
J. Fluid Mech. (2022), vol. 936, R1, doi:10.1017/jfm.2022.76

A spectral method for axisymmetric Stokes flow
past a particle

Mohammad Nabil1,2, Seyed Amin Nabavizadeh1, Paul E. Lammert3 and
Amir Nourhani1,2,4,†
1Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA
2Biomimicry Research and Innovation Center (BRIC), University of Akron, Akron, OH 44325, USA
3Departments of Physics, The Pennsylvania State University, University Park, PA 16802, USA
4Departments of Biology, Mathematics, and Chemical, Biomolecular & Corrosion Engineering,
University of Akron, Akron, OH 44325, USA

(Received 5 December 2021; revised 20 January 2022; accepted 21 January 2022)

We present a non-perturbative mesh-free spectral method for the axisymmetric scenario
of a radially highly deformed sphere in Stokes flow. Spectra of harmonic and biharmonic
Stokes flow modes are used to provide a general algebraic spectral solution to
axisymmetric Stokes flow. A solution for the flow field around a sphere with prescribed
surface velocity field is presented, and is used to obtain the velocity field around a
deformed sphere. The method is demonstrated on two problems: hydrodynamic radii
of radially deformed spheres for a range of strength and angular dependence of the
deformation, with results in good agreement with the boundary element method; and
self-phoretic velocity of spheroids with surface flux of the driving field in a source/sink or
source/inert configuration.
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1. Introduction

Particle motions induced by low-Reynolds-number flows and vice versa have been
investigated since the time of Stokes (1851), and remain of fundamental interest in many
fields including colloid science, phoresis, active microswimmers, sedimenting systems and
suspension rheology. Understanding the dynamics of particles with arbitrary and irregular
geometries in Stokes flow is of paramount importance. Perturbative approaches, such
as Brenner’s (1963, 1964b,c,d, 1966), are limited to small deformations from a regular
(usually spherical) geometry.
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The boundary element method (BEM) (Pozrikidis 1992; Muldowney & Higdon 1995;
Pozrikidis 2002; Kim & Karrila 2005) is a popular numerical method for such problems.
This method descends from classical Green function methods, solving a boundary integral
equation which couples velocity and surface traction, but using discretization methods
borrowed from the finite-element method. Only the boundary needs to be meshed.
However, particles with surface roughness, sharp edges or high curvature require meshes
of correspondingly high resolution.

Analytical approaches to irregular geometries are mesh-free, but they are generally
limited to slightly deformed spheres (Brenner 1964a; Ripps & Brenner 1967; Happel
& Brenner 1983; Palaniappan 1994; Mohan & Brenner 2006). In seminal work,
Brenner (1964a) developed a perturbative approach to obtain the velocity field around a
deformed sphere using Lamb’s general solution of the Stokes equation (Lamb 1932). The
calculations grow rapidly more complicated, and therefore impractical, at higher orders
of perturbation. One brilliant aspect of Brenner’s method which we will borrow, however,
is the mapping of a velocity field over the surface of a radially deformed sphere to a
hypothetical reference sphere. This mapping turns the problem of the deformed sphere into
that of solving the flow field about a reference sphere with a prescribed surface velocity
field.

In this paper, we develop a non-perturbative spectral method for the flow field exterior
to a highly deformed sphere. Inspired by the harmonic nature of the pressure in the Stokes
equation, we define two spectra of Lamb modes. The velocity and pressure fields in the
exterior domain are expressed as linear combinations of these modes, with expansion
coefficients obtained by weighted integration of the surface velocity field. For velocities
directly given on a sphere, for instance, a slip velocity around a self-phoretic spherical
particle, use of these modes is direct and easy. To deal with velocities given on a highly, but
radially, deformed spherical surface, we adapt Brenner’s mapping technique to develop a
formalism reducing the problem to the solution of a set of linear algebraic equations. This
ability to deal with data specified on a non-spherical surface distinguishes our method
from the otherwise similar approach of Pak & Lauga (2014).

We test the method by computing hydrodynamic radii for a set of spheres deformed
in various ways and degree, pictured in figure 1. Agreement with boundary element
calculations is good. The method is then extended to calculate the propulsion speed of
self-phoretic spheroids with surface flux of a driving field in source/sink or source/inert
configuration, in the limit of the thin interfacial layer.

