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Continuity of Convolution and SIN Groups

Jan Pachl and Juris Steprāns

Abstract. Let the measure algebra of a topological group G be equipped with the topology of uni-
form convergence on bounded right uniformly equicontinuous sets of functions. Convolution is
separately continuous on the measure algebra, and it is jointly continuous if and only if G has the
SIN property. On the larger space LUC(G)∗, which includes the measure algebra, convolution is
also jointly continuous if and only if the group has the SIN property, but not separately continuous
for many non-SIN groups.

1 Introduction

_roughout the paperwe assume that topological groups areHausdorò, linear spaces
are over the ûeld R of real numbers, and functions are real-valued. Our results hold
also when scalars are the complex numbers, with essentially the same proofs.

When G is a topological group, the set of all continuous right-invariant pseudo-
metrics on G induces the topology of G and its right uniformity [10, §3.2] [13, 7.4]. In
what follows, we denote by G not only G with its topology but also G with its right
uniformity. Since we do not consider other uniform structures on G, this convention
will not lead to any confusion.
A pseudometric onG is bi-invariant if and only if it is both le� and right-invariant.

A topological groupG is a SIN group, or has the SIN property, if and only if its topology
(equivalently, its right uniformity) is induced by the set of all continuous bi-invariant
pseudometrics [13, 7.12].

_e space LUC(G) = Ub(G) of bounded uniformly continuous functions on G
has a prominent role in abstract harmonic analysis. It is a Banach space with the
sup norm. Its dual LUC(G)∗ is a Banach algebra in which the multiplication is the
convolution operation ⋆, deûned as follows. When φ is an expression with several
parameters, ∖xφ denotes φ as a function of x. Deûne

n● f (x) ∶= n(∖y f (xy)) for n ∈LUC(G)∗ , f ∈LUC(G), x ∈G .

m ⋆ n( f ) ∶= m(n● f ) for m, n ∈LUC(G)∗ , f ∈LUC(G).

Here (n, f )↦ n● f is the canonical le� action of LUC(G)∗ on LUC(G).
We identify every ûnite Radon measure µ on G with the functional m ∈LUC(G)∗

for which m( f ) = ∫ f dµ, f ∈LUC(G). _at way the space Mt(G) of ûnite Radon
(a.k.a. tight) measures on G is identiûed with a subspace of LUC(G)∗. With convo-
lution, this is themeasure algebra of G, o�en denoted simply M(G).
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Along with the norm topology, another topology on LUC(G)∗ andMt(G) com-
monly considered is the weak∗ topology w(LUC(G)∗ , LUC(G)). Questions about
separate weak∗ continuity of convolution on LUC(G)∗ lead to the problem of char-
acterizing the weak∗ topological centre of LUC(G)∗ and of the LUC compactiûca-
tion of G (see [4,6,7] and [10, Chapter 9]). Joint weak∗ continuity of convolution on
LUC(G)∗ was studied by Salmi [14],who showed that convolution need not be jointly
weak∗ continuous even on bounded subsets ofMt(G).

Here we consider the UEB topology on the space LUC(G)∗. _is topology, ûner
than theweak∗ topology, arises naturally in the study of continuity properties of con-
volution. When restricted to the space Mt(G), the UEB topology and the weak∗

topology w(Mt(G), LUC(G)) are closely related. It follows from general results in
[10, Chapter 6] that these two topologies onMt(G) have the same dual LUC(G) and
the same compact sets (hence the same convergent sequences), and they coincide on
the positive cone ofMt(G).

_e UEB topology can be deûned independently of the group structure of G for a
general uniform space; for the details of the general theory we refer the reader to [10].
In our current setting of the right uniformity on a topological groupG, theUEB topol-
ogy is deûned as follows. As in [10], for a continuous right-invariant pseudometric ∆
on G andm ∈LUC(G)∗ let

BLipb(∆) ∶= { f ∶G → [−1, 1] ∣ ∣ f (x) − f (y)∣ ≤ ∆(x , y) for all x , y ∈G} ,
∥m∥∆ ∶= sup{m( f ) ∣ f ∈BLipb(∆)} .

_e UEB topology on LUC(G)∗ is the locally convex topology deûned by the semi-
norms ∥ ⋅ ∥∆ , where ∆ runs through continuous right-invariant pseudometrics on G.

