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ABSTRACT 

Equilibrium structural models are computed for a thick, self-
gravitating disk in a binary system. Accretion onto the star is limited 
by the star's rapid rotation (the system is a double-contact binary). 
The potential formulation is taken from a previous paper, and represents 
the gravitational potential as that of a massive wire. Corrections to 
the stellar structure differential equations for the distorted geometry 
are applied, and the equations are integrated and solved by the fitting 
point method. The energy is supplied by viscosity. Energy transfer is 
by convection, and is appreciably superadiabatic throughout the disk. 
A mass of 0.5 M0 is assumed. Representative results are: "central" 
temperature, 67000 K; "central" pressure, 5 x 1011 dynes/cm2; "equal 
volume" radius, 17 R0; luminosity, 5 x 10

3 L0. The model "radius" is in 
excellent agreement with the observational value for 3 Lyrae. The model 
luminosity is slightly higher than the available rate of expenditure of 
gravitational energy, indicating that a lower disk mass (perhaps 0.25 M@) 
should be tried. 

I. INTRODUCTION 

Over the past several decades, many questions have arisen concern­
ing various unusual features of the 3 Lyrae system. Underlying all of 
these is the central question: Why is 3 Lyrae so different from other 
semi-detached, mass transferring binaries? We would like to know how 
3 Lyrae is able to maintain a geometrically thick, opaque disk (viz. 
Huang, 1963; Wilson, 197*0 about its more massive component, while a 
system such as U Cep cannot. Of course, one can point to the rather 
large rate of period change, which places 3 Lyrae in the rapid phase of 
mass transfer. However there are grounds to suspect that the explana­
tion runs deeper, as the predicted time scale for collapse of the disk 
onto its central star is quite short compared to the historical inter­
val of accurate 3 Lyr observations (~ 65 years). There is now fairly 
uniform agreement regarding the existence of a massive (* 10 to 15 MQ) 
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main sequence star at the center of the 3 Lyr disk. Had the disk 
ceased to exist or had it even become substantially thinner at any time 
during the star's observational history, the system would have brightened 
considerably and become optically prominent in the constellation Lyra. 
Since there is no record of such an occurrence, one can conclude that 
the disk is quite stable in its large-scale aspects. In this paper, the 
suggestion (Wilson, 1979, 1981) is adopted that centrifugally limited 
rotation of the central star is responsible for the disk's persistence, 
so that 3 Lyr is a double-contact binary (Wilson, 1979). Note that 
Packet (l98l) has shown that relatively little mass transfer may be 
needed to spin an accreting star up to its centrifugal limit. 

In the past two years, Plavec (198O) has called attention to a 
class of binaries which have very extensive circumstellar disks and are 
similar in many ways to 3 Lyr. These he calls the W Serpentis stars. 
Members of the class include SX Cas, RX Cas, AR Pav, W Ser, V367 Cyg, 
W Cru, V356 Sgr, and 8 Lyr, all of which show spectacular spectroscopic 
phenomena, including evidence for high velocity ejection of matter from 
the entire system. Our fundamental question may now be widened, and we 
ask: Why are the W Serpentis stars so different from other semi­
detached, mass transferring binaries? A plausible reason is that they 
all are in the double-contact phase. 

It seems appropriate to place 3 Lyr, the most thoroughly observed 
W Ser star, at the focus of our attention, so a brief review of its 
overall features follows. The optically dominant member of 3 Lyr is a 
mass-losing giant star, apparently rotating synchronously with the 
orbit, and filling its Roche lobe. The spectral type is approximately 
B9 II and well-defined radial velocity curves exist (Sahade, et al. 
1959), which give a mass function of 8.5 M@. Primary eclipse in optical 
passbands is the eclipse of this star. The other component has long 
been regarded as enigmatic. In the optical region it shows no line 
spectrum (probably because of rotational line broadening), but we know 
that it does emit significant light - comparable in amount to that of 
the B9 star - because there is a well defined secondary eclipse. Also 
its luminosity has been estimated by fairly detailed modeling of the 
light variation (Wilson, 197^+; Wilson and Lapasset, 198l). The mass of 
this object has been difficult to determine, although there now seems 
to be unanimous agreement that it is more massive than the B9 star by a 
factor of at least 2.5, and probably 6 or more (see Wilson, 197̂ + for a 
summary of mass ratio determinations). Here we assume a mass for this 
component of about 12 M . 