2. Basis and development of the method

This section discusses the expansion of fluid velocity and pressure fields in Lamb modes
(Lamb 1932). These modes are defined everywhere on three-space with the origin deleted
and tend to zero at infinity, hence are appropriate for exterior flow problems.

2.1. Problem formulation
We are interested in the velocity (u) and pressure (p) fields in a fluid exterior to a surface
S, on which the velocity is specified arbitrarily. The fields are governed by the Stokes and
continuity equations

μ∇2u = ∇p, ∇ · u = 0, (2.1a,b)

where μ is viscosity and u is assumed to tend to zero at infinity. The surface S is given in
spherical coordinates (r, θ, φ) by
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Spectral method for axisymmetric Stokes flow

rs(θ) = r0[1 + δξ(θ)]. (2.2)

Hence, S is a radial, axisymmetric, deformation of a centred reference sphere S0 with
radius r0. The deformation is parameterized in terms of a ‘shape’ function ξ(θ) and a
magnitude δ. We do not expand in powers of δ as one would in a perturbative approach, but
we are still interested in how the flow changes with increasing deformation. However, the
Lamb modes treated in the next few subsections are independent of this parameterization
or any particular particle surface.

2.2. Lamb spectral modes
A Stokes flow pressure field is harmonic, ∇2p = 0, and, if axisymmetric, can be expanded
in modes p� ∼ r−(�+1)P�(cos θ) where P� is the Legendre polynomial of degree �, and êr
and êθ are unit vectors in the indicated directions. An analogous expansion of the velocity
field in terms of Legendre polynomials is based on the orthogonal basis of vector-valued
functions

� ≥ 0 : P[1]
� = P�(cos θ)êr, � ≥ 1 : P[2]

� = ∂θP�(cos θ)êθ = P1
�(cos θ)êθ , (2.3a,b)

where P1
� is the associated Legendre polynomial of degree � and order 1. The relevant inner

product on real vector-valued functions of the polar angle θ is

〈 f |g〉 =
∫ π

0
f · g sin θ dθ. (2.4)

The orthogonal basis is normalized as 〈P[1]
� |P[1]

� 〉 = 2/(2�+ 1), 〈P[2]
� |P[2]

� 〉 =
2�(�+ 1)/(2�+ 1). The basis functions P[1]

� and P[2]
� are proportional to the vector

spherical harmonics (Morse & Feshbach 1953) Y�,mr̂ and r∇Y�,m, respectively, with
m = 0. While P[α]

� does not solve (2.1a,b), appropriate modes can be obtained with the
ansatz u(r) = ∑

α

∑
� C[α]

� r−n(α,�)P[α]
� , where C[α]

� is an expansion coefficient and α = 1
or 2. There are two families: (Kessler, Finken & Seifert 2008) biharmonic (∇4u[1]

� (r) = 0
and ∇2u[1]

� (r) �= 0) Lamb modes

� ≥ 1 :
u[1]
� (r) =

(r0

r

)�
[�(�+ 1)P[1]

� (cos θ)− (�− 2)P[2]
� (cos θ)],

p[1]
� (r) = 2�(2�− 1)

(
μ

r0

)(r0

r

)�+1
P�(cos θ),

(2.5)

and harmonic (∇2u[2]
� (r) = 0) Lamb modes

� ≥ 0 : u[2]
� (r) =

(r0

r

)�+2
[−(�+ 1)P[1]

� (cos θ)+ P[2]
� (cos θ)],

p[2]
� (r) = 0.

