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Analytic rotated vector fields have four significant properties: as the rotated
parameter α changes, the amplitude of each stable (or unstable) limit cycle varies
monotonically, each semi-stable limit cycle bifurcates at most two limit cycles, the
isolated homoclinic loop (if exists) disappears while a unique limit cycle with the
same stability arises or no closed orbits arise oppositely, and a unique limit cycle
arises near the weak focus (if exists). In this paper, we prove that the four properties
remain true for a rotated family of generalized Liénard systems having finitely many
switching lines. Furthermore, we discuss variational exponent and use it to formulate
multiplicity of limit cycles. Then we apply our results to give exact number of limit
cycles to a continuous piecewise linear system with three zones and answer to a
question on the maximum number of limit cycles in an SD oscillator.
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1. Introduction

Consider a planar differential system

dx
dt

= P (x, y, α),
dy
dt

= Q(x, y, α), (1.1)

parameterized by α ∈ I (an interval of R), and use (P (x, y, α), Q(x, y, α)) to present
its vector field, where functions P,Q, ∂P/∂α, ∂Q/∂α are Lipschitzian in D × I and
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D ⊂ R2 is a connected open set. The vector field (P (x, y, α), Q(x, y, α)) is called a
complete family of rotated vector fields with a rotated parameter α if the following
conditions hold:

(D1) Equilibria fixed: The number and location of equilibria are fixed as α varies.

(D2) Direction fixed: (P (x, y, α), Q(x, y, α)) rotates counter-clockwise at any reg-
ular point (x, y) as the rotated parameter α increases.

(D3) Symmetrically periodic: P,Q are periodic functions in α with minimum period
2π, and (P (x, y, α+ π), Q(x, y, α+ π)) = −(P (x, y, α), Q(x, y, α)).

This concept, originated by Duff ([8]) in 1953, was proved to have the following
properties: (DR1) the limit cycles L(α1) and L(α2) of the vector fields with differ-
ent α1 and α2 respectively in the family do not intersect each other; (DR2) every
simple limit cycle expands or contracts monotonically as α varies monotonically;
(DR3) every semi-stable limit cycle splits into a stable cycle and an unstable one
when α increases or decreases, but disappears when α varies in the opposite direc-
tion; (DR4) the outer boundary and the inner one of the annulus R covered by
all limit cycles L(α), α ∈ I, i.e., R := {(x, y) ∈ R2 : (x, y) ∈ L(α), α ∈ I}, surround
an equilibrium each. These properties attracted great attentions (see e.g. [3, 9, 12,
21, 22, 24, 25, 28–30]) to rotated vector fields because they can be used to dis-
cuss the non-existence and the uniqueness of limit cycles as well as bifurcations of
heteroclinic loops.

Perko ([20, 23]) weakened Duff’s complete version to an uncomplete one, not
requiring the symmetric periodicity but allowing the vector field not to rotate on
an analytic curve Ω(x, y) = 0 not having a branch congruent to a limit cycle of
(1.1). He called (P (x, y, α), Q(x, y, α)) a family of rotated vector fields (mod Ω = 0)
with the rotated parameter α if the following conditions hold:

(P1) Equilibria fixed: the same as (D1).

(P2) Direction fixed: (P (x, y, α), Q(x, y, α)) rotates counter-clockwise at any reg-
ular point (x, y) as the rotated parameter α increases except on the curve
Ω(x, y) = 0.

Assuming that the family of rotated vector fields is analytic in (x, y, α), he proved
in [23, 26] the following results:

• (PR1) If the rotated vector field with α = α0 exhibits a limit cycle Γ0 of
odd multiplicity then the cycle remains for α := α0 + ε with small enough |ε|
and expands or contracts monotonically as ε increases (see [26, Theorem 1 of
Section 6 of Chapter IV]).

• (PR2) If the rotated vector field with α = α0 exhibits a limit cycle Γ0 of even
multiplicity then, as the parameter α increases or decreases, Γ0 splits into two
simple limit cycles Γ−

α and Γ+
α , where the inner one Γ−

α contracts and the outer
one Γ+

α expands, but disappears as α varies oppositely (see [26, Theorem 2 of
Section 6 of Chapter IV]).
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• (PR3) If the origin O of the rotated vector field with α = α0 is a weak focus
then a unique limit cycle occurs in a small neighbourhood of O as α varies
from α0 with the change of stability at O (see [26, Theorem 5 of Section 6 of
Chapter IV]) and, moreover, the limit cycle is of the same stability as the weak
focus at the origin when α = α0.

• (PR4) If the rotated vector field with α = α0 has an isolated homoclinic
loop Γ∗ then, as the parameter α increases or decreases, the loop disappears
while a unique limit cycle Γα with the same stability arises near Γ∗, but no
closed orbits arise as α varies oppositely (see [26, Theorem 3 of Section 6 of
Chapter IV]).

However, the above properties (PR1)–(PR4) may not be true if the rotated vector
field is not analytic. The two examples of piecewise-defined families given in § 2,
which are smooth but not analytic and satisfy the rotated conditions, show that
a limit cycle of odd multiplicity may produce new limit cycles and a limit cycle
of even multiplicity may produce more than two limit cycles, which do not match
(PR1) and (PR2) separately.

In this paper, we investigate rotated vector fields of piecewise analytic generalized
Liénard form and see which one of results (PR1)–(PR4) remains true. For this
purpose, we consider the family of generalized Liénard equations

ẍ+ f(x, ẋ, α)ẋ+ g(x) = 0 (1.2)

with non-analytic functions f and g in x or ẋ such that its corresponding planar
vector field is rotated with the parameter α ∈ I. In § 2 we give our main results
on the relation between variational exponent and multiplicity of hyperbolic limit
cycles (which was not obtained for analytic rotated vector fields), non-hyperbolic
limit cycles and semi-stable limit cycles of the vector field of (1.2) as α varies and
answer to the questions:

(Q1) Can we find conditions such that the aforementioned results (PR1)–(PR4)
still hold?

(Q2) Can we give an expanding (or contracting) rate for limit cycles in terms of
the rotated parameter α?

(Q3) Can we use the rotated rule to determine the number of bifurcated limit
cycles for a class of non-analytic systems?

In § 3 we further investigate the number of limit cycles bifurcated from a weak
focus or a homoclinic loop in rotated vector fields. In § 4 and 5 we apply our
main results obtained in § 2 to an SD oscillator and a continuous piecewise linear
differential system with three zones and asymmetry for the number of limit cycles,
respectively.
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2. Main results

Let us begin this section from the family

dx
dt

= X̃n(x, y, α) := Xn(x, y) cosα− Yn(x, y) sinα,

dy
dt

= Ỹn(x, y, α) := Xn(x, y) sinα+ Yn(x, y) cosα
(2.1)

with the functions

Xn(x, y) :=

⎧⎪⎨
⎪⎩

−y + x tan

(
(r − r0)2n+1

(
sin

1
r − r0

+ 2

))
, as r �= r0,

−y, as r = r0,

Yn(x, y) :=

⎧⎪⎨
⎪⎩

x+ y tan

(
(r − r0)2n+1

(
sin

1
r − r0

+ 2

))
, as r �= r0,

x, as r = r0,
(2.2)

or

Xn(x, y) :=

⎧⎪⎨
⎪⎩

−y + x tan

(
(r − r0)2n

(
sin

1
r − r0

+ 2

))
, as r �= r0,

−y, as r = r0,

Yn(x, y) :=

⎧⎪⎨
⎪⎩

x+ y tan

(
(r − r0)2n

(
sin

1
r − r0

+ 2

))
, as r �= r0,

x, as r = r0,

(2.3)

where r :=
√
x2 + y2 is near r0 > 0 and n is a positive integer. Note that system

(2.1) with (2.2) (resp. (2.3)) is continuous and even Cn (resp. Cn−1) but not analytic
because its derivative is Cn−1 (resp. Cn−2) by an inductive proof from n = 1.

