0

1

2

7

1 1 1 1

0 0 1 1
0 0 0 0

1

4

7

1 1 1 1

0 0 0 0
0 0 0 0

1

6

7

0 1 1 1

0 1 1 1
0 1 1 1

2

3

4

0 1 1 1

0 0 1 1
0 0 1 1

2

4

5

0 1 1 1

0 0 1 1
0 0 0 1

2

4

6

0 0 1 1

0 0 1 1
0 0 1 1

3

4

5

0 0 0 1

0 0 0 1
0 0 0 1

4

5

6

0 0 0 1

0 0 0 0
0 0 0 0

4

6

7

Let us also compute the maximal faces F1 and F2 obtained pushing the 2 and
the 6 in the column corresponding to I in F .

1 1 1 1 1 2 2 2 2 3 4 4

2 2 2 4 6 3 4 4 4 4 5 6

3 4 7 7 7 4 5 6 7 5 6 7

F1 =

and

1 1 1 1 1 1 2 2 2 3 4 4

2 2 2 4 4 6 3 4 4 4 5 6

3 4 7 6 7 7 4 5 6 5 6 7

F2 =

The new elements J1 and J2 and their characteristic vectors χJ1 and χJ2 in these
maximal faces are
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J1 =
0 1 1 1

0 0 1 1
0 0 0 0

2

4

7

J2 =
1 1 1 1

0 0 1 1
0 0 0 1

1

4

6

.

As predicted by Lemma 4.9, χJ1 has a negative scalar product with b(I, X)
and χJ2 has a positive scalar product.

In order to prove Theorem 2.17 we need to use one more property of bending
vectors:

LEMMA 4.11. Let o ∈ RPk,n−k be any vector such that

oa1,b1 + oa2,b2 > oa1,b2 + oa2,b1, for all 1 6 a1 < a2 6 k, 1 6 b1 < b2 6 n − k.

Then, for every I ∈ Vk,n and every segment X in I we have

〈b(I, X), o〉 > 0.

In particular, this holds for the vector o defined as oa,b = ab for every a, b ∈
Pk,n−k .

Proof. The following additivity property follows trivially form the definition of
bending vectors: if X = (ia1, . . . , ia2) is a segment, and we decompose it into two
parts X1 = (ia1, . . . , ia) and X2 = (ia, . . . , ia2) via a certain a1 < a < a2, then

b(I, X) = b(I, X1)+ b(I, X2).

Via this property, we only need to prove the lemma for segments with only two
entries.

So, let X = (ia, ia+1) be such a segment. Its bending vector has exactly four
nonzero entries. It has +1 in positions (a, ia − a) and (a+ 1, ia+1− a), and it has
−1 in (a + 1, ia − a) and (a, ia+1 − a). By choice of o, 〈b(I, X), o〉 > 0.

Putting together Lemmas 3.4, 4.9 and 4.11 we can now easily prove
Theorem 2.17.

Proof of Theorem 2.17. By Lemmas 4.9 and 4.11, the Grassmann–Tamari
orientation in the dual graph of ∆NC

k,n coincides with the central orientation
induced by any o ∈ RPk,n−k satisfying the assumptions of Lemma 4.11. By
Lemma 3.4 this orientation is acyclic and compatible with a shelling order of the
maximal faces in ∆NC

k,n .
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4.5. The nonnesting and noncrossing triangulations of the cube. We saw
in Section 3.1 that every order polytope has some special faces that are cubes,
namely the minimal face containing two given vertices. Here we describe these
faces for Ok,n and study the triangulations of them induced by ∆NN

k,n and ∆NC
k,n .