Our working model for the dim but massive component will be that of 
a main sequence star surrounded by a thick disk which entirely obscures 
it from direct view. Perhaps "ring" might be a better word than "disk", 
since the structure is certainly thick, while the term "disk" usually 
describes a highly flattened object. However, we retain the name "disk" 
here because real progress in understanding began with Huang's (1963) 
paper, which made it clear for the first time that we are dealing with 
a relatively flattened circumstellar "disk". While Huang's disk was 
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actually much too thin for its predictions to be in quantitative agree­
ment with the light curves, the "Huang disk model" is well known and 
should continue to be remembered for its start in the right direction. 

Our lack of physical models for g Lyr-type disks is a reflection 
of the fact that we do not understand the accretion process in the rapid 
phase of mass transfer in sufficient detail. This is a very unsatis­
factory state of affairs, for it is now well accepted that mass and an­
gular momentum are not conserved in mass exchange episodes. If these 
quantities are not conserved, computations of binary star evolution must 
eventually follow mass transfer events in detail. We must understand 
what is happening within 6 Lyrae type disks because spectroscopic obser­
vations show that mass is ejected from the disks and from the systems, 
and all later evolutionary stages are thereby affected. 

This paper is intended as a start toward full modelling of g Lyr 
type disks. Certainly one should be able to answer simple questions 
concerning the order of magnitude of-physical variables within the disks. 
What are reasonable masses, internal pressures, and temperatures? What 
is the relative importance of one source of luminosity compared to 
another? Is energy transferred primarily by radiation, or by convection? 
Can we say anything about the rotation law? What are the approximate 
distributions of mass and other physical variables? Toward these ends 
we adopt the following strategy. The disk is to be approximated by an 
equilibrium structure. If we can establish the form of the potential 
field, and define a reasonable mode of luminosity generation, it should 
be possible to compute static structural models in the same manner as 
for single stars, provided that we apply corrections for the non-
spherical geometry. A logical basis for the potential has been given in 
an earlier paper (Wilson, 198l, hereafter Paper l). Essentially, the 
idea is to represent each binary component as a mass point, with the 
disk mass concentrated into a circular wire, centered on one of the 
stars. Rotation velocity is to be constant on cylinders so as to give 
a conservative potential. Numerical experiments have shown that the 
wire model gives a satisfactory approximation to the disk-mass potential. 
Note the analogy of the wire model with the Roche point mass approxima­
tion for stars. The centrifugal potential is computed from a rotation 
law in which angular velocity varies as un, with u the distance from an 
axis of rotation and n a parameter which turns out to be constrained in 
several ways by various features of the problem (Paper l). Actually, 
two regimes with different n are required if the solutions are to be 
fully consistent. Figure 1 shows a computed disk equilibrium figure 
(cf. Paper l). 

While in a formal sense the present computation of disk models 
assumes static equilibrium, this is only a simplification, needed to 
keep the first efforts computationally managable. In reality the situ­
ation would be one of dynamical equilibrium, with matter continually 
accreting from disk to star, but with that flow balanced by a return 
injection from star to disk. Probably the latter occurs at zero lati­
tude, while the former occurs slightly above and below zero latitude. 
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Figure 1. A cross-section of the surface equipotential for the 
case used in this paper. The hatched area is the critically ro­
tating central star and the three half-dots along the x-axis 
depict the locations of mass concentrations used in computing 
the potential. The inset shows the potential as a function of x. 

II. INPUT TO THE PROBLEM - GROSS CHARACTERISTICS OF THE DISK 

In order to be sure that our disk dimensions are reasonable, we 
adopt those of the $ Lyrae disk, as estimated in earlier papers (Wilson, 
197*+; Wilson and Lapasset, 198l). According to the disk potential 
model (Paper l ) , the full potential is determined when the star masses, 
disk mass, disk radius, and disk thickness have been specified. The 
numbers for our g Lyr calculation are R<jisk = 0.57a, Z m a x (half-
thickness) = 0.12a, M d l s k = 0.0U M s t a r and M d i s k = 0.5 MB. We take the 
mass of the other star as zero so as to make these first computations 
axisymmetric. It is shown in Paper 1 that the disk mass should be non-
neglible, although it is not clear that 0.5 MQ is a particularly good 
estimate. Hopefully, it is of the correct order of magnitude (cf. 
arguments in Paper l). The relative chemical abundances by mass are 
taken to be X = 0.70, Y = 0.27, and Z = 0.03. More detailed abundances 
needed when solving for the ionization equilibrium were taken from 
Allen, 1973. The same source was used for ionization potentials and 
partition functions. We cannot expect the rotation law to be Keplerian 
because thermal gas pressure support is important in the "z" dimension 
(the disk is quite thick), so it certainly would be important also in 
the radial dimension. Only part of the radial support would therefore 
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come from rotation. 