We first consider family (2.1) with (2.2), which is a Duff’s complete family of
rotated vector fields with the rotated parameter α ∈ [−π, π) and therefore a Perko’s
family because

(X̃n(x, y, α+ π), Ỹn(x, y, α+ π)) = −(X̃n(x, y, α), Ỹn(x, y, α)) (2.4)

and

det

⎛
⎝ X̃n(x, y, α) Ỹn(x, y, α)

∂X̃n(x, y, α)
∂α

∂Ỹn(x, y, α)
∂α

⎞
⎠ =

(
X̃n(x, y, α)

)2 +
(
Ỹn(x, y, α)

)2
> 0 (2.5)

at each regular point. For α = 0, X̃n(x, y, 0) = Xn(x, y) and Ỹn(x, y, 0) = Yn(x, y).
Then system (2.1) with (2.2) as α = 0, denoted by (E1), has a unique limit cycle r =
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r0, which is of multiplicity 2n+ 1, because the function V (x, y) := x2 + y2 satisfies

dV
dt

|(E1) = 2r
dr
dt

|(E1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(x2 + y2) tan(
(r − r0)2n+1

(
sin

1
r − r0

+ 2

))
> 0, as r > r0,

0, as r = r0,
2(x2 + y2) tan(

(r − r0)2n+1

(
sin

1
r − r0

+ 2

))
< 0, as r < r0

for r near r0. On the other hand, for arbitrary m ∈ Z+ there exist α > 0 and three
values r1 = r0 + 2/(5π + 4mπ), r2 = r0 + 2/(π + 4mπ) and r3 = r0 + 2/(−π +
4mπ) such that 3(r1 − r0)2n+1 < α < 3(r2 − r0)2n+1 < 3(r3 − r0)2n+1 and r1 <
r2 < r3. Thus, it is not difficult to check that

dr
dt

=

{
r cosα

{
tan

(
(r − r0)2n+1

(
sin

1
r − r0

+ 2

))
− tanα

}
, as r �= r0,

−r sinα, as r = r0

and

dr
dt

⎧⎪⎪⎨
⎪⎪⎩
< 0, as r � r0,
< 0, as r = r1,
> 0, as r = r2,
< 0, as r = r3.

By the mean value theorem, dr/dt has two zeros, one lies in (r1, r2) and the other
lies in (r2, r3), which implies that system (2.1) has at least two limit cycles in a
small neighbourhood of r = r0 if the positive integer m is large enough, a result
different from (PR1). This implies that for an arbitrary ε-neighbourhood of the
circle r = r0 there exists a number N ∈ Z+ such that the circle r = ri for i = 1, 2, 3
lies in the ε-neighbourhood of r = r0 if m > N .

Family (2.1) with (2.3) is also a Duff’s complete family of rotated vector fields
with the rotated parameter α ∈ [−π, π) and therefore a Perko’s family because (2.4)
and (2.5) hold for this system at each regular point. Then system (2.1) with (2.3)
as α = 0, denoted by (E2), has a unique limit cycle r = r0, which is of multiplicity
2n and semi-stable, because

dV
dt

|(E2) = 2r
dr
dt

|(E2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(x2 + y2) tan(
(r − r0)2n

(
sin

1
r − r0

+ 2

))
> 0, as r > r0,

0, as r = r0,
2(x2 + y2) tan(

(r − r0)2n

(
sin

1
r − r0

+ 2

))
> 0, as r < r0
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for r near r0. On the other hand, for α �= 0 we have

dr
dt

=

⎧⎪⎨
⎪⎩
r cosα

(
tan

(
(r − r0)2n

(
sin

1
r − r0

+ 2

))
− tanα

)
, as r �= r0,

−r sinα, as r = r0.

Since dr/dt > 0, there is no limit cycle as α < 0. For α = ε > 0 is small, we can
obtain two limit cycles by a similar discussion as for system (2.1) with (2.2) in both
cases r > r0 and r < r0 near r = r0 respectively, which implies that system (2.1)
with (2.3) has at least four limit cycles in a small neighbourhood of r = r0, a result
different from (PR2).

The above two examples show that the properties (PR1) and (PR2) do not
always hold for some non-analytic rotated vector fields, which suggest considering
some non-analytic rotated vector fields for those properties (PR1)–(PR4). In this
paper, we discuss the generalized Liénard equation (1.2), which is equivalent to the
following planar system

ẋ = y =: X(x, y, α),

ẏ = −g(x) − f(x, y, α)y =: Y (x, y, α),
(2.6)

where (x, y) ∈ D, a connected open set in R2. The system defines the corresponding
vector field Lα := (y,−g(x) − f(x, y, α)y).

Let a1(resp. a2) denote the minimum (resp. maximum) for abscissas of points in
D, which may be −∞ (resp. +∞). We need the following hypotheses:

(H 1) Piecewise analytic : The function g(x) is piecewise analytic on (a1, x1) ∪
(x1, x2) ∪ (x2, x3) ∪ . . . ∪ (xn, a2), and functions f(x, y, α), ∂f(x, y, α)/∂y
are piecewise analytic on D1 ∪D2 ∪ . . . ∪Dn+1, where D1 = {(x, y) ∈ D :
a1 < x < x1}, Di = {(x, y) ∈ D : xi−1 < x < xi} for i = 2, . . . , n and Dn+1 =
{(x, y) ∈ D : xn < x < a2}.

(H 2) (H2) Rotated

∂f(x, y, α)
∂α

� 0 (or � 0) (2.7)

in D and the equality in (2.7) does not hold on an entire closed orbit of (2.6).

Note that D = D1 ∪ D̄2 ∪ . . . ∪ D̄n ∪Dn+1, where D̄i denotes the closure of Di.
Without loss of generality, in this paper we only consider the case ‘�’ in (2.7).
Otherwise, we can make the transformation (y, t) → (−y,−t). Inequality (2.7) is
not very restrictive because, for example, one can easily check that the function
f(x, y, α) := αx2my2n + f̂(x, y) with non-negative integers m,n and a piecewise
analytic function f̂(x, y) satisfies ∂f(x,y,α)

∂α = x2my2n � 0, i.e. inequality (2.7). The
following proposition indicates that the generalized Liénard system (2.6) is rotated
if inequality (2.7) is satisfied.

Proposition 2.1. Lα with the hypotheses (H1) and (H2) satisfies conditions (P1)
and (P2) in Perko’s definition.
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Proof. One can check that (P1) is true because all equilibria lie at the x-axis and
the abscissas of all equilibria are the roots of g(x) = 0 which are independent of
α. In order to check (P2), let θ denote the angle from the x-axis to the vector
(X(x, y, α), Y (x, y, α)) of system (1.1) in counter-clockwise direction. Then

∂θ

∂α
=

∂

∂α
(arctan(Y/X)) =

1
X2 + Y 2

∣∣∣∣∣
X Y
∂X

∂α

∂Y

∂α

∣∣∣∣∣ .

For Lα, we have X(x, y, α) = y and Y (x, y, α) = −g(x) − f(x, y, α)y. Then, it
implies that the vector (X(x, y, α), Y (x, y, α)) rotates counter-clockwise at a regular
point P0(x, y) as α varies since

∣∣∣∣∣
X(x, y, α) Y (x, y, α)
∂X

∂α
(x, y, α)

∂Y

∂α
(x, y, α)

∣∣∣∣∣ =
∣∣∣∣∣
y −g(x) − f(x, y, α)y

0 −∂f(x, y, α)
∂α

y

∣∣∣∣∣ = −∂f(x, y, α)
∂α

y2 < 0

at the regular point P0(x, y) for all α ∈ I except in the curves Ω(x, y) :=
∂f(x,y,α)

∂α y2 = 0. Thus, condition (P2) holds. �

As indicated in the theory of non-analytic dynamical systems ([1, 15]), limit
cycles of piecewise analytic vector field Lα are referred to the three types: crossing
limit cycle (limit cycle intersecting a switching manifold transversely and only con-
taining isolated crossing points of the switching manifold), grazing limit cycle (limit
cycle tangent to a switching manifold) and sliding limit cycle (a curve segment of
the limit cycle lies on a switching manifold). System (2.6) has no sliding limit cycles
because only one point {(xi, 0)} lies in the sliding set of each switching line x = xi.
Thus, we only discuss crossing limit cycles and grazing limit cycles.

The first equation of (2.6) shows that the x-axis is a unique vertical isocline
of the vector field Lα. Then each limit cycle Γα of system (2.6) has exactly two
intersection points with the x-axis, denoted by Q0 : (xl, 0) and P0 : (xr, 0) with
xl < xr. Without loss of generality, in what follows we assume that Γα is a crossing
limit cycle; otherwise, we can research similarly because any small vicinity of the
grazing limit cycle Γα (where Γα is not included) only possibly contains the crossing
points (see the definition in [1, 16]) of the switching line x = xi for i = 1, . . . , n.
Since any small neighbourhood of the crossing limit cycle Γα only possibly contains
the crossing points of the included switching lines, the solution of system (2.6) is
Lipschitzian ([2]). Then, the well-known existence and uniqueness theorem and the
continuous dependence theorem of solutions remain true for system (2.6) in the
small neighbourhood of Γα. Obviously, the x-axis is the normal of Γα at P0 and
Q0. In this sense, we call the right-hand intersection point P0 : (xr(α), 0) the right-
endpoint of the limit cycle Γα and regard xr, denoted by xr(α) for the dependence
on the rotated parameter α, as the x-radius of the cycle. By a translation, we can
assume that xr(α) = 0 without loss of generality. Thus, g(0) > 0 and g(xl) < 0.
Consider variation ε of α and suppose that the vector field Lα+ε has a limit cycle
Γα+ε with right-endpoint P̃0 : (x̃r(α+ ε), 0). Then the difference between x-radii
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x̃r(α+ ε) and xr(α) depends on ε, i.e. the function

Δα(ε) := x̃r(α+ ε) − xr(α)

has the same smoothness as xr(α) or x̃r(α). By the continuity, Δα(ε) → 0 as ε→ 0.
In the following theorem 2.3, we prove that

Δα(ε) = ζε� + o(ε�) as ε→ 0+ (2.8)

for a certain � ∈ R+. Clearly, the amplitude of the limit cycle Γα expands outwards
if ζ > 0 or inwards (or say contracts) if ζ < 0 with the variational exponent �.