(2.6)

Since the Stokes equation is linear, using the modes (2.5) and (2.6), we can write a general
solution of flow field around a solid particle:(

u(r)
p(r)

)
=
∑
α

∑
�

A[α]
�

(
u[α]
� (r)

p[α]
� (r)

)
, (2.7)

where A[α]
� are expansion coefficients. Since only the biharmonic modes contribute to

pressure, one can simply ignore p[2]
� (r) in practice.
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2.3. Extrapolating from a sphere
Suppose the velocity u(r0) on the surface of the reference sphere S0 of radius r0 is
given. In order to continue this off the sphere, we need appropriate coefficients A[α]

� for
the expansion (2.7). However, unlike the P[α]

� , the u[α]
� are not orthogonal with respect

to the inner product (2.4). Complementary dual vectors, satisfying 〈D[α1]
�1

|u[α2]
�2
(r0)〉 =

δ�1�2δα1α2 are therefore useful, since the expansion coefficients can then be obtained as
A[α]
� = 〈D[α]

� |u(r0)〉. These dual vectors are given by

D[1]
� (cos θ) = 2�+ 1

4�(�+ 1)
[�P[1]

� (cos θ)+ P[2]
� (cos θ)] (� ≥ 1), (2.8)

D[2]
� (cos θ) = 2�+ 1

4(�+ 1)
[(�− 2)P[1]

� (cos θ)+ P[2]
� (cos θ)] (� ≥ 0). (2.9)

Using these, for velocity and pressure fields around a solid sphere we have

(
u(r)
p(r)

)
=
∑
α

∑
�

〈D[α]
� |u(r0)〉

(
u[α]
� (r)

p[α]
� (r)

)
. (2.10)

2.4. Spherical examples
We illustrate the utility of (2.10) with two basic problems for a spherical surface.

(a) Rigid body motion. For a uniform velocity on a spherical surface, we have from (2.5)
and (2.6)

urigid(r0) = êz = P1(cos θ)êr + P1
1(cos θ)êθ = 3

4 u[1]
1 (r0)+ 1

4 u[2]
1 (r0). (2.11)

Using (2.10) we recover the classical Stokes solution (Leal 2007)

urigid(r) = 3
4

u[1]
1 (r)+ 1

4
u[2]

1 (r)

= 1
2

cos θ
[

3
(r0

r

)
−
(r0

r

)3
]

êr − 1
4

sin θ
[

3
(r0

r

)
+
(r0

r

)3
]

êθ . (2.12)

(b) Phoretic slip velocity. A spherical self-phoretic particle with uniform phoretic
mobility μph and outward-pointing surface normal n̂, producing a surface flux J(θ) =
−Dn̂ · ∇nψ = ∑∞

�=0 J�P�(cos θ) of a driving field ψ (e.g. chemical concentration,
electric potential, temperature) experiences a surface slip velocity uslip = μph(I −
n̂n̂) · ∇ψ . If ∇2ψ = 0 and ψ(∞) → 0, this slip velocity at the surface is uslip =
(μph/D)

∑∞
�=1(J�/(�+ 1))P[2]

� (Nourhani, Crespi & Lammert 2015). Extrapolation of
this boundary condition by (2.10) yields

uslip(r) = μph

2D

∞∑
�=1

J�
�+ 1

(u[1]
� (r)+ �u[2]

� (r)). (2.13)
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2.5. Force exerted on the fluid across the surface
The force exerted on the fluid across the surface S is

F =
∫

S
n̂ · σ dA =

∫
S(R)

n̂ · σ dA, (2.14)

where σ is the stress tensor, n̂ is an outward-pointing unit normal vector in both integrals,
and S(R) is a sphere of large radius R embedding S. The second equality follows from
∇ · σ = 0 and the divergence theorem. Lamb modes giving σ falling off faster than 1/R2

give no contribution to the integral over S(R) in the limit R → ∞, so only α = 1, � = 1
and α = 2, � = 0 contribute. The latter corresponds to a simple outflow of fluid, however,
so it does not count either. Thus, the force is proportional to A[1]

1 , and along êz, due to
axisymmetry. Using D[1]

1 (cos θ) = 3
8 êz, we therefore find Fz ∝ 〈D[1]

1 |u(r0)〉 = 3
4 êz · u(r0),

where the overline indicates averaging over the sphere. The proportionality constant can be
determined through the Stokes formula, that is, the known special case with u(r0) = u(r0)

constant: Fz = 6πμr0êz · u(r0). Putting it together yields

Fz = 8πμr0〈D[1]
1 |u(r0)〉, (2.15)

where the radius r0 > 0 of the sphere is arbitrary.
As an example of the use of this formula, we calculate the self-phoretic velocity of

an active particle, the standard method for which uses the Lorentz reciprocity relation
(Masoud & Stone 2019). Using (2.12) and (2.13) the flow field around a self-phoretic
particle moving with velocity U is uphoretic(r) = Uurigid(r)+ uslip(r). Since the particle
is force-free, (2.15) implies 〈D[1]