Let χI and χJ be two vertices of Ok,n . Remember from Section 3.1 that
the minimal face of Ok,n containing χI and χJ has the following description.
Let P1, . . . , Pd be the connected components of the poset given by the symmetric
difference of the filters corresponding to I and J . Then F(I, J ) is (affinely
equivalent to) a cube of dimension d whose vertices are given as

χI∩J + α1χP1 + · · · + αdχPd

for the 2d choices of a vector α = (α1, . . . , αd) ∈ {0, 1}d . In particular, χI and χJ

themselves correspond to certain antipodal vectors αI , αJ ∈ {0, 1}d .
Our next observation is that the components P1, . . . , Pd come with a natural

linear order (and we consider them labelled according to that order). Indeed, if
we think of I and J as monotone paths in the k × (n − k) grid, the components
are the regions that arise between the two paths. Since the paths are monotone,
we consider those regions ordered from left to right (or, equivalently, from top to
bottom).

EXAMPLE 4.12. Consider the two vectors

I = (1, 2, 3, 5, 11, 12, 13, 14, 15, 21, 24),
J = (3, 4, 5, 6, 7, 9, 12, 16, 18, 19, 20)

for k = 11, n = 24 with paths shown in Figure 6, compare also Figure 1. The
poset given by symmetric difference has the shown four connected components
labelled 1 through 4 from left to right. Thus, F(I, J ) is combinatorially a 4-
dimensional cube.

With this point of view, the following lemma is straightforward.

LEMMA 4.13. Let χI and χJ be two vertices of Ok,n , let d be the number of
connected components of the symmetric difference of the filters corresponding to
I and J , and let αI , αJ ∈ {0, 1}d be the 0/1-vectors identifying χI and χJ as
vertices of F(I, J ). Then

• I, J are nonnesting if and only if {αI , αJ } = {(0, . . . , 0), (1, . . . , 1)}.
• I, J are noncrossing if and only if {αI , αJ } = {(0, 1, 0, . . .), (1, 0, 1, . . .)}.

Lemma 4.13 has the following consequence.
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Figure 6. Two paths in the dual grid of P11,24 and the corresponding four
components.

COROLLARY 4.14. With the same notation, let χX and χY be two vertices of
F(I, J ), and let αX , αY ∈ {0, 1}d be the 0/1-vectors identifying them as vertices
of F(I, J ). Then

• X, Y are nonnesting if and only if one of αX and αY is coordinatewise smaller
than the other.

• X, Y are noncrossing if and only if, αX and αY alternate between 0 and 1 in the
coordinates in which they differ.

This shows that if we restrict the triangulations induced by∆NN
k,n and∆NC

k,n to the
cube F(I, J ) they coincide with the following well known triangulations of this
cube.

• ∆NN
k,n induces the standard triangulation of the cube, understood as the order

polytope of an antichain. That is, it is obtained by slicing the cube along all
hyperplanes of the form xi = x j .

• ∆NC
k,n induces a flag triangulation whose edges are the 0/1-vectors that alternate

relative to one another. It can also be described as the triangulation obtained
slicing the cube by all the hyperplanes of the form

xi + · · · + x j = z
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for every pair of coordinates 1 6 i < j 6 d and for every z ∈ [ j − i]. We call
it the noncrossing triangulation of the cube.

REMARK 4.15. The triangulation of the cube induced by ∆NC
k,n was first

constructed by Stanley [Sta77] and then (as a triangulation of each of the
hypersimplices) by Sturmfels [Stu96]. Lam and Postnikov [LP07] showed the
two constructions to coincide.

Both the triangulation induced by ∆NN
k,n and ∆NC

k,n are images of the dicing
triangulation of an alcoved polytope for the root system Ad . Alternatively, one
can say they are (after a linear transformation) Delaunay triangulations of a
fundamental parallelepiped in the lattice A∗d . Dicing triangulations of alcoved
polytopes in type A are always regular, unimodular and flag [LP07].

Note that the nonnesting triangulation of Ok,n is also induced by hyperplane
cuts, but the noncrossing triangulation is not. This can be seen, for example, in
∆NC

2,5, see Figure 2 on page 4.

REMARK 4.16. The (dual graph) diameters of the standard and the noncrossing
triangulations of the cube F(I, J ) are easy to compute from the fact that they
are obtained by hyperplane cuts: the distance between two given maximal faces
equals the number of cutting hyperplanes that separate them.