Is the disk radiative or convective? Since it has no nuclear 
luminosity, one might think that radiation could easily carry the energy 
flux. However on two grounds we know that it must have a luminosity 
which is enormous for a 0.5 M0 (or so) object. First, we have the 
directly observable luminosity, which is of the same order as that of 
the B9 star (Wilson, 197*0. Second, the considerable thickness of the 
disk requires a large luminosity to provide adequate thermal pressure 
support. If we substitute approximate values for the physical variables 
into the Schwarzschild criterion for convective instability, we find 
that the disk will be convective by a large margin, and (drawing on the 
results of the computed models) full structural computations show that 
it will be co'nvective throughout. Energy transfer by convection is an 
advantage if the disk is to be an equilibrium structure because (non-
nuclear) energy will not be generated at constant rates on equipotentials. 
Therefore convection, as a mechanism for lateral redistribution of 
energy, will improve the correspondence between the real disk and the 
model. On the other hand, there are difficulties in understanding how 
the necessary differential rotation can be maintained in the presence of 
convection. However there is no choice - order of magnitude calculations 
show that the disk will certainly be convective. Therefore we compute 
our first models in the spirit of making a beginning. Hopefully some­
thing will be learned from them, even if it is only a rough indication 
of where to go from here. 

Although we expect the energy transport to be convective, we cannot 
expect adiabatic convection because temperatures and densities are too 
low. The outer convection zone of a normal star such as the sun is 
superadiabatic only in its very outermost part - perhaps half of one 
percent of the stellar radius. However our disk will have internal tem­
peratures of the order of a hundred times smaller and densities of the 
order of 103 to 101* times smaller than those of a star (viz. estimates 
in Paper l), so that we expect it to be superadiabatic throughout, or 
almost throughout. Thus the temperature gradient should be computed by 
means of a full theory of convective transport. The computations here, 
including solutions for the ionization equilibrium, are based on the 
method outlined by Baker and Kippenhahn, 1962 (BT), which is a variation 
on that by Bohm-Vitense, 1958. The convection routine was checked 
(satisfactorily) against the "Tables of Convective Stellar Envelope 
Models" by Baker and Temesvary, 1966. 

III. COMPUTATIONAL METHOD 

Viewing our problem from the standpoint of stellar structure theory, 
we can write the potential (Paper 1, eqns. 1, 3, 12) in a form which 
satisfies all the exterior conditions, such as rotational continuity 
with the central star, which seem logically to apply for g Lyr and the 
other W Ser stars. The potential so formulated shows sufficient topo­
logical similarity with the standard stellar structure problem that a 
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one-dimensional formulation becomes natural. Let us make a meridional 
slice through the disk. There will be a point of maximum density, 
which should lie on the symmetry axis of the section. This point is the 
analog of the center of a normal star. We are to integrate the differ­
ential equations of stellar structure outward from this point. A simi­
lar inward integration from the surface of the disk is to meet the out­
ward integration smoothly, as in the usual fitting point method 
(Haselgrove and Hoyle, 1956). 