In [9] the UEB topology is deûned as the topology of uniform convergence on
equi-LUC subsets of LUC(G). _at deûnition is equivalent to the one given here,
since by [10, Lemma 3.3] for every equi-LUC set F ⊆ LUC(G), there are r ∈R and a
continuous right-invariant pseudometric ∆ on G such that F ⊆ rBLipb(∆).

When the group G is locally compact and Mt(G) is identiûed with the algebra
of right multipliers of L1(G), the UEB topology on Mt(G) coincides with the right
multiplier topology [9,_. 3.3]. If G is discrete, then LUC(G) = ℓ∞(G) and theUEB
topology on LUC(G)∗ is simply its norm topology. If G is compact then LUC(G)
is the space of continuous functions on G and the UEB topology is the topology of
uniform convergence on norm-compact subsets of LUC(G).

When the groupG is metrizable by a right-invariant metric ∆, the seminorm ∥ ⋅ ∥∆
on LUC(G)∗ is a particular case of the Kantorovich–Rubinshtĕın norm, which has
many uses in topological measure theory and in the theory of optimal transport [2,
8.3] [15, 6.2]. In this case the topology of ∥ ⋅ ∥∆ coincides with the UEB topology on
bounded subsetsofLUC(G)∗ [10, §5.4] but typicallynoton thewhole spaceLUC(G)∗.
As we show in Section 3, when considered on the whole space LUC(G)∗ or even
Mt(G), convolution behaves better in the UEB topology than in the ∥ ⋅ ∥∆ topology.

Our results in this paper complement those in [9]. By [9, Corollary 4.6 and_eo-
rem 4.8], convolution is jointlyUEB continuous on bounded subsets LUC(G)∗ when
G is a SIN group, and jointly UEB continuous on the whole space LUC(G)∗ when G
is a locally compact SIN group. Ourmain result (_eorem 3.2) states that convolution
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is jointly UEB continuous on LUC(G)∗ if and only if it is jointly UEB continuous on
Mt(G) if and only if G is a SIN group. In Section 4 we prove that convolution is sep-
arately UEB continuous on Mt(G) for every topological group G, but not separately
continuous on LUC(G)∗ for many non-SIN groups.
For locally compact groups, Lau and Pym [7] established the connection between

the SIN property and theweak∗ continuity ofmultiplication in the LUC compactiûca-
tion. Corollary 4.5 extends one of their results to a larger class of topological groups.

2 Preliminaries

In this section we establish several properties of SIN groups that are needed in the
proof of themain theorem in Section 3.

We specialize the notation of [10], where it is used for functions andmeasures on
generaluniform spaces, to the case of a topological groupG. For every x ∈Gwe denote
by ∂(x) the point mass at x, the functional in LUC(G)∗ deûned by ∂(x)( f ) = f (x)
for f ∈LUC(G). Mol(G) ⊆ LUC(G)∗ is the space ofmolecularmeasures, that is, ûnite
linear combinations of pointmasses. Obviously,Mol(G) ⊆Mt(G). For themolecular
measure of the special formm = ∂(x) − ∂(y), x , y ∈G, and for any continuous right-
invariant pseudometric ∆ on G we have ∥m∥∆ = min(2, ∆(x , y)), by Lemma 5.12
in [10].

_eUEB closure ofMol(G) in LUC(G)∗ is the spaceMu(G) ⊇Mt(G) of uniform
measures on the uniform spaceG. In this paperwe do not dealwith the spaceMu(G);
we only point out where a result that we prove for Mt(G) holds more generally for
Mu(G). _e reader is referred to [10] for the theory of uniform measures.

We start with a characterization of SIN groups, which is one part of [13, 2.17].

Lemma 2.1 A topological group G with identity element e is a SIN group if and
only if for every neighbourhood U of e there exists a neighbourhood V of e such that
xVx−1 ⊆ U for all x ∈G.

Lemma 2.2 Let G be a SIN group and ∆ a bounded continuous right-invariant pseu-
dometric on G. _en there is a continuous bi-invariant pseudometric Θ on G such that
Θ ≥ ∆.

Proof _e proof mimics that of [10, Lemma 3.3]. It is enough to consider the case
∆ ≤ 1. As G is a SIN group, there are continuous bi-invariant pseudometrics Θ j for
j = 0, 1, . . . , such that

∀x , y ∈ S[Θ j(x , y) < 1Ô⇒ ∆(x , y) < 1
2 j+1 ] .