In the standard triangulation every maximal face is separated from its opposite
one by all the

(d
2

)
hyperplanes, so the diameter equals

(d
2

)
. For the noncrossing

triangulation a slightly more complicated argument gives that the diameter is(d+1
3

)
. In both bounds, d 6 min{k, n − k} is the dimension of the cubical face

F(I, J ).

4.6. Ok,n as a Cayley polytope. Let ∆` = conv{v1, . . . , v`} be an (` − 1)-
dimensional unimodular simplex and let Q1, . . . , Q` be lattice polytopes in Rk .
We do not require the individual Qi ’s to be full dimensional, but we require it for
their Minkowski sum. The Cayley sum or Cayley embedding of the Qi ’s is the
(k + `)-dimensional polytope

C(Q1, . . . , Qk) := conv
{ k⋃

i=1

Qi × {vi}
}
⊂ Rk+`.

We show that for each of the k rows (or for each of the n−k columns) of the poset
Pk,n we can derive a representation of Ok,n as a Cayley sum. Let a ∈ [k] be fixed,
and for each b ∈ [0, . . . , n − k] let V a,b

k,n be the set of vectors from Vk,n that have
an a + b in their ath entry. In terms of tableaux, the vectors in V a,b

k,n correspond to
those tableaux that have a 0 in position(a, b) and a 1 in position (a, b+1). Denote
by Oa,b

k,n the convex hull of V a,b
k,n . We then have the following lemma.
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LEMMA 4.17. For every a ∈ [k],

Ok,n = C(Oa,0
k,n , . . . ,Oa,n−k

k,n ).

This has enumerative consequences for the numbers of nonnesting (that is,
standard Young) and noncrossing tableaux.

DEFINITION 4.18. Let Q1, . . . , Q` be an `-tuple of polytopes in Rk . For each
m = (m1, . . . ,m`) ∈ N` with

∑
m i = k (equivalently, for each monomial

of degree k in R[x1, . . . , x`]) call the coefficient of xm in the homogeneous
polynomial

vol(x1 Q1 + · · · + x`Q`),

the m-mixed volume of Q1, . . . , Q`. Here the volume is meant normalized to the
lattice. That is, unimodular simplices are considered to have volume 1.

We need the following consequence of the Cayley trick as given in [DRS10,
Theorem 9.2.18].

LEMMA 4.19. Let Q1, . . . , Q` ⊆ Rk be an `-tuple of polytopes and let ∆ be a
unimodular triangulation of C(Q1, . . . , Q`). Then, for each tuple m = (m1, . . . ,

m`) ∈ N` of sum k, the m-mixed volume of the tuple equals the number of maximal
faces of ∆ that have exactly mb + 1 vertices in each fibre {vb} × Qb.

Applied to the representation of Ok,n as a Cayley sum from Lemma 4.17 and
taking into account that both ∆NN

k,n and ∆NC
k,n are unimodular triangulations of Ok,n ,

the previous lemma has the following corollary.

COROLLARY 4.20. Fix an a ∈ [k] and let t = (t1, . . . , tn−k) be a vector with
a 6 t1 < t2 < · · · < tn−k 6 k(n − k) + a − k. From t we derive a partition
m = (m0, . . . ,mn−k) of k(n− k)− (n− k)− (n− k) by setting mb = tb+1− tb−1,
with the conventions t0 = 0 and tn−k+1 = k(n − k)+ 1.

Then the following numbers coincide:

• The number of maximal faces of ∆NN
k,n whose summing tableaux have their ath

row equal to t .

• The number of maximal faces of ∆NC
k,n whose summing tableaux have their ath

row equal to t .

• The m-mixed volume of the tuple Oa,0
k,n , . . . ,Oa,n−k

k,n .
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Note that the inequalities a 6 t1 < t2 < · · · < tn−k 6 k(n − k) + a − k in
the corollary are necessary and sufficient for t to appear as the ath row in some
standard tableau.