Corrections for the distorted geometry can be made very conveniently 
by the method given by Kippenhahn and Thomas, 1970 (herafter KT). While 
the KT method was intended for distorted stars, there is no reason not 
to use it for our disk model. The radial coordinate for the integration 
is the radius of a sphere having the same volume as the toroidal equi-
potential. We label this coordinate rs (for rgp^gpg). We need to com­
pute the volume, surface area, mean acceleration due to gravity, and 
mean spacing of the level surfaces for equipotentials as they are en­
countered while integrating the differential equations. Combinations 
of these functions (viz. KT) are lumped into two correction factors -
one, f.(., for the dT/dMr equation and one, f_, for the dP/dM,, equation. 
The continuity equations, dr/dM and dLr/dMr require no correction fac­
tors. The volume, surface area, mean gravity, and mean inverse gravity 
(proportional to level spacing) were computed, respectively, by 

V = 1+n C zu du (1) 
UA 

UB 
s = knf u / i + (fj du, (2 ) 

UA 

"B 

f fgu^+ ( £ ) 2 du'and 
UA 

fs^^m s du. (k] 
UA 

Here u is the distance from the rotation axis, which passes through 
the center of the star and is normal to the disk-orbit plane. The 
quantities u A and u B are the inner and outer limits of a given (toroidal) 
level surface, and z is the coordinate, measured vertically to the disk-
orbit plane, of a given point on the level surface. Eqn. (l) [supple­
mented by eqns. 3 and 12] of Paper 1 and its u derivatives provide 
dz/du, g, and g- 1. The integrals in eqns. (l, 2, 3, k) were evaluated 
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"by a seventh order gaussian quadrature. V, S, g and g 1 were then com­
bined into correction factors, as prescribed by KT. 

We must also find a means for computing the energy deposition. 
From the several likely contributors, let us adopt viscous dissipation 
for the present. In a simple treatment we may consider this propor­
tional to the local density and to the velocity shear, dv/du. The rate 
of viscous energy generation per gram will be independent of the den­
sity. Averaged over a given toroidal shell between two adjacent level 
surfaces, it can be shown to be given by 

/ 

n, + 1 

£ 
_ 2nln2 + 1 |KF UA 

v nl (n2 - nl) _ un ui U2 P B 

(f) 
du 

— , (5) 

r_JL_ 
J /dft\ UA fej 

du 

where uj, u2 are the values of u at the disk-star contact point and the 
disk density maximum, respectively. F is the ratio of the rotation 
rate to the synchronous rate at uj, P is the binary orbital period, and 
n is the potential according to eqn. 1 of Paper 1. We leave K, the 
effective efficiency of viscous energy conversion, as a free parameter, 
and we shall compute models for several K values. 

As in normal stellar structure integrations, it is necessary to 
make short analytic integrations at the "center" and surface, to avoid 
singularities. These may be done in the usual way (viz. Schwarzschild, 
1958, pp. llk-6) except that we need values of f and ft at the "center" 
and surface. At the surface these functions vary slowly with rs and 
may be computed in the same way as elsewhere within the disk. However, 
near the density maximum (our "center") they vary rapidly. Furthermore 
our quadrature schemes for finding fp and f̂  may be expected to lose 
accuracy near the center. Therefore we need analytic forms for f^ and 
fp in the limit of small rs. The f̂  factor for a toroidal equipotential 
of very small rs, surrounding the ring-like density maximum, becomes 

f t ( r s + o ) = ^ - . (6) 

The factor fp is not so simple, and goes to LP 

4^ 
V2nu2 

5/2 

tv{rs + 0)syw^'Fi (T) 

near the center. For very small r , the wire potential alone deter­
mines the force field and g I depends only on rg, u2, and q'. The be-

FP 
havior of fp (eqn. 7) depends on the ratio rs

5/"/g_i
 5and for small rE 
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one can show that g-1 is proportional to rs. Thus fp is proportional to 
rs

3/2 and approaches zero for small rs. Unfortunately, without resorting 
to series approximations, g-1 cannot be represented by a simple expres­
sion which will improve the usefullness of eqn. 7. In future work it 
may be worthwhile to develop such series, but for now we adopt fp = 0 
for the short analytic integration from the center. As the analytic in­
tegration covers only a small range of rs (from 0 to 0.001a) and fp is 
indeed small, only a minute error is involved. 

We also need an expression for the energy generation rate for the 
"center" analytic integration. Eqn. 5 simplifies at the center and 
becomes 

£ 2Jl|(n2 + 1)1 KF ,
 n l ,„, 

Vc = ' P ' (£2) • (8) 

The independent variable for the integrations through the disk will 
be Mr (mass interior to a given r s). However Mr is not a good choice 
for the independent variable in the outer parts of the disk because the 
derivatives d(log P)/d(log M r ) , d(log T)/d(log M r ) , etc. become extreme­
ly large and non-linear. Therefore, a switchover is made to rs as the 
independent variable in the difficult region, beginning where the sur­
face analytic integration terminates and ending where the density is 
found to be reasonably high. For the present computations the surface 
analytic integration extends from r_/R = 1.00 to 0.996, and the Eulerian 
numerical integration from there to rg/R = 0.550. Here R is the surface 
value of rs (not the value of u at the density maximum as in Paper l). 
The fitting point was placed at Mr/M = 0.1+00. 