On the other hand, we also consider those spiral orbits near limit cycles. Let P
denote (x0, 0), where |x0| < δ and δ > 0 is small. By the continuous dependence
theorem, the orbit ϕ(P, I+) starting from P intersects the x-axis again for the first
time at a point P1 = (x1, 0), as shown in figure 1. Here, without loss of generality,
we only show the case of the external neighbourhood of Γ in figure 1. Thus, we
can define the map P : P �→ P1 (or x0 �→ x1 equivalently) on the x-axis, called a
Poincaré map, and the successive function � between P and P(P ), i.e.

�(x0) := x1 − x0. (2.9)

As indicated in Definition 2 of [26, p.216] or Section 2 of [30, Chapter 4], Γα

is externally stable (resp. unstable) when there is a sufficiently small δ > 0 such
that �(x) < 0 (resp. > 0) for all x ∈ (0, δ). Similarly, Γα is internally stable (resp.
unstable) if �(x) > 0 (resp. < 0) for all x ∈ (−δ, 0). Γα is stable (resp. unstable) if
it is both externally stable (resp. unstable) and internally stable (resp. unstable).
Naturally, we have �(0) = 0 and �(x) = xkh(x), where k > 0 is a real number and h
is a continuous function such that h(0) �= 0. Γα is called a limit cycle of multiplicity
k (which may not be an integer) if

�(x0) = ckx
k
0 + o(|x0|k), ck �= 0. (2.10)

In particular, if system (2.6) is smooth then k ∈ Z+ and condition (2.10) is equiv-
alent to the following �(0) = �′(0) = · · · = �(k−1)(0) = 0 and �(k)(0) �= 0 by [30,
Chapter 4.2, Definition 2.1 ]. Then, Γα is called a simple or hyperbolic limit
cycle for k = 1; for odd k, Γα is stable (resp. unstable) if �(k)(0) < 0 or ck < 0
(resp.�(k)(0) > 0 or ck > 0); for even k, Γα is semi-stable. The multiplicity k is an
integer if the system is smooth (see Theorem 7.19 in [11, p.196]), but may not be
integer for piecewise analytic systems. For example, the following system

dx
dt

= y − x(x2 + y2 − 1)p/q,
dy
dt

= −x− y(x2 + y2 − 1)p/q

with an integer p and an odd number q has the limit cycle x2 + y2 = 1, which
is of multiplicity p/q because one can reduce the system to the equation dr

dt =
−r(r2 − 1)p/q, where r =

√
x2 + y2. For simplicity, let p/q = 5/3. Then, for an

initial value (r, θ) = (1 + ε, 0) with arbitrarily small |ε|, near the cycle r = 1 we can
use the method of indeterminate coefficients to give the successive function

�(ε) = ckε
k + o(|ε|k) = εk(ck + o(1)),

where k = 5/3 and ck = −28/3π.
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Figure 1. The orbits close to limit cycle Γ for ε > 0.

Unlike (2.10), Γα is called an externally (or internally) compound limit cycle
(see [30, Chapter 4.2]) if for arbitrarily given small δ > 0 there are two points
x0, x̃0 ∈ (0, δ) (or ∈ (−δ, 0)) such that

P(x0) = x0 and P(x̃0) �= x̃0,

i.e. near a side of Γα there is not a periodic annulus but there is a sequence of
periodic solutions approaching the cycle Γα. Although any analytic system does not
have a compound limit cycle ([30, Theorem 2.1 of Chapter 4]), a piecewise analytic
Liénard system may have. For example, consider system (2.6) with g(x) = x and

f(x, y) =

⎧⎨
⎩(x2 + y2 − 1)k sin

2π
x2 + y2 − 1

, as x2 + y2 �= 1,

0, as x2 + y2 = 1,
(2.11)

where k is a positive integer. In the polar coordinates (x, y) = (r cos θ, r sin θ), we
obtain

dr
dt

= −r sin2 θf(r cos θ, r sin θ)

=

{
−r sin2 θ(r2 − 1)k sin

2π
r2 − 1

, as r �= 1,

0, as r = 1.

It implies that system (2.6) with g(x) = x and f(x) exhibited in (2.11) has a com-
pound limit cycle x2 + y2 = 1 because it has closed orbits x2 + y2 = 1 ± 2/n for
all integers n � 3, but for each n � 3 in the annular regions

√
1 + 2/(n+ 1) < r <√

1 + 2/n and
√

1 − 2/n < r <
√

1 − 2/(n+ 1) system (2.6) with g(x) = x and
f(x) exhibited in (2.11) has no closed orbits. Otherwise, integrating along a closed
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Figure 2. The curvilinear coordinates in the annulus S(Γ, ε).

orbit γ (if exists in one of the annular region), we obtain a contradiction

0 =
∮

γ

dr = r(2π) − r(0) =
∫ 2π

0

dr
dθ

dθ

=
∫ 2π

0

r sin2 θ(r2 − 1)k sin 2π
r2−1

1 + sin θ cos θ(r2 − 1)k sin 2π
r2−1

dθ �= 0

because sin 2π
r2−1 �= 0 and 1 + sin θ cos θ(r2 − 1)k sin 2π

r2−1 > 0.
The above two examples show that compound limit cycle and limit cycle of frac-

tional multiplicity are both possible for piecewise analytic systems, but neither of
them happens in a Liénard system (2.6) with the specific piecewise analyticity (H1).

Lemma 2.2. Any limit cycle of the generalized Liénard system (2.6) with hypothesis
(H1) is neither compound nor of fractional multiplicity.

Proof. Assume that system (2.6) with hypothesis (H1) has a limit cycle Γ, as shown
in figure 2. For compound structure and fractional multiplicity, we need to con-
sider a small annulus surrounding Γ. Since the function g is piecewise analytic on
(a1, x1) ∪ (x1, x2) ∪ (x2, x3) ∪ . . . ∪ (xn, a2), and functions f(x, y, α), ∂f(x, y, α)/∂y
are piecewise analytic on D1 ∪D2 ∪ . . . ∪Dn+1, there is a small ε > 0 such that
each normal at any P ∈ Γ restricted to the open annular neighbourhood S(Γ, ε) of
Γ with the radius ε is non-contact. Thus, we can set up curvilinear coordinates in
the annulus S(Γ, ε). Each point P in S(Γ, ε) has a corresponding point P ∈ Γ such
that P lies on the normal at P .
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Note that a point on limit cycle Γ can be written as

(x, y) = (ϕ(s), ψ(s)),

where s is the arclength (parameter) from P to a specified point in the clockwise
direction. Let p be the length from P to P positively in the outward direction.
Thus, as shown in [30, Chapter 4.2], we can represent the point P : (x, y) in the
curvilinear coordinates s and p in each region Dj (j = 1, 2, . . . , n+ 1) as

x = ϕ(s) − pψ′(s), y = ψ(s) + pϕ′(s),

where

ϕ′(s) =
dx
ds

=
X0√

X0
2 + Y0

2
, ψ′(s) =

dy
ds

=
Y0√

X0
2 + Y0

2
,

X0 = X(ϕ(s), ψ(s), α), Y0 = Y (ϕ(s), ψ(s), α).

Therefore, we have

dy
dx

=
ψ′(s) + dp

dsϕ
′(s) + pϕ′′(s)

ϕ′(s) − dp
dsψ

′(s) − pψ′′(s)
=
Y (ϕ(s) − pψ′(s), ψ(s) + pϕ′(s), α)
X(ϕ(s) − pψ′(s), ψ(s) + pϕ′(s), α)

,

implying that

dp

ds
=
Y ϕ′ −Xψ′ − p(Xϕ′′ + Y ψ′′(s))

Xϕ′ + Y ψ′ = F (s, p, α), (2.12)

where

ϕ′′(s) =
−Y0√

X0
2 + Y0

2

(
X0

2 ∂Y

∂x
|p=0 +X0Y0

(
∂Y

∂y
|p=0 − ∂X

∂x
|p=0

)
− Y0

2 ∂X

∂y
|p=0

)
,

ψ′′(s) =
X0√

X0
2 + Y0

2

(
X0

2 ∂Y

∂x
|p=0 +X0Y0

(
∂Y

∂y
|p=0 − ∂X

∂x
|p=0

)
− Y0

2 ∂X

∂y
|p=0

)
.