EXAMPLE 4.21. Consider the case k = 2 and n = 5. The nonnesting and
noncrossing complexes each have five maximal faces, corresponding to the
following tableaux:

∆NN
2,5 =

 1 2 3

4 5 6

1 2 4

3 5 6

1 2 5

3 4 6

1 3 4

2 5 6

1 3 5

2 4 6


∆NC

2,5 =
 1 2 3

2 4 6

1 2 4

2 5 6

1 2 5

3 5 6

1 3 4

3 4 6

1 3 5

4 5 6


As can be seen, the multisets of a-rows are the same in both complexes.

First rows = {123, 124, 125, 134, 135},
Second rows = {246, 256, 356, 346, 456},

Of course, symmetry under exchange of k and n−k implies that the same happens
for columns:

First columns = {12, 12, 13, 13, 14},
Second columns = {24, 25, 25, 34, 35},

Third columns = {36, 46, 46, 56, 56}.

5. Relation to the weak separation complex

5.1. The weak separation complex. Leclerc and Zelevinsky [LZ98]
introduced the complex of weakly separated subsets of [n] and showed that
its faces are the sets of pairwise quasicommuting quantum Plücker coordinates
in a q-deformation of the coordinate ring of the flag variety respectively the
Grassmannian. A geometric version of their definition is that two subsets X and
Y of [n] are weakly separated if, when considered as subsets of vertices in an
n-gon, the convex hulls of X\Y and Y\X are disjoint. If we restrict to X and Y
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of fixed size k then we are in the Grassmann situation and the following complex
was studied by Scott [Sco05, Sco06] as a subcomplex of the Leclerc–Zelevinsky
complex.

DEFINITION 5.1. Let I and J be two vectors in Vk,n . We say that I and J are
weakly separated if, considered as subsets of vertices of an n-gon, the convex
hulls of I\J and J\I do not meet. We denote by ∆Sep

k,n the simplicial complex of
subsets of Vk,n whose elements are pairwise weakly separated.

Scott conjectured that ∆Sep
k,n is pure of dimension k(n− k) and that it is strongly

connected (that is, its dual graph is connected). Both conjectures were shown to
hold by Oh et al. [OPS15], for the first one see also Danilov et al. [DKK10,
Proposition 5.9].

It is not hard to see that ∆Sep
k,n is a subcomplex of ∆NC

k,n and it is trivial to observe
that ∆Sep

k,n is invariant under cyclic (or, more strongly, dihedral) symmetry. Our
next results combines these two properties and states that ∆Sep

k,n is the ‘cyclic part’
of ∆NC

k,n . In the following statement, we denote by I+i the cyclic shift of I ∈ Vk,n

by the amount i , that is, the image of I under the map x → x + i considered as
remainders 1, . . . , n modulo n.

PROPOSITION 5.2. The weak separation complex∆Sep
k,n is equal to the intersection

of all cyclic shifts of the noncrossing complex ∆NC
k,n:

(1) If I and J are weakly separated, then they are noncrossing.

(2) If I+i and J+i are noncrossing for every i ∈ [n], then I and J are weakly
separated.

Proof. Assume that 1 6 a < b 6 k are indices such that for (i1, . . . , ik) and ( j1,

. . . , jk) in Vk,n we have i` = j` for a < ` < b and (ia, ib) and ( ja, jb) cross. Then
we must have ia, ib ∈ I\J and ja, jb ∈ J\I . Thus the convex hulls of I\J and
J\I intersect nontrivially and hence I and J cannot be weakly separated. This
completes the proof of (1).

Next, recall that we have seen in Proposition 1.8(iii) that the crossing or
noncrossing of I and J only depends on I4J , as does weak separability by
definition. Hence, there is no loss of generality in assuming that I and J
are complementary to one another. Think of I as a cyclic sequence of pluses
and minuses, indicating horizontal and vertical steps when you look at I as a
monotone path in the k×(n−k) grid (the complementarity assumption, of course,
implies k = n − k), compare Figure 1 in the introduction. Then I and J are
opposite sequences. Observe that I and its complement J are weakly separated
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if and only if I changes signs (considered cyclically) exactly twice. In other
words, I and J are weakly separated if and only if, after some cyclic shift, it
consists of n/2 pluses followed by n/2 minuses. Suppose that I is not of that
form, and it changes sign at least four times. Let a and b be the lengths of the
first two maximal constant subsequences. We then are in one of the following two
situations.