Deûne Θ by

Θ(x , y) ∶=
∞
∑
j=0

1
2 j min(Θ j(x , y), 1) .

If x , y ∈X and j are such that Θ(x , y) < 1/2 j , then Θ j(x , y) < 1, whence ∆(x , y) <
1/2 j+1. It follows that Θ ≥ ∆.
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Corollary 2.3 Let G be a SIN group. _en the UEB topology on LUC(G)∗ is deûned
by the seminorms ∥ ⋅ ∥∆ where ∆ runs through continuous bi-invariant pseudometrics
on G.

If ∆ is a continuous or le� or right-invariant pseudometric on G, then so is the
pseudometric

√
∆ deûned by

√
∆(x , y) ∶=

√
∆(x , y) for x , y ∈G.

In the sequel we deal with functions of the form f /
√

∥ f ∥, where f ∈LUC(G). To
simplify the notation, we adopt the convention that f /

√
∥ f ∥ = f when f is identi-

cally 0.

Lemma 2.4 Let ∆ be a pseudometric on a set G and let f ∈BLipb(∆). _en

f /
√

∥ f ∥ ∈BLipb(2
√
∆).

Proof Take any x , y ∈G, and consider two cases:

(a) If ∥ f ∥ ≤ ∆(x , y), then ∣ f (x)/
√

∥ f ∥∣, ∣ f (y)/
√

∥ f ∥∣ ≤
√
∆(x , y), hence

∣ f (x)√
∥ f ∥

− f (y)√
∥ f ∥

∣ ≤ 2
√
∆(x , y).

(b) If ∥ f ∥ > ∆(x , y) > 0, then

∣ f (x)√
∥ f ∥

− f (y)√
∥ f ∥

∣ ≤ ∣ f (x) − f (y)∣√
∆(x , y)

≤
√
∆(x , y).

_e following lemma is a key ingredient in the proof of_eorem 3.2.

Lemma 2.5 LetG be a topological group,m, n ∈LUC(G)∗, and let ∆ be a continuous
bi-invariant pseudometric on G. _en

∥m ⋆ n∥∆ ≤
√

2∥m∥√∆∥n∥2
√
∆ .

Proof Take any f ∈BLipb(∆). As ∆ is le�-invariant, we have ∖z f (xz) ∈BLipb(∆)
for every x ∈G, and ∥n● f ∥ ≤ ∥n∥∆ . Now BLipb(∆) ⊆ BLipb(

√
2∆) ⊆ BLipb(2

√
∆),

because
√

2t ≥ t for 0 ≤ t ≤ 2, and thus ∥ ⋅ ∥∆ ≤ ∥ ⋅ ∥√2∆ ≤ ∥ ⋅ ∥2
√
∆ . It follows that

(2.1) ∥n● f ∥ ≤ ∥n∥∆ ≤ ∥n∥2
√
∆ .

For x , y ∈G we have g ∶= 1
2 ∖z ( f (xz) − f (yz)) ∈BLipb(∆), hence

g/
√

∥g∥ ∈BLipb(2
√
∆)

by Lemma 2.4. Moreover, 2∥g∥ ≤ ∆(x , y), because ∆ is right-invariant, so that

∣n● f (x) − n● f (y)∣ = 2∣n(g)∣ = 2
√

∥g∥∣n( g√
∥g∥

) ∣

≤
√

2
√
∆(x , y)∥n∥2

√
∆ .

(2.2)

Putting (2.1) and (2.2) together, we get n● f ∈
√

2∥n∥2
√
∆BLipb(

√
∆). Hence,

∣m ⋆ n( f )∣ = ∣m(n● f )∣ ≤
√

2∥m∥√∆∥n∥2
√
∆ .
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3 Joint UEB Continuity

For any topological group G, the operation ⋆ is jointly UEB continuous on bounded
subsets ofMt(G) [9, 4.5], in fact, even on bounded subsets ofMu(G) [10, Cor. 9.36].
However, as we shall see in this section, convolution need not be jointly UEB contin-
uous on the whole spaceMt(G).