Having the above curvilinear coordinates, we first consider the case that Γ does
not intersect any switching line. Let P0 : (0, p0) ∈ PP and p0 be the length from
P to P0 positively in the outward direction, as shown in figure 2. It follows from
(2.12) that the Poincaré map P satisfies

P(p0) = p(l, p0) = p0 +
∫ l

0

F (s, p(s, p0), α)ds,

where l is the total arc length of Γ.
Second, consider the case that Γ intersects only one switching line x = xj . It is

clear that Γ is divided by x = xj into two parts: left part and right part. Consider
P0 : (0, p0) to be the initial point of the Poincaré map on x = xj , and let (l1, p1)
(resp. (l2, p2)) denote the first intersection point of the positive-(resp. negative-)
half orbit with x = xj . Without loss of generality, we can assume that the segment
PP0 on the switching line x = xj is vertical to Γ. Otherwise, a rotation can achieve
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this because the switching line x = xj is transversal to Γ. Then, we can obtain the
two half Poincaré maps

P1(p0) = p1(l, p0) = p0 +
∫ l1

0

F (s, p(s, p0), α)ds

and

P2(p0) = p2(l, p0) = p0 −
∫ l

l1

F (s, p(s, p0), α)ds,

as shown in figure 3. Notice that the denominator of the right-hand side of (2.12)
does not equal zero since X2(ϕ(s), φ(s), α) + Y 2(ϕ(s), φ(s), α) �= 0. Moreover, the
vector field of system (2.6) is analytic for x < xj and x > xj in S(Γ, ε). Therefore,

p1(l, p0) = p0 +
∞∑

i=1

aip0
i and p2(l, p0) = p0 +

∞∑
i=1

bip0
i.

Thus, we obtain the following successive function

�(p0) = P1(p0) − P2(p0) =
∞∑

i=1

(ai − bi)p0
i. (2.13)

The coefficients ai − bi in the above series have the two cases:

(i) ai − bi = 0 for each positive integer i ∈ Z+;

(ii) there exists a positive integer i1 such that ai1 − bi1 �= 0 and aj − bj = 0 for
all 1 � j < i1.

In case (i) we have a periodic annulus and no limit cycles exist. In case (ii), Γ is
a limit cycle of multiplicity i1 ∈ Z+ and there are at most i1 zeros of �(p0) near
the origin by the Malgrange preparation theorem ([6]). Consequently, limit cycle Γ
is not compound and has a multiplicity i1 ∈ Z+ if Γ intersects only one switching
line.

In addition, if the crossing limit cycle Γ intersects two or more switching lines,
we can prove our result similarly as we do for the case of only one switching line.
Actually, if Γ intersects n (n > 1) switching lines, a small neighbourhood of the
crossing limit cycle Γ only possibly contains the crossing points of the switching
lines. Thus, we can present the Poincaré map in 2n pieces, each of which is a map
from a witching line to the next similar to (2.13). Since Γ intersects transversally
the switching lines, each piece of the Poincaré map is well defined and close to the
corresponding segment of the orbit Γ in the corresponding zone Di between the
executive switching lines. In contrast, if Γ is a grazing limit cycle, there are at
most two grazing points, at which Γ intersects two switching lines at the x-axis.
Therefore, any small vicinity of Γ (where Γ is not included) only possibly contains
the crossing points of the switching lines and thus the successive function can
be constructed similarly as we did above for the case that Γ intersects only one
switching line. �
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Figure 3. The successive function �(p0) = P1(p0) − P2(p0).

Having the above lemma, we are ready to prove the following theorem, which
shows that properties (PR1) and (PR2), obtained by Perko ([23, 26]) for analytic
families of rotated vector field, remain true for Liénard system (2.6) with hypotheses
(H1) and (H2). Note that system (2.6) with hypotheses (H1) and (H2) is rotated
in Perko’s definition by proposition 2.1. Additionally, we give the relation between
variational exponent and multiplicity of limit cycles.

Theorem 2.3. Assume that system (2.6) satisfies hypotheses (H1) and (H2) and
has a limit cycle Γ of multiplicity k for α = α0. Then

(a) When k is odd, the cycle Γ still exists, denoted by Γα, and expands
inwards (resp. outwards) monotonically as α := α0 + ε increases if Γ is stable
(resp. unstable), where ε > 0 is sufficiently small. Moreover, the variational
exponent of the cycle Γα is ε2/k.

(b) When k is even, Γ splits into exact two simple limit cycles Γ±
α , one of which

is stable but the other is unstable as the parameter α varies in one direction
and Γ disappears as α varies in the opposite direction. Moreover, the outer
limit cycle Γ+

α expands outwards and the inner one Γ−
α expands inwards as

α varies. Additionally, the variational exponent of the two cycles Γ±
α is ε2/k,

where α = α0 + ε.

Proof. By lemma 2.2, k is a positive integer. In the following, we discuss the distance
between an orbit without perturbation and the orbit under perturbation near a limit
cycle. From the distance we can further investigate zeros of successive function and
the relation between variational exponent and multiplicity of limit cycles.

Without loss of generality, we only discuss the case that the limit cycle Γ is
externally stable as α = α0, i.e. those points P0, P1 and P defined by the Poincaré
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map and the successive function � (see (2.9) and figure 1) are ranked by 0 < x1 < x0.
Otherwise, Γ is externally unstable, for which we make a time-rescaling t→ −t, so
that the limit cycle of the rescaled system is externally stable.

We always let Q : (xQ, yQ) be a general point Q. Notice that the closed orbit Γ
has two intersection points P0 and Q0 with the x-axis. Moreover, the orbit P̂Q1P1

starts from P : (x0, 0), passes through Q1 : (xQ1 , 0) and returns the positive x-axis
at P1 : (x1, 0) such that xQ1 < 0 < xP1 < xP , as shown in figure 1. We consider the
perturbed system (2.6)|α=α0+ε and let ̂Q3Q1Q2 be the orbit of system (2.6)|α=α0+ε

crossing Q1 and having two intersection points Q2 and Q3 with the positive x-axis.
For simplicity, let

x12 := min{x1, xQ2} and x03 := min{x0, xQ3}.

For x ∈ (xQ1 , x12), let

z1 := ỹε(x) − ỹ0(x), (2.14)

where y = ỹ0(x) and y = ỹε(x) represent the orbit segments Q̂1P1 and Q̂1Q2,
respectively. For x ∈ (xQ1 , x03), let

z2 := ŷε(x) − ŷ0(x), (2.15)

where y = ŷ0(x) and y = ŷε(x) represent the orbit segments P̂Q1 and Q̂3Q1,
respectively. Moreover, let

P2 =
{

(x12, ỹ0(x12) if x1 � xQ2 ,
(x12, ỹε(x12) if x1 < xQ2 ,

P3 =
{

(x03, ŷε(x12) if x0 � xQ3 ,
(x03, ŷ0(x12) if x0 > xQ3 .

By the mean value theorem, we see from the equations ỹε(xQ1) = ỹ0(xQ1) = 0 that

z1(x) = z1(x) − z1(xQ1)

= {ỹε(τ) − ỹ0(τ)} |τ=x
τ=xQ1

=
∫ x

xQ1

(
−g(τ) − f(τ, ỹε(τ), α+ ε)ỹε(τ)

ỹε(τ)
−

−g(τ) − f(τ, ỹ0(τ), α)ỹ0(τ)
ỹ0(τ)

)
dτ

=
∫ x

xQ1

(
−g(τ)
ỹε(τ)

+
g(τ)
ỹ0(τ)

− f(τ, ỹε(τ), α+ ε) + f(τ, ỹ0(τ), α+ ε)

− f(τ, ỹ0(τ), α+ ε) + f(τ, ỹ0(τ), α)

)
dτ
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=
∫ x

xQ1

(
−g(τ)
ỹε(τ)

+
g(τ)
ỹ0(τ)

− ∂f(τ, ỹ∗(τ), α+ ε)
∂y

z1(τ)

− ∂f(τ, ỹ0(τ), α+ ε1)
∂α

ε

)
dτ

= h1(x) +
∫ x

xQ1

z1(τ)h2(τ)dτ, (2.16)

where ỹ∗ lies between ỹ0 and ỹε, ε1 lies between 0 and ε, and

h1(x) := −ε
∫ x

xQ1

∂f(τ, ỹ0(τ), α+ ε1)
∂α

dτ, h2(x) :=
g(x)

ỹ0(x)ỹε(x)

− ∂f(τ, ỹ∗(τ), α+ ε)
∂y

.