Unless some special steps are taken, a program of the type we need 
will use an enormous amount of computing time, even on a rather fast 
machine. There are two reasons for this. First and more important, the 
geometrical correction factors must be computed many times for each in­
tegration step. In fact the situation is far worse than one might first 
think, because the independent variable is not the potential (fi), but 
rather r , so an additional nested step is required to find fi(rs) by 
(for example Newton-Raphson) iteration. Naturally, even after Q is 
known, many inversions of the potential equation are needed to evaluate 
eqns. 1, 2, 3, 1+, and 5- The second problem concerns the need for doing 
non-adiabatic convection calculations at every integration step. 

A great reduction in computer time is potentially available if the 
first problem can be circumvented. Note that the entire disk geometry 
is permanently specified as soon as the potential has been formulated. 
This point suggests that we establish the functions ft(rs), f~(r ) and 
ev(rs) at the beginning and represent them by simple approximation 
polynomials for later use. Adequate accuracy was obtained here with 
cubic polynomials, as the three special functions are all smooth and 
generally well behaved. Actually, all three special functions are near­
ly linear over long ranges, so a combination of a straight line and a 
cubic was used for each. The improvement in running speed was more than 
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a factor of ten. Unfortunately the program is still slow because of the 
convection calculations and the relatively slow convergence of the fit­
ting point scheme for disks, compared to that for normal star models. 

IV. RESULTS AND DISCUSSION 

Table 1 lists the main results of the first experiments, with 
masses and dimensions as given in section II. Figure 2 shows the re­
sults in graphical form. The precision (i.e. repeatibility, given the 
assumptions of the procedure) of the numbers is set by tolerances within 
the fitting point iteration scheme. For all four physical variables 
(radius, luminosity, "central" temperature and "central" pressure) the 
error tolerances were 0.3 percent. Four values of K, the coefficient 
of viscous energy generation, were tried. Convergence was much faster 
for the middle two K values than for the high and low value, which could 
not quite satisfy the 0.3 percent error tolerances. In fact, in all 
cases convergence was much slower than for a stellar model, and was only 
reliable within regions of parameter space fairly close (within perhaps 
20 percent) of the final answers. Therefore to a certain extent it is 
necessary to "discover" solutions, although once a solution has been 
found, it is easy to predict neighboring solutions for other values of 
K, disk mass, etc. The radius and luminosity are in excellent agreement 
with the observational values for g Lyr (Wilson, 197h, 1981). The cen­
tral temperature and pressure agree well with the order of magnitude 
predictions in Paper 1. It is important to have found solutions over a 
range of K values. If only eigensolutions were possible, the entire 
idea would be rendered implausible, as the real disk could not be ex­
pected to know the correct physical value of K. 

K(erg/g) 

5.0 x 108 

7.0 x 108 

8.0 x 108 

11.0 x 10e 

Disk 

Rs/R® 

15-7 
17-0 
17-5 
18.8 

Table 1 

S t r u c t u r a l 

L/103 Ls 

3.7 
5.1 
5.9 
8.1 

Models 

Tc(K) 

69,800 
67,100 
66,500 
63,000 

P c ( l 0 n dynes^ 
\ cmz > 

7-2 
U.9 
U.3 
1.6 

The run of physical variables through the disk is shown in Figures 
3 and k. Application of the Schwarzschild criterion shows the disk to 
be convective everywhere. Notice the high central condensation, which 
shows that the wire approximation for computing the potential is a good 
one, or at least that the overall scheme is self-consistent in this re­
spect. Taken at face value, the coincidence between the observed and 
theoretical radii and luminosities is encouraging. To put this in per­
spective, we are finding a radius of the order of 20 times the normal 
radius for a 0.5 M0, chemically uniform object. The corresponding 
luminosity factor is of the order of 105. The apparent agreement with 
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Figure 2. Variation of radius, luminosity, "central" temperature 
and "central" pressure with K, the factor governing the rate of 
viscous energy deposition. The solutions for the high and low 
K-values did not converge as well as for the middle values. 

observation does seem remarkable. In fact, as we shall presently see, 
there is still another coincidence in the numbers which suggests that 
we are on the right track. 