• If a > b, shifting the sequence by a − b we get that I starts with two constant
subsequences of the same length b. This implies that I crosses its complement.

• If a < b, shifting the sequence by 2a we get that I finishes with two constant
subsequences of the same length a. This implies as well that I crosses its
complement.

Statement (2) follows.

The fact that ∆Sep
k,n is a subcomplex of ∆NC

k,n was already observed in [PPS10,
Lemma 2.10]. Proposition 5.2 and the results from [OPS15] immediately imply
the following corollary.

COROLLARY 5.3. ∆Sep
k,n is a full-dimensional pure flag subcomplex of ∆NC

k,n .

5.2. A conjecture on the topology of ∆Sep
k,n. The (cyclic) intervals considered

in Proposition 2.10(v) were shown to be vertices in all maximal faces of ∆NC
k,n .

They are as well vertices in all maximal faces of ∆Sep
k,n . Thus it makes sense

to look at the reduced weak separation complex ∆̃Sep
k,n , which is a subcomplex

of ∆̃NC
k,n . Observe that both complexes coincide for k = 2. This follows for

example from Proposition 5.2 and the fact that ∆NC
2,n is cyclic symmetric. Hence,

∆̃
Sep
2,n is an (n − 4)-sphere, the dual associahedron. The topology of ∆̃Sep

k,n and its
generalizations motivated by the work of Leclerc and Zelevinsky [LZ98] has
been scrutinized in [HH11, HH13]. In the preliminary version [HH11] they
make detailed conjectures about the topology of the various complexes based
on computer experiments. In particular, they observe that for every k and n the
complex ∆̃Sep

k,n appears to have the same homology as an (n − 4)-sphere. We state
their conjecture in this case and remark that in the first version of the present
paper, we had independently come to the same conjecture. We learnt about the
preliminary version [HH11] from Vic Reiner after the first version of the present
paper was released on the arxiv.

CONJECTURE 5.4. For every 2 6 k 6 n− 2 the reduced complex ∆̃Sep
k,n of weakly

separated k-subsets of [n] is homotopy equivalent to the (n − 4)-sphere.
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[GP13] K. Górska and K. A. Penson, ‘Multidimensional Catalan and related numbers as
Hausdorff moments’, Probab. Math. Stat. 33(2) (2013), 265–274.

[HH11] D. Hess and B. Hirsch, ‘On the topology of weakly and strongly separated set
complexes’, preliminary version available at http://www.math.umn.edu/∼reiner/REU/
HessHirsch2011.pdf, (2011).

[HH13] D. Hess and B. Hirsch, ‘On the topology of weakly and strongly separated set
complexes’, Topology Appl. 160(2) (2013), 328–336.

[Hib87] T. Hibi, ‘Distributive lattices, affine semigroup rings and algebras with straightening
laws’, in Commutative Algebra and Combinatorics (Kyoto, 1985), Advanced Studies in
Pure Mathematics, 11 (North-Holland, Amsterdam, 1987), 93–109.

https://doi.org/10.1017/fms.2017.1 Published online by Cambridge University Press

http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
http://www.math.umn.edu/~reiner/REU/HessHirsch2011.pdf
https://doi.org/10.1017/fms.2017.1


Noncrossing sets and a Grassmann associahedron 49

[LR08] V. Lakshmibai and K. N. Raghavan, Standard Monomial Theory, Encyclopedia of
Mathematical Science, 137 (Springer, Berlin, 2008).

[LP07] T. Lam and A. Postnikov, ‘Alcoved polytopes I’, Discrete Comput. Geom. 38 (2007),
453–478.

[LZ98] B. Leclerc and A. Zelevinsky, ‘Quasi-commuting families of quantum Plücker
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