By (2.16),

h2(x)z1(x) = h2(x)h1(x) + h2(x)
∫ x

xQ1

z1(τ)h2(τ)dτ,

indicating that the function h3(x) :=
∫ x

xQ1
z1(τ)h2(τ)dτ satisfies

dh3(x)
dx

= z1(x)h2(x) = h2(x)h3(x) + h1(x)h2(x). (2.17)

By the variation of constant formula, we get from (2.17) that

h3(x) =
∫ x

xQ1

h1(τ)h2(τ) exp
{∫ x

τ

h2(η)dη
}

dτ. (2.18)

Since h1(xQ1) = 0, we see from (2.7), (2.16) and (2.18) that for all x ∈ (xQ1 , x12)

z1(x) = h1(x) +
∫ x

xQ1

h1(τ)h2(τ) exp
{∫ x

τ

h2(η)dη
}

dτ

= h1(x) −
∫ x

xQ1

h1(τ) d

(
exp

{∫ x

τ

h2(η)dη
})

= h1(xQ1) exp

{∫ x

xQ1

h2(η)dη

}
+
∫ x

xQ1

h′1(τ) exp
{∫ x

τ

h2(η)dη
}

dτ

= −ε
∫ x

xQ1

∂f(τ, ỹ0(τ), α+ ε1)
∂α

exp
{∫ x

τ

h2(η)dη
}

dτ < 0.

(2.19)

Similarly, for all x ∈ (xQ1 , x03) we can obtain

z2(x) = −ε
∫ x

xQ1

∂f(τ, ŷ0(τ), α+ ε2)
∂α

exp
{∫ x

τ

h4(η)dη
}

dτ < 0, (2.20)
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where ε2 ∈ (0, ε) and

h4(x) :=
g(x)

ŷ0(x)ŷε(x)
− ∂f(τ, ŷ∗(τ), α+ ε)

∂y

for ŷ∗ lying between ŷ0 and ŷε.
Construct an energy function

E(x, y) =
∫ x

0

g(s)ds+
y2

2
. (2.21)

Then
dE
dt

= −f(x, y, α)y2 (2.22)

restricted on system (2.6). From (2.19) and (2.20) we see that the two points P2

and P3 lie on the two orbit segments Q̂1P1 and Q̂3Q1 respectively, where xP2 =
xQ2 , xP3 = xP , yP2 > 0 and yP3 < 0, as shown in figure 1. From (2.19)–(2.22), and∫

̂P2P1
dE = E(P1) − E(P2), we obtain

∫ 0

−z1(xQ2 )

f(x, y, α)y2

g(x) + f(x, y, α)y
dy =

y2
P1

2
+
∫ x1

0

g(s)ds− y2
P2

2
−
∫ xQ2

0

g(s)ds

=
∫ x1

xQ2

g(s)ds− z2
1(xQ2)

2
,

where z1(·) is defined in (2.14). Thus, there exist x∗ ∈ [xQ2 , x1] and y∗ ∈
[0,−z1(xQ2)] such that∫ 0

−z1(xQ2 )

f(x, y, α)y2

g(x) + f(x, y, α)y
dy =

f(x, y∗, α)(y∗)2

g(x) + f(x, y∗, α)y∗
z1(xQ2)

= (x1 − xQ2)g(x
∗) − z2

1(xQ2)
2

by the mean value theorem for integrals. Thus,

x1 − xQ2 =
z2
1(xQ2)
2g(x0)

+ o(ε2) (2.23)

because g(x∗) = g(x0) +O(ε). From (2.19)–(2.22) and the equality∫
̂Q3P3

dE = E(P3) − E(Q3),

we obtain

−
∫ 0

z2(x0)

f(x, y, α)y2

g(x) + f(x, y, α)y
dy =

y2
P3

2
+
∫ x0

0

g(s)ds− y2
Q3

2
−
∫ xQ3

0

g(s)ds

=
∫ x0

xQ3

g(s)ds+
z2

2(x0)
2

, (2.24)
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where z2(·) is defined in (2.15). It follows from equality (2.24) that

xQ3 − x0 =
z2
2(x0)

2g(x0)
+ o(ε2). (2.25)

On the other hand, Γ is a limit cycle of multiple k, i.e.

x0 − x1 = −akx1
k + o(x1

k), (2.26)

as seen in the definition of a limit cycle of multiple k in [30, Chapter 4.2].
Moreover, Γ is externally stable, i.e. ak < 0. It follows from (2.23)–(2.26) that

xQ3 − xQ2 =
z2
1(xQ2)
2g(x0)

+
z2
2(x0)

2g(x0)
+ o(ε2) − akx1

k + o(x1
k). (2.27)

Since ẏ = −g(x) < 0 on both the positive x-axis and the negative x-axis near the
origin, we see that g(x0) > 0.

Consider the case that k is odd, i.e. Γ is stable in both internal and external
neighbourhoods of Γ. In the external neighbourhood of Γ, we can obtain that
xQ3 − xQ2 > 0 by (2.27) and the inequalities ak < 0, g(x0) > 0 and x1 > 0, implying
that no limit cycles exist in the external neighbourhood of Γ when α increases. In the
internal neighbourhood of Γ, we can also obtain equality (2.27) and the inequalities
ak < 0, g(x0) > 0 but x1 < 0 from a similar discussion to the external neighbour-
hood of Γ. Since the solution of system (2.6) is Lipschitzian, the implicit function
theorem is applicable. Thus, from (2.27) with X1 := x1

k, we see that equality
xQ3 − xQ2 = 0 has a unique root X1 = (z2

1(xQ2) + z2
2(x0))/(2akg(x0)) + o(ε2) < 0,

which is equivalent to

x1 =
(
z2
1(xQ2) + z2

2(x0)
2akg(x0)

)1/k

+ o(ε2/k) < 0. (2.28)

It implies that system (2.6)|α=α0+ε produces a stable limit cycle Γα in the inter-
nal neighbourhood of Γ, where the bifurcated limit cycle Γα passes through the
point (x1, 0). Moreover, the stable limit cycle expands inwards (or contracts)
monotonically as α increases. From (2.8) and (2.28), we can obtain

Δα(ε) := x1 − 0 = x1,

implying that the variational exponent is 2/k. This proves the results of state-
ment (a).

In the case that k is even, i.e. Γ is semi-stable (externally stable but internally
unstable), we obtain equality (2.27), ak < 0 and g(x0) > 0 in the neighbourhood
of Γ, implying that xQ3 − xQ2 > 0 near the origin and then system (2.6) has no
limit cycles in a neighbourhood of Γ as α increases.

In order to completely investigate limit cycles bifurcating from semi-stable Γ for
even k, we consider the case that α := α0 − ε decreases. By a similar calculation to
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(2.27), we obtain

xQ3 − xQ2 = −z
2
1(xP2)
2g(x0)

− z2
2(xQ3)
2g(x0)

+ o(ε2) − akx1
k + o(x1

k), (2.29)

where g(x0) > 0 and ak < 0. Let k := 2n for n ∈ Z+ and X2 := x1
n. By the implicit

function theorem and (2.29), the equality xQ3 − xQ2 = 0 has exactly two roots
X2 = ±√−(z2

1(xP2) + z2
2(xQ3))/(2akg(x0)) + o(ε2), which is equivalent to

x1 = ±
(
−z

2
1(xP2) + z2

2(xQ3)
2akg(x0)

)1/k

+ o(ε2/k). (2.30)

It follows that two simple limit cycles Γ±
α of system (2.6)|α=α0−ε exist in a neigh-

bourhood of Γ, and the outer limit cycle Γ+
α is stable but the inner one Γ−

α is
unstable. Moreover, Γ+

α expands outwards monotonically and Γ−
α expands inwards

monotonically as α decreases. From (2.8) and (2.30), we can obtain Δα(ε) :=
x1 − 0 = x1, implying that the variational exponent is 2/k. This proves the results
of statement (b).

In conclusion, for odd k system (2.6) produces a stable (resp. unstable) limit cycle
Γα when Γ is stable (resp. unstable) in an internal (resp. external) neighbourhood of
Γα as α increases. On the other hand, for even k the externally stable and internally
unstable (resp. externally stable and internally unstable) Γ splits into exact two
simple limit cycles Γ±

α . Moreover, the outer limit cycle Γ+
α is stable (resp. unstable)

and expands outwards, but the inner one Γ−
α is unstable (resp. stable) and expands

inwards as α decreases (resp. increases). However, the limit cycle Γ disappears as α
varies in the opposite direction. Furthermore, the variational exponent of the new
limit cycle is ε2/k. �

Theorem 2.3 shows how the limit cycle expands or bifurcates as the rotated
parameter α varies, where the stable (or unstable) limit cycle may be hyperbolic
or non-hyperbolic. Clearly, the results of theorem 2.3 are true for analytic rotated
Liénard systems. Additionally, theorem 2.3 gives variational exponents to show the
expanding rates of the limit cycles depending on the rotated parameter α, which
was not discussed yet even for analytic rotated vector fields.

3. Rotated Hopf bifurcation and rotated homoclinic bifurcation

In this section, we introduce results on homoclinic loops and Hopf bifurcation
of the one-parameter family of rotated vector fields (2.6) with hypotheses (H1)
and (H2).

Theorem 3.1. Properties (PR3) and (PR4) in §1 are still true for system (2.6)
with hypotheses (H1) and (H2).