_e UEB topology is deûned by certain seminorms ∥ ⋅ ∥∆ . As a warm-up exercise,
consider the continuity with respect to a single such seminorm. Let G be ametrizable
topological group whose topology is deûned by a right-invariant metric ∆. As we
pointed out in the introduction, the topology of the norm ∥ ⋅ ∥∆ coincides with the
UEB topology on bounded subsets of LUC(G)∗. Hence, ⋆ is jointly ∥ ⋅ ∥∆ continuous
on bounded subsets of Mt(G). However, ⋆ is not jointly ∥ ⋅ ∥∆ continuous on the
whole spaceMt(G) or even Mol(G) for G = R.

Example 3.1 Let G be the additive group R with the usual metric ∆ deûned by
∆(x , y) = ∣x − y∣. For j = 1, 2, . . . , let m j ∶= n j ∶= j(∂(1/ j2) − ∂(0)) and f j(x) ∶=
min(1, ∣x − (1/ j2)∣) for x ∈R. _en f j ∈BLipb(∆) and

m j ⋆ n j = j2(∂(2/ j2) − 2∂(1/ j2) + ∂(0)) ,
∥m j ⋆ n j∥∆ ≥ m j ⋆ n j( f j) = 2

but lim j∥m j∥∆ = lim j∥n j∥∆ = 0.
Note that although the sequence {m j} j converges in the norm ∥ ⋅ ∥∆ , it does not

converge in the UEB topology; in fact, ∥m j∥√∆ = 1 for all j.

Next we shall see that the situation changes when wemove from the topology de-
ûned by a single seminorm ∥ ⋅ ∥∆ to the topology deûned by all such seminorms, i.e.,
the UEB topology.

_eorem 3.2 _e following properties of a topological group G are equivalent:
(i) Convolution is jointly UEB continuous on LUC(G)∗.
(ii) Convolution is jointly UEB continuous on Mt(G).
(iii) Convolution is jointly UEB continuous on Mol(G).
(iv) G is a SIN group.

Proof Obviously, (i)⇒(ii)⇒(iii).
Toprove (iii)⇒(iv), assume that convolution is jointlyUEB continuousonMol(G).

Take any neighbourhood U of the identity element e. _ere is a continuous right-
invariant pseudometric Θ such that {z ∈G ∣ Θ(z, e) < 1} ⊆ U . By the UEB con-
tinuity there are a continuous right-invariant pseudometric ∆ and ε > 0 such that
if m, n ∈Mol(G), ∥m∥∆ , ∥n∥∆ ≤ ε, then ∥m ⋆ n∥Θ < 1. To conclude that G is a SIN
group, in view of Lemma 2.1, it is enough to show that xVx−1 ⊆ U for all x ∈G, where
V ∶= {v ∈G ∣ ∆(v , e) < ε2}. To that end, take any x ∈G and v ∈V and deûne

m ∶= ε∂(x), n ∶= (∂(v) − ∂(e))/ε
_en ∥m∥∆ = ε and ∥n∥∆ = min(2, ∆(v , e))/ε < ε, hence

min(2,Θ(xv , x)) = ∥∂(xv) − ∂(x)∥Θ = ∥m ⋆ n∥Θ < 1,
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and therefore Θ(xvx−1 , e) = Θ(xv , x) < 1 and xvx−1 ∈U . _at completes the proof
of (iii)⇒(iv).

To prove (iv)⇒(i), assume that G is a SIN group. Take any continuous bi-
invariant pseudometric ∆ on G. By Lemma 2.5, if m,m0 , n, n0 ∈LUC(G)∗ are such
that ∥m −m0∥√∆ < ε and ∥n − n0∥2

√
∆ < ε, then

∥m ⋆ n −m0 ⋆ n0∥∆ ≤ ∥(m −m0) ⋆ n∥∆ + ∥m0 ⋆ (n − n0)∥∆
≤
√

2ε∥n∥2
√
∆ +

√
2∥m0∥√∆ε

≤
√

2ε( ε + ∥n0∥2
√
∆ + ∥m0∥√∆) ,

which along with Corollary 2.3 proves that ⋆ is jointly UEB continuous at (m0 , n0).

4 Separate UEB Continuity

By _eorem 3.2, convolution is jointly UEB continuous on LUC(G)∗, and therefore
also separatelyUEB continuouswhenever G is a SIN group. On the other hand, aswe
explain at the end of this section, there are topological groups G for which convolu-
tion is not separatelyUEB continuous on LUC(G)∗. Nevertheless,we now prove that
convolution is separately UEB continuous on Mt(G) for every topological group G.
_e same proof can be used to show that convolution is separately UEB continuous
even on Mu(G).