1 |uphoretic(r0)〉 = 0, and we obtain (Nourhani & Lammert
2016)

U = − 〈D[1]
1 |uslip(r0)〉

〈D[1]
1 |urigid(r0)〉

= −μphJ1/4D
3/4

= −μphJ1

3D
. (2.16)

2.6. A radially deformed sphere in Stokes flow
Equation (2.10) allows us to extrapolate a velocity field u(r0) on a sphere S0 into all of
three-space minus the origin. The idea now is to continue instead from the velocity u(rs)
on the deformed sphere S by a two-stage process: first map it onto the reference sphere and
then use (2.10). This is what we want to do, for example, when we have a non-spherical
particle with no-slip boundary conditions. Brenner attacked the problem perturbatively
(Brenner 1964a), with the deformation magnitude δ in (2.2) as the perturbation parameter.
Our approach is to do it directly, but numerically.

Since we require the surface S to be a radial deformation of S0, it is coordinatized by
spherical coordinates (θ, φ) so that the inner product (2.4) can be applied. Then, according
to (2.10),

〈D[α′]
�′ |u(rS)〉 =

∑
α

∑
�

〈D[α′]
�′ |u[α]

� (rS)〉〈D[α]
� |u(r0)〉. (2.17)

This is a potentially infinite system of linear equations with known 〈D[α′]
�′ |u(rS)〉, which

need to be solved for 〈D[α]
� |u(r0)〉. The known coefficients 〈D[α′]

�′ |u[α]
� (rS)〉 depend only on

the shape of S.
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3. Computational implementation

This section gives more information about the implementation of the system (2.17). A
basic implementation is very straightforward. The key step is conversion into a finite set
of linear equations by imposing a sliding upper bound �max on �. The truncated system
AS = RA0 of Eq. (2.17) has the explicit form

⎛
⎜⎜⎝

〈D[1]
� |u(rs)〉

1 ≤ � ≤ �max

〈D[2]
� |u(rs)〉

0 ≤ � ≤ �max

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

〈D[1]
�′ |u[1]

� (rS)〉 〈D[1]
�′ |u[2]

� (rS)〉
1 ≤ �′ ≤ �max 1 ≤ �′ ≤ �max
1 ≤ � ≤ �max 0 ≤ � ≤ �max

〈D[2]
�′ |u[1]

� (rS)〉 〈D[2]
�′ |u[2]

� (rS)〉
0 ≤ �′ ≤ �max 0 ≤ �′ ≤ �max
1 ≤ � ≤ �max 0 ≤ � ≤ �max

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

〈D[1]
� |u(r0)〉

1 ≤ � ≤ �max

〈D[2]
� |u(r0)〉

0 ≤ � ≤ �max

⎞
⎟⎟⎠ .

(3.1)
Elements of R,

〈D[α′]
�′ |u[α]

� (rS)〉 =
〈
D[α′]
�′

∣∣∣∣
(

r0

rS

)n

u[α]
� (r0)

〉
, (3.2)

and of A0, 〈D[α]
� |u(rs)〉, are evaluated by numerical integration over the polar angle θ ,

using the equation for the surface S and the specified velocity field on S. A standard Python
SciPy function is then used to compute the unknowns 〈D[α]

� |u(r0)〉.
This procedure is repeated as the cutoff �max is increased. The first element of

A0, 〈D[1]
1 |u(r0)〉, is monitored for convergence of the first element, since it is proportional

to the hydrodynamic radius, (4.1), and thus of primary interest. In practice, we find that
the results usually plateau for �max in the range of approximately 30 to 40. These plateau
values are the results discussed in the next section. For larger values of �max, results can
become unstable with �max. The basic reason for this is likely to be the very large values
of (r0/rs)

n over parts of the surface for large n.