Proof. First, we prove property (PR3). Without loss of generality, assume that
the origin of system (2.6) is a weak focus as α = α0 and the weak focus is stable,
as shown in figure 4. When the vector field of system (2.6) is analytic in a small
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Figure 4. Poincaré map near O in system (2.6).

neighbourhood of the origin, the conclusion holds directly by [23]. Since the origin
is a weak focus, we obtain that

P(x) − x = akx
k + o(xk)

on the x-axis, where P(x) is the Poincaré map, k is a positive integer and x > 0
is small. As proven in theorem 2.3, (2.27) still holds, where P, P1, Q1, Q2, Q3,
x0, x1, xQ1 , xQ2 , xQ3 are defined similarly in figure 1 and the proof of theorem 2.3,
as shown in figure 4. Then, ak < 0 since the weak focus is stable. For positive integer
k and α = α0 − ε, the equality xQ3 − xQ2 = 0 has a unique positive zero

x1 =
(
−z

2
1(xP2) + z2

2(xQ3)
2akg(x0)

)1/k

+ o(ε2/k) > 0,

where ε > 0 is small and g(x0) > 0. When α = α0 + ε, for even k the equality
xQ3 − xQ2 = 0 has no positive zeros. Thus, system (2.6)|α=α0−ε produces a new
stable limit cycle in a small neighbourhood of the origin. Thus, property (PR3)
still holds.

Next, we prove property (PR4). Assume that system (2.6) exhibits a homoclinic
loop Γ0 as α = α0. Without loss of generality, we consider that the saddle in the
homoclinic loop is the origin and the homoclinic loop is stable. By the sign of the
vector field (y,−g(x) − f(x, y, α)y) near the saddle, in a small neighbourhood of
the origin one side of the stable manifold and one side of the unstable manifold of
the saddle lie in the left-half plane, but the other sides of the two manifolds lie in
the right-half plane. Assume that Γ0 intersects the positive (or negative) y-axis and
surrounds neither one stable manifold nor one unstable manifold of the origin other
than those in Γ0, as shown in figures 5a, b. Notice that ẋ = y > 0 in the positive
y-axis and ẋ = y < 0 in the negative y-axis. However, in figures 5a, b the sign of ẋ
at the intersection point Γ0 and the y-axis is opposite by the location of the stable
and unstable manifolds of Γ0. Thus, system (2.6) has no homoclinic loops which
intersect the positive (or negative) y-axis and do not surround the other stable
and unstable manifolds. In other words, if system (2.6) has a homoclinic loop Γ0

which does not surround one stable and one unstable manifolds of O other than
those in Γ0, then Γ0 lies in the left-half (or right-half) plane. It is similar to prove
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Figure 5. Impossible cases of homoclinic loops for system (2.6).

that system (2.6) has no homoclinic loops which intersect the positive and negative
y-axes, and surround the other two manifolds, as shown in figures 5c, d. Therefore,
it is sufficient to prove that the homoclinic loop has one of the configurations
shown in figure 6. Otherwise, we apply the transformation (x, y) → (−x,−y). The
case offigure 6b can be treated by a similar mean to the case of figure 6a, where
the only difference is that the Poincaré map need to be considered in the outer
neighbourhood of the homoclinic loop for the case of figure 6b. Therefore, we only
need to discuss the case of figure 6a. Now, consider δ0 := −f(0, 0, α0) �= 0. In other
words, the sum of the two eigenvalues of the hyperbolic saddle is not equal to zero.
Let

δ := −∂f(ϕ(t), φ(t), α0)
∂y

φ(t) − f(ϕ(t), φ(t), α0),

where (x, y) = (ϕ(t), φ(t)) represents the homoclinic loop. Consider the perturbed
system of (2.6) for α = α0 + ε with sufficiently small |ε|. By Theorem 3.7 of [7,
Chapter 3], we have the following conclusions:

(a) There is exactly one limit cycle bifurcating from the homoclinic loop of system
(2.6) when δ0εΔ > 0 (resp. < 0), which is stable for δ0 < 0 and unstable for
δ0 > 0, where

Δ := −
∫ +∞

−∞
e−

∫ t
0 δ(s)ds ∂f(ϕ(t), φ(t), α)

∂α
|α=α0φ

2(t)dt.

(b) There are no limit cycles in a small neighbourhood of the homoclinic loop of
system (2.6) when δ0εΔ < 0 (resp. > 0).

We consider the case δ0 = 0. In this case we cannot apply [7, Theorem 3.7
of Chapter 3] directly, which only considers the case δ0 �= 0. We can obtain the
Poincaré map again

P(x) − x = akx
k + o(xk)

on the x-axis, defined in an interior neighbourhood of any homoclinic loop, where
k is a positive integer. As proven in theorem 2.3, (2.27) still holds, where P , P0, P1,
Q1, Q2, Q3, x0, x1, xQ2 , xQ3 are defined similarly in the proof of theorem 2.3, as
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Figure 6. Classification of homoclinic loops for system (2.6).

shown in figure 6. Then, ak > 0 since the homoclinic loop is stable. For α = α0 + ε
and positive integer k, the equality xQ3 − xQ2 = 0 has a unique zero

x1 = x̃0 −
(
z2
1(xQ2) + z2

2(x0)
2akg(x0)

)1/k

+ o(ε2/k) < x̃0,

where x̃0 is the abscissa of P0 and ε > 0 is small. When α = α0 − ε, for even k and
small ε1 > 0 the equality xQ3 − xQ2 = 0 has no zeros in (x̃0 − ε1, x̃0). Thus, the
proof is completed. �

Note that theorems 2.3 and 3.1 give positive answers to questions (Q1) and (Q2)
mentioned in the Introduction.

The following assumptions are needed for studying singular closed orbits
(homoclinic loops or heteroclinic loops).

(H a) Assume that system (1.1) defines a family of analytic rotated vector fields.
Let system (1.1) have a singular closed orbit L0 ⊂ D̄ for some λ0 ∈ I such
that the Poincaré map is well defined on one side of L0, where D̄ is the closure
of D.

For singular closed orbits in a family of analytic rotated vector fields, it was
proved by Han in [14, Theorem 2.4] that

(i) if L0 is non-isolated, system (1.1) has no closed orbits in a small neighbour-
hood of L0 for λ ∈ I\{λ0}, and

(ii) if L0 is isolated, system (1.1) has at least one limit cycle near L0 as λ varies
in a suitable sense but no closed orbits near L0 as λ varies in the opposite
sense.

Based on result (ii), a conjecture follows.
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Conjecture of [14]: There is at most one limit cycle near L0 for λ ∈ I satis-
fying 0 < |λ− λ0| 	 1 under the conditions of [14, Theorem 2.4], i.e. under the
assumptions (Ha) for the vector field of (1.1).

The following theorem, indicating that two limit cycles can be bifurcated from a
cuspidal loop, gives a negative answer to the above conjecture.

Theorem 3.2. Assume that system (2.6) with hypotheses (H1) and (H2) has a
cuspidal loop Γ for α = α0 and the cusp persists if |α− α0| 	 1. Moreover, the
vector field of system (2.6) is analytic in a small neighbourhood of the cusp. Then,
we have the following conclusions:

(i) If Γ is of odd multiplicity, system (2.6) has a unique limit cycle near Γ for
α ∈ I with 0 < |α− α0| 	 1.

(ii) If Γ is of even multiplicity, system (2.6) has exactly two limit cycles near Γ
as α varies in a suitable sense and has no closed orbits near Γ as α varies in
the opposite sense.

Proof. Without loss of generality, we can assume that the cusp is located at
(0, 0). Since the vector field of system (2.6) at the cusp is analytic, in a small
neighbourhood of (0, 0) system (2.6) can be rewritten as

ẋ = y,

ẏ = akx
k
(
1 + p1(x)

)
+ bnx

ny
(
1 + p2(x)

)
+ y2p3(x, y)

+ (α− α0)ylp4(x, y, α)

(3.1)

by [11, Chapter 3] or [30, Chapter 2], where integer k � 2, integers n, l are positive,
and functions p1(x), p2(x), p3(x, y) and p4(x, y, α) are analytic such that p1(0) = 0,
p2(0) = 0 and ylp4(x, y, α) � 0. By Theorem 3.5 of [11, Chapter 3] or Theorem
7.3 of [30, Chapter 2], the origin (0, 0) of system (3.1) is a cusp when one of the
following statements holds:

(a) k = 2m (m � 1), l � 2 and bn = 0.

(b) k = 2m (m � 1), n � m, l � 2 and bn �= 0.

Therefore, according to the conditions of this theorem, we can define the Poincaré
map on both sides of Γ0 when |α− α0| 	 1. Moreover, system (3.1) is of the form
of system (2.6), the remainder research is similar to the proof of theorem 2.3 and
we omit it. �

Remark that in theorem 3.2 we provide a class of singular closed orbits in a family
of rotated vector fields for system (1.1) and two limit cycles can be bifurcated from
the singular closed orbit.