The released viscous energy ultimately comes at the expense of the 
gravitational energy of the accreting matter, which may be calculated 
approximately from the relation, 

dE _ GM dm 
dt R dt (9) 

where M, R are the mass and radius of the embedded (supposedly main se­
quence) star, and dm/dt is the mass accretion rate. Reasonable estimates 
would be M = 2.1+ x 1031t g, R = 2.9 x 1011 cm, and dm/dt = 3 x 10~5 

Me/yr (2 x 10
2 1 g/sec). The last number comes from the rate of period 

change and can be found in Wilson, 197^. Eqn. 9 then gives dE/dt ~ 
1.1 x 10 3 7 ergs/sec (2.8 x 103 LQ) for the accretion luminosity, which 
differs from our middle theoretical estimates by only a factor of 2. 
For a slightly less massive disk we should find complete agreement. 

One can imagine many discordances between theoretical and observa-
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the rather high "central" condensation, which shows that the wire 
approximation for computing the potential is a good one. 
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tional numbers which might have appeared, and such difficulties were ex­
pected. Somehow they have not materialized. Despite the simple nature 
of the disk structural model, it seems to be - as much to my astonish­
ment as anyone else's - virtually in complete agreement with the obser­
vational properties of 6 Lyr. 

The original purpose of this paper was to make estimates of the 
orders of magnitude of the physical variables within 6 Lyrae type disks. 
It seems that the models may now have made that possible for S Lyr it­
self. In further work it may be possible to predict and account for the 
characteristics of other members of the W Serpentis class. 

V. ACKNOWLEDGEMENTS 

Work on the potential of massive disks, which led the work on 
structural models, was done during a year's stay at the Max Planck 
Institute for Astrophysics (Garching, F.R.G.). That visit was made pos­
sible by a U.S. Senior Scientist Award of the Alexander von Humboldt 
Foundation, under the sponsorship of Professor R. Kippenhahn. Atten­
dance at the meeting was made possible by travel grants from the 
American Astronomical Society and the host Institute. 

REFERENCES 

Allen, C. W.: 1973, Astrophysical Quantities, 3rd ed. (London: Athlone 
Press ). 

Baker, N. H. and Kippenhahn, R. : 1962, Zt. f. Astrophys. 5*+, P- llh. 

Baker, N. H. and Temesvary, S.: 1966, "Tables of Convective Stellar 
Envelope Models" (New York: NASA Goddard Institute of Space 
Studies) (BT). 

Bohm-Vitense, E.: 1958, Zt. f. Astrophys. k6, p. 108. 

Haselgrove, C. B. and Hoyle, F.: 1956, Mon. Not. R. Astr. Soc. Il6, 

p. 515-

Huang, S.: 1963, Astrophys. J. 138, p. 3^2. 

Kippenhahn, R. and Thomas, H.-C: 1970, in "Stellar Rotation", ed. A. 
Slettebak (Dordrecht: Reidel), p. 20 (KT). 

Packet, W.: l98l, Astr. and Astrophys. (preprint). 

Plavec, M.: 1980, U.C.L.A. Astr. and Astrophys. Preprint No. 86. 

Sahade, J., Huang, S., Struve, 0., and Zebergs, V.: 1959, Trans. Amer. 
Phil. Soc. , U9, Part 1. 

https://doi.org/10.1017/S0252921100100582 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100100582


STRUCTURAL MODELS FOR BETA LYRAE-TYPE DISKS 273 

Schwarzschild, M.: 1958, "Structure and Evolution of the Stars" 
(Princeton: Princeton Univ. Press). 

Wilson, R. E. : 197*+, Astrophys. J. 189, p. 319-

Wilson, R. E. : 1979, Astrophys. J. 23^, p. 1051*. 

Wilson, R. E. and Lapasset, E.: 198l, Astr. and Astrophys. £5_, p. 328. 

Wilson, R. E.: 198l, Astrophys. J. 251, (in press for issue of Dec. l) 
(Paper l). 

https://doi.org/10.1017/S0252921100100582 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100100582