4. Numerical results and comparison to BEM

As demonstration and test of the method, we consider a suite of axisymmetric radially
deformed unit spheres (2.2) with ξ(θ) = cos nθ, n = 2, 3, . . . , 9. These geometries are
parametrized by a pair (δ, n), and are depicted in figure 1. The top row shows the
streamlines for flow past a set of stationary axisymmetric geometries obtained by the
spectral method. In the bottom row, the numbers under the shapes are values of rH/r0,
where the hydrodynamic radius rH is the radius of a sphere with the same drag coefficient
as the shape in question. According to (2.15), rH can be computed as

rH

r0
= 4

3
〈D[1]

1 |u(r0)〉 where u(rS) ≡ êz. (4.1)

The inclusion monotonicity principle implies that the hydrodynamic radius rH(n, δ) cannot
exceed 1 + δ, since that is the radius of the smallest sphere including the shape, but
does not imply monotonicity in either n or δ (increasing n or δ produces neither a larger
nor smaller shape). Nevertheless, the results show a monotonic increase of rH with n
approaching the upper bound fairly rapidly. This behaviour seems intuitively reasonable.

Figure 2 gives another perspective on the data, together with a detailed comparison
to BEM results. The coloured, filled symbols are from our spectral method, while the
plus and cross-like symbols are the BEM results. For this comparison, we employed the
BEMLIB library (Pozrikidis 2002), and performed the computation with both 1026 and
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n
2 3 4 5 6 7 8 9

0.1

0.2

0.3

0.4

0.5

0.948

0.916

0.905

0.912

0.93

1.017

1.061

1.121

1.189

1.262

1.032

1.097

1.174

1.255

1.338

1.032

1.102

1.183

1.267

1.352

1.04

1.117

1.202

1.29

1.381

1.045

1.126

1.215

1.313

1.409

1.05

1.135

1.223

1.327

1.41

1.054

1.141

1.239

1.332

1.423

n = 2 3 4 5

6 7 8 9
0

0.2

0.4

0.6

0.8

1.0(a)

(b)
δ

Figure 1. (a) Streamlines for flow past a selection of shapes. (b) Geometries on which the spectral method was
tested. Depicted geometries are given by rS = r0(1 + δ cos nθ) for a range of δ and n, indicated at left and on
top, respectively. The number beneath each shape is its relative hydrodynamic radius, computed via (4.1).

0.1 0.2 0.3 0.4 0.5 0.60

0.9

1.0

1.1

1.2

1.3

1.4

1.5 n = 2

3
4
9

rH

n
3 4 5 6 7 82 9

0.9

1.0

1.1

1.2

1.3

1.4

0.2

0.3

0.4

0.5

δ

δ = 0.1

(b)(a)

Figure 2. Alternate views on the hydrodynamic radii (figure 1), and comparison to BEM results. Filled and
coloured symbols are spectral method results, while BEM results with 1026 mesh nodes and 10 242 mesh
nodes are indicated by + and ×, respectively. Panel (a) shows rH/r0 as function of n for fixed δ, and (b) shows
rH/r0 as function of δ for fixed n. Since δ is a real variable, an interpolation is indicated.

10 242 mesh nodes on the deformed sphere surface. Overall agreement is good, moreover,
results from the finer BEM mesh (×, 10 242 nodes) are in closer agreement with those of
our spectral method than those from the coarser mesh (+, 1026 nodes). For all n > 2, the
hydrodynamic radius increases monotonically with δ. However, for n = 2, the minimum
is at δ ≈ 1/3.
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5. Application to self-phoresis

Given the expansion of the velocity/pressure field in Lamb modes, a corresponding
expansion of the stress tensor can be computed by straightforward, if tedious,
differentiation. This section puts that to use to calculate the self-propulsion speed of
spheroidal self-phoretic particles as a function of surface flux field J, in the limit of the
thin interfacial layer (§ 2.4b), without computing the slip velocity.