By theorems 2.3–3.2, we have the following further result.

Proposition 3.3. When system (2.6) has a singular closed orbit L0 ⊂ D̄ for some
λ0 ∈ I such that the Poincaré map is well defined on only one side of L0, conjecture
of [14] is correct. Furthermore, when system (2.6) has a singular closed orbit L0 ⊂
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D̄ with even multiplicity for some λ0 ∈ I such that the Poincaré map is well defined
on both sides of L0, there can exist more than one limit cycle near L0 for 0 <
|λ− λ0| 	 1, i.e. a negative answer to the conjecture of [14].

For a specific example to proposition 3.3, consider the system

ẋ = y, ẏ = −x2(x+ 1) + δ
(
α+ βx+ x2

)
y, (3.2)

where δ is a perturbation parameter. For δ = 0 system (3.2) is Hamiltonian and has
a cuspidal loop Γ0. As indicated in the main theorem on page 211 of [10], limit cycles
of system (3.2) have been researched by computing Abelian integrals. Let α1 := δα.
Then the vector field of (3.2) is rotated with the rotated parameter α1. Thus, system
(3.2) can have two limit cycles near Γ0 with even multiplicity for 0 < |α1| as the
rotated parameter α1 varies and (α1, β) is near the point C2 : (0, 14/15).

4. Application to SD oscillator

The main results in § 2 can be applied to the problem of limit cycles for the SD
oscillator. In other words, we will use our theorems to give a positive answer to
question (Q3), mentioned in the Introduction for this differential system.

The authors of [4] studied the global bifurcation diagram and all phase portraits
of the SD oscillator

ẋ = y − ξ(bx+ x3), ẏ = −x
(

1 − 1√
x2 + a2

)
, (4.1)

where (a, b, ξ) ∈ R+ × R × R+. It is shown in [4] that system (4.1) has three
equilibria

EL : (−
√

1 − a2, (a2 − 1 − b)ξ
√

1 − a2), E0 : (0, 0),

ER : (
√

1 − a2, (1 − a2 + b)ξ
√

1 − a2)

if a < 1, and only E0 exists if a � 1. Large limit cycles represent the ones sur-
rounding all three equilibria and small limit cycles the ones surrounding a single
equilibrium. However, the maximum number of small limit cycles of system (4.1)
are not proven as parameters belong to the region

G :=

{
(a, b, ξ) ∈ R+×R × R+ : 0 < a <

√
3/3, 2

√
3a− 4

< b < min{ϕ(a, ξ), 3a2 − 3}
}
,

where b = ϕ(a, ξ) is the homoclinic bifurcation surface and 2
√

3a− 4 < ϕ(a, ξ) <
a2 − 1. By the symmetry of system (4.1), we only need to study the maximum
number of small limit cycles surrounding ER. Moreover, the authors of [4] con-
jectured that system (4.1) has at most two small limit cycles surrounding ER. In
other words, the bifurcation surface of double limit cycle can be expressed as a
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function b = φ(a, ξ), continuous in a ∈ (0,
√

3/3), such that 2
√

3a− 4 < φ(a, ξ) <
min{ϕ(a, ξ), 3a2 − 3}, φ(1/

√
3, ξ) = −2 and φ(0, ξ) = ϕ(0, ξ).

Recently, Liu and Sun ([27]) proved that the conjecture is true in G for small ξ
by computing Abelian integrals. However, the approach of Abelian integrals is not
available for general (large) ξ because system (4.1) is no longer near-Hamiltonian. In
this paper, we use theorem 2.3 to prove that at most two small limit cycles surround
equilibrium ER of system (4.1) as parameters lie in the region G for general ξ.

Theorem 4.1. System (4.1) has at most two small limit cycles surrounding ER for
(a, b, ξ) ∈ G with general ξ. Specially, a path of a small semi-stable limit cycle can
be presented by a function b = φ(a, ξ), where 0 < a <

√
3/3, 2

√
3a− 4 < φ(a, ξ) <

min{ϕ(a, ξ), 3a2 − 3}, φ(1/
√

3, ξ) = −2 and φ(0, ξ) = ϕ(0, ξ).

Proof. Let b̃ = bξ and take (a, b̃, ξ) as new parameter. With the transformation
(x, y) → (x, y + b̃x+ ξx3), system (4.1) can be changed into the following form

ẋ = y, ẏ = −x
(

1 − 1√
x2 + a2

)
− (b̃+ 3ξx2)y. (4.2)

We can check that (y,−x(1 − 1/
√
x2 + a2) − (b̃+ 3ξx2)y) is a rotated vector field

with respect to b̃ and ξ. Moreover, the parameter region G can be changed into

G1 :=

{
(a, b̃, ξ) ∈ R+×R × R+ : 0 < a <

√
3

3
, (2

√
3a− 4)ξ

< b̃ < min{ξϕ(a, ξ), (3a2 − 3)ξ}
}
.

By theorem 2.3, unstable limit cycles of system (4.2) expand and stable limit cycles
contract as either b̃ or ξ increases. Assume that system (4.2) has at least three limit
cycles Γ1, Γ2 and Γ3 surrounding ER only. Without loss of generality, we assume
that Γ1, Γ2 and Γ3 are innermost limit cycles and Γi lies in the interior region
surrounded by Γi+1 for i = 1, 2.

In the following we prove by reduction to absurdity that at most two small limit
cycles surround ER only as the parameter belongs to region G1. First, we exhibit
the idea of the proof. We assume that there may exist three small limit cycles
surrounding ER only as the parameter belongs to region G1. Then we enlarge or
lessen those rotated parameters b̃ and ξ in order, and the parameters lie in a region
at last for such case the number of limit cycles has been obtained which is smaller
than three. Thus, it induces a contradiction.

By the instability of ER, we can consider the case that Γ1 and Γ3 are stable and
Γ2 is unstable. Otherwise, we will vary the rotated parameters to obtain such case.
Now we go on the following steps:

Step 1: Lessen ξ = ξ1 < ξ0 till either Γ1 and Γ2 coincidence or Γ3 becomes a
homoclinic loop or Γ3 becomes a semi-stable limit cycle for fixed a = a0 and b̃ = b̃0.
We claim that (a, b̃, ξ) = (a0, b̃0, ξ1) ∈ G1. Otherwise, system (4.1) has at least three
small limit cycles surrounding ER as parameters lie in the other region except G1 by
the rotated properties of vector fields. By theorem 1 of [4], this is a contradiction.
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We also claim that ξ1 is not small. By the results of [27], system (4.1) has at most
two small limit cycles surrounding ER for small ξ1, also implying a contradiction.

Step 2: Enlarge b̃ = b̃1 > b̃0. We can get three limit cycles, which are still denoted
by Γ1,Γ2 and Γ3 by the rotated properties of vector fields. We continue to enlarge
b̃ till Γ2 and Γ3 coincide. In other words, we get a stable Γ1 and a semi-stable
Γ̃23. Moreover, Γ̃23 is internally unstable and externally stable. We claim that
(a, b̃, ξ) = (a0, b̃1, ξ1) ∈ G1 and b̃1 is not small. Otherwise, we can similarly obtain a
contradiction as tep 1.

Step 3: Repeat step 1, i.e. lessen ξ = ξ2 < ξ1 till either Γ1 and Γ2 coincide or
Γ3 becomes a homoclinic loop or Γ3 becomes a semi-stable limit cycle for fixed
a = a0 and b̃ = b̃1. We also claim that (a, b̃, ξ) = (a0, b̃1, ξ2) ∈ G1 and ξ2 is not small.
Otherwise, we can obtain the similar contradiction as step 1. Then repeat step 2,
step 1, step 2,. . . , up to n times.

On the other hand, by the proof of theorem 2.3, both the variations of b̃ and ξ in
the aforementioned steps are not sufficiently small (i.e. there exists a positive d0 such
that the variations are larger than d0) because none of distances between any two of
given Γ1,Γ2 and Γ3 is sufficiently small. Thus, we stop the aforementioned process in
finitely many steps when either ξ is sufficiently close to 0 or b̃ � min{ξϕ(a, ξ), (3a2 −
3)ξ}. Then there exists n0 ∈ Z+ such that the number of limit cycles is larger than
2 as (a, b̃, ξ) = (a0, b̃n, ξn) for n > n0, contradicting the result ‘a unique limit cycle’
for b̃ = min{ξϕ(a, ξ), (3a2 − 3)ξ} and the result ‘at most 2 limit cycles’ for small ξ.
This is a contradiction. Therefore, there are at most two small limit cycles only
surrounding ER as the parameter belongs to region G. By the instability of E0, the
interior small limit cycle is stable and the outer one is unstable respectively if there
exist exactly two small limit cycles surrounding ER. �

Remark that the global dynamics of system (4.1) can be presented completely
by [4, Theorem 1], results of [27] and theorem 4.1.

5. Application to switching system with three zones

The main results in § 2 can also be applied to the problem of limit cycles for
piecewise linear differential system with three zones and asymmetry. Consider a
piecewise linear differential system

ẋ = F (x) − y, ẏ = g(x) (5.1)

with two parallel lines and asymmetry, which was introduced in [5, 13, 18, 19],
where

F (x) :=

⎧⎨
⎩

tr(x− v) + tcv, if x > v,
tcx, if − u � x � v,
tl(x+ u) − tcu, if x < −u,

g(x)

:=

⎧⎨
⎩

r(x− v) + v, if x > v,
x, if − u � x � v,
l(x+ u) − u, if x < −u.

The plane is separated by two switching lines ΓL = {(x, y) : x = −u} and ΓR =
{(x, y) : x = v}.
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Llibre et al. [18] discussed system (5.1) in the parameter regions

G1 := {(u, v, l, r, tl, tr) ∈ R6 : 0 < v < u, l > 0, r = 1, 0

< tr < 2, tl < 0, tr +
tl√
l
< 0},

G2 := {(u, v, l, r, tl, tr) ∈ R6 : 0 < u < v, r > 0, l = 1, 0

< tl < 2, tr < 0, tl +
tr√
r
< 0},

G3 := {(u, v, l, r, tl, tr) ∈ R6 : 0 < v < u, l > 0, r = 1, − 2

< tr < 0, tl > 0, tr +
tl√
l
> 0},

G4 := {(u, v, l, r, tl, tr) ∈ R6 : 0 < u < v, r > 0, l = 1, − 2

< tl < 0, tr > 0, tl +
tr√
r
> 0}

and obtained the following results.

Proposition 5.1 [18, Theorems 7-10]. In the parameter region G1(resp. G2 , G3,
G4), the following statements hold.

(a) When 0 < tc � tr (resp. 0 < tc � tl, tr � tc < 0, tl � tc < 0), system (5.1)
has a unique limit cycle, which is stable (resp. stable, unstable, unstable).

(b) When tc = 0, the origin of system (5.1) is surrounded by a bounded period
annulus. The most external periodic orbit of the period annulus, which is
tangent to the line x = v, is unstable (resp. unstable, stable, stable). There
exists a stable (resp. stable, unstable, unstable) limit cycle surrounding such
period annulus.

(c) There exists small ε > 0 such that if −ε < tc < 0 (resp. −ε < tc < 0, 0 < tc <
ε, 0 < tc < ε), then the origin is surrounded by at least two limit cycles, where
the smaller is unstable (resp. unstable, stable, stable) and the bigger is stable
(resp. stable, unstable, unstable).

In order to study the hyperbolicity and exact number of limit cycles obtained in
theorem 5.1, we further recall the following results, where

h1 := min
{
tr(v − u)
(u+ v)

,
trv + tlu/l

u+ v

}
, h2 := min

{
tl(u− v)
(u+ v)

,
tlu+ trv/r

u+ v

}
,

h3 := max
{
tr(v − u)
(u+ v)

,
trv + tlu/l

u+ v

}
, h4 := max

{
tl(u− v)
(u+ v)

,
tlu+ trv/r

u+ v

}
.

Proposition 5.2 [5, Theorem 1.2]. When 0 � tc � tr (resp. 0 � tc � tl, tr � tc �
0, tl � tc � 0) and parameters lie in the region G1(resp. G2 , G3, G4), system (5.1)
has a unique limit cycle, which is hyperbolic. Moreover, the limit cycle is stable in
G1, G2 and unstable in G3, G4.
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Proposition 5.3 [5, Theorem 1.3]. In the parameter region G1(resp. G2 , G3, G4),
the following statements hold.

(1) When tc � h1 (resp. tc � h2, tc � h3, tc � h4), system (5.1) exhibits no limit
cycles.

(2) When −ε < tc < 0 (resp. −ε < tc < 0, 0 < tc < ε, 0 < tc < ε) for small ε >
0, system (5.1) exhibits exactly two limit cycles, where the inner limit cycle
which only intersects ΓR is hyperbolic and unstable (resp. unstable, stable,
stable) and the outer one which intersects ΓL and ΓR is hyperbolic and
stable(resp. stable, unstable, unstable).

By propositions 5.2 and 5.3, we naturally have the following question:
(Q4) When h1 < tc < −ε (resp. h2 < tc < −ε, ε < tc < h3, ε < tc < h4) for

small ε > 0, how many limit cycles does system (5.1) exhibit?
The following theorem can answer question (Q4).

Theorem 5.4. In the parameter region G1(resp. G2 , G3, G4), there are four func-
tions tc = ϕ1(tr) (resp. ϕ2(tr), ϕ3(tl), ϕ4(tl)) for any fixed (tl, l, r, u, v) (resp.
(tl, l, r, u, v), (tr, l, r, u, v), (tr, l, r, u, v)) such that

(1) system (5.1) has exactly two limit cycles when ϕ1(tr) < tc < 0 (resp. ϕ2(tr) <
tc < 0, 0 < tc < ϕ3(tl), 0 < tc < ϕ4(tl)) for small ε > 0, where the inner limit
cycle which only intersects ΓR is unstable (resp. unstable, stable, stable) and
the outer one which intersects ΓL and ΓR is stable (resp. stable, unstable,
unstable);

(2) system (5.1) has exactly one semi-stable limit cycle when tc = ϕ1(tr) (resp.
ϕ2(tr), ϕ3(tl), ϕ4(tl)), where the limit cycle which intersects ΓL and ΓR is
externally stable (resp. stable, unstable, unstable);

(3) system (5.1) has no limit cycles when tc < ϕ1(tr) (resp. tc < ϕ2(tr), tc >
ϕ3(tl), tc > ϕ4(tl)).

Proof. Without loss of generality, we only discuss G1 since the remainder cases G2 ,
G3, G4 can be discussed similarly. With the transformation (x, y) → (x, y + F (x)),
system (5.1) is changed into the following discontinuous system

ẋ = −y, ẏ = g(x) + f(x)y, (5.2)

where

f(x) =

⎧⎨
⎩

tr, if x > v,
tc, if − u � x � v,
tl, if x < −u.

We can check that the vector field (−y, g(x) + f(x)y) of system (5.2) is rotated
about tc, tl and tr.

Assume that system (5.2) has at least three limit cycles as parameters lie in the
region G1 and (tc, tr) = (t0c , t

0
r) for h1 < t0c < −ε and 0 < t0r < 2, and Γ1, Γ2 and Γ3

are the three innermost limit cycles, where Γ2 lies in the annular region surrounded
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by inner boundary Γ1 and outer boundary Γ3. Without loss of generality, we can
let Γ1,Γ3 be unstable and Γ2 be stable. By theorem 2.3, Γ1,Γ3 contract and Γ2

expands when one of tc, tl, tr increases. Now we make a similar process to the proof
of theorem 4.1 as follows.

Step 1: There is t1c ∈ (t0c , 0) such that Γ2,Γ3 coincide when the other parameters
are fixed. We claim that |t1c | is not small. Otherwise, system (5.2) has more than
one limit cycle as tc = 0 by the rotated properties of vector fields. This contradicts
proposition 5.2 and what we claimed is true.

Step 2: There is t1r ∈ (0, t0r) such that Γ1,Γ2 coincide or Γ3 becomes a semi-stable
limit cycle when the other parameters are fixed. In this step, we claim that t1r is
not small. Otherwise, system (5.2) has more than one limit cycle as tr = 0. By [17],
system (5.2) has at most one limit cycle for tr = 0. This is a contradiction. We
claim that t1c keeps in (h1,−ε). Otherwise, assume that t1c � h1. From proposition
5.3 system (5.2) has no limit cycles if t1c � h1. This is also a contradiction. Then,
we turn to step 1 again.

Finally, for arbitrary small ε > 0 there exists n0 ∈ Z+ such that |tnc | < ε or tnr < ε
as n > n0 step by step. We can find that system (5.2) still has at least three limit
cycles as |tnc | or tnr is small, which contradicts proposition 5.3. Therefore, in the
parameter region G1 for h1 < tc < −ε system (5.1) has at most two limit cycles.
Applying the rotated properties from theorem 2.3, the continuity of vector fields
and propositions 5.1–5.3, there exists a function tc = ϕ1(tr) such that system (5.1)
has exactly two limit cycles when ϕ1(tr) < tc < 0, where the inner limit cycle which
only intersects ΓR is unstable and the outer one which intersects ΓL and ΓR is stable;
system (5.1) has exactly one semi-stable limit cycle when tc = ϕ1(tr), where the
limit cycle which intersects ΓL and ΓR is externally stable; and system (5.1) has
no limit cycles when tc < ϕ1(tr). The proof is completed. �

Therefore, the exact number of limit cycles of system (5.1) can be obtained
completely when parameters lie in regions G1, G2, G3 or G4 by propositions 5.1–5.3
and theorem 5.4.
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