If we know the slip velocity field uslip(rS), then the self-phoretic velocity is Up =
−A−1 · F [uslip], where A is the hydrodynamic resistance matrix of the particle and F [uslip]
is the total force exerted across the surface S as in (2.14). The methods described in
previous sections can determine the relevant components of A and F in an axisymmetric
situation. Moreover, we can avoid the need to calculate slip velocity by using the
identity (Lammert, Crespi & Nourhani 2016) F [uslip] = (μph/D)F [Jn̂]. Thus, Up =
−(μph/D)A−1 · F [Jn̂], where F [Jn̂] is the total force resulting from velocity Jn̂ on the
surface S. Finally, this last quantity can be calculated with the aid of the Lorentz reciprocal
theorem. The result is the formula

Up = −μph

D
A−1 · F [n̂J] = −μph

D

∫
S

A−1 · E(rS)
T · n̂J dA, (5.1)

for the self-propulsion velocity, where E is a rank-2 tensor closely related to the stress
tensor induced by uniform velocity on S: For a passive particle moving at velocity U , the
hydrodynamic surface traction f U (rS) = n̂ · 𝞼U (rS) is a linear function E(rS) · U of the
velocity. This defines E; since f U (rS) = n̂ · 𝞼U (rS),E can be calculated from the stress
tensor. In fact, if the flux J and the particle are axisymmetric, Up = Upêz is along the
symmetry axis, and

Up = −μph

D
Azz

−1
∫

S
n̂ · 𝞼ez(rS) · n̂ J dA, (5.2)

where 𝞼ez is the stress tensor associated with the surface velocity field uS = ez.
We apply this to spheroids, with surface flux J in either a source/sink configuration,

(uniform positive for η > η0, uniform negative for η < η0, with magnitudes such that net
flux over the surface is zero), see figure 3, or a source/inert configuration, where the sink
surface is replaced by an inert surface, in which case net flux is non-zero. The self-phoretic
velocities for a range of eccentricity ε and η0, computed from (5.2) are plotted, scaled by
the natural velocity scale U∗ = μph|J|/(2D), where overline indicates surface average.
The results are in excellent agreement with exact solutions (Nourhani & Lammert 2016)
for spheroids.

6. Conclusion

We proposed a non-perturbative spectral method for low-Reynolds-number axisymmetric
flow fields exterior to a radially deformed sphere. Implementation is simple, with no
surface meshing, and the computational core being the solution of a set of linear algebraic
equations. Still, it is well-suited to handle highly aspherical geometries. Our formalism for
treating deformed spheres is built on Brenner’s mapping (Brenner 1964a). The difference
is that Brenner’s method is perturbative and based on differential operations on the surface
velocity field, whereas ours is non-perturbative and based on weighted integration of the
boundary condition. It can perform well even in cases where perturbation theory may not
work.
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Figure 3. (a) Self-phoretic spheroid geometry: S′′ is source region, S′ sink or inert region. Here η is a scaled
z coordinate; a and b are semi-axis lengths along and perpendicular to the symmetry axis; ε2 = 1 − (b/a)2 is
greater (less) than 1 for prolate (oblate) spheroids. (b) Propulsion velocity for source/sink configuration, scaled
to U∗ ≡ μph|J|/(2D). (c) Propulsion velocity for source/inert configuration.

We have demonstrated the method on two problems. The first is hydrodynamic radii
of spheres deformed in simple trigonometric patterns, albeit very strongly. The results
were compared to BEM calculations, with good agreement. The second is a calculation
of propulsion velocity of self-phoretic spheroids in the limit of the thin interfacial layer
by a method which avoids computation of the slip velocity, although that could be
handled as well. Axisymmetry occurs frequently in studies of microswimmers (Yariv 2011;
Sabass & Seifert 2012; Poehnl, Popescu & Uspal 2020). Beyond spherical microswimmers
(Nourhani et al. 2015), a significant potential use of the formalism is to study the
geometrical effects of high non-sphericity (Nourhani & Lammert 2016) on the dynamics
of active particles and microswimmers and assist with advancing our understanding of
the optimal geometry of slightly deformed spherical microswimmers (Daddi-Moussa-Ider
et al. 2021) to highly deformed ones. Moreover, the contribution of active particle
shape to motion can then be consolidated in integration kernels (Nourhani & Lammert
2016) that quantify the contribution of local activity to swimmer dynamics. The current
formalism can be advanced in multiple directions to include scenarios such as non-radial
deformations, liquid droplets, deformed spheroids (to include deformed discotic and
needle-like geometries), and extension to three-dimensional non-axisymmetric cases.
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