Lemma 4.1 Let G be a topological group, m ∈Mt(G), and let ∆ be a continuous
right-invariant pseudometric on G. _en there exists a continuous right-invariant pseu-
dometric ∆m such that ∖ym(∖x f (xy)) ∈ ∥m∥BLipb(∆m) for every f ∈ BLipb(∆).

Proof Evidently, ∥∖ym(∖x f (xy))∥ ≤ ∥m∥ for every f ∈ BLipb(∆). Toprove that the
function ∖ym(∖x f (xy)) is Lipschitz for a suitable ∆m, ûrst note that ifm = ∑ j c jm j ,
m j ∈LUC(G)∗, is a ûnite linear combination such that

∣m j(∖x f (xy)) −m j(∖x f (xz))∣ ≤ ∆ j(y, z)
for every j and y, z ∈G, then

∣m(∖x f (xy)) −m(∖x f (xz))∣ ≤ ∆′(y, z),

where ∆′ = ∑ j ∣c j ∣∆ j . _us, it is enough to prove the lemma assuming that m ≥ 0.
We may also assume that ∆ ≤ 2, as replacing ∆ by min(∆, 2) does not change

BLipb(∆). For m ≥ 0,m /= 0, and ∆ ≤ 2, deûne ∆m by

∆m(y, z) ∶= m(∖x∆(xy, xz))/∥m∥ for y, z ∈G .

Clearly, ∆m is a right-invariant pseudometric. To see that it is continuous, ûrst apply
the estimate

∣∆(xy, x) − ∆(wy,w)∣ ≤ ∆(xy,wy) + ∆(x ,w) = 2∆(x ,w),

which shows that ∖x∆(xy, x) ∈ 2BLipb(∆) for every y ∈G. Since m is a Radon mea-
sure, it is continuous on 2BLipb(∆) in the compact-open topology. However, that
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topology on 2BLipb(∆) coincides with the topology of pointwise convergence. It fol-
lows that ∆m(y, e), where e is the unit element of G, is a continuous function of y on
G.
For any f ∈BLipb(∆), we have

∣m(∖x f (xy)) −m(∖x f (xz))∣ ≤ m(∖x ∣ f (xy) − f (xz)∣)
≤ m(∖x∆(xy, xz)) = ∥m∥∆m(y, z)

for y, z ∈G.

_eorem 4.2 For every topological group G, convolution is separately UEB continu-
ous on Mt(G).

Proof For every n ∈LUC(G)∗ themapping m ↦ m ⋆ n is UEB continuous; this is a
special case of [10, Cor. 9.21].
For m ∈Mt(G) and n ∈LUC(G)∗, we can reverse the order of applyingm and n in

the deûnition of convolution:

m ⋆ n( f ) = n(∖ym(∖x f (xy))) for f ∈LUC(G).

_is is a consequence of a variant of Fubini’s theorem; see [10, §9.4] for a proof and
discussion.

_e UEB continuity of the mapping n ↦ m ⋆ n for every m ∈Mt(G) now follows
from Lemma 4.1.

In analogy with the commonly studied weak∗ topological centre of LUC(G)∗, we
can also consider its UEB topological centre ΛUEB , the set of those m ∈LUC(G)∗
for which the mapping n ↦ m ⋆ n is UEB continuous on LUC(G)∗. _en ΛUEB =
LUC(G)∗ for every SIN group G by _eorem 3.2. Example 4.7 in [9] (which is also
[10, Example 9.39]) shows that ΛUEB /= LUC(G)∗ whenG is the group of homeomor-
phisms of the interval [0, 1] onto itself with the topology of uniform convergence.
Next we will show that in fact ΛUEB /= LUC(G)∗ for every topological group G that
contains a non-SIN subgroup that is locally compact or metrizable.
For any topological group G denote by RUC(G) the space of those bounded con-

tinuous functions f on G for which the mapping x ↦ ∖y f (yx) is continuous from
G to the space ℓ∞(G) with the sup norm. In other words, RUC(G) is the space of
bounded le� uniformly continuous functions on G.

Note that g ∈LUC(G) if and only if ∖x g(x−1) ∈RUC(G). _us, LUC(G) =
RUC(G) if and only if LUC(G) ⊆ RUC(G). It is a long-standing open problem [3]
whether every topological group G such that LUC(G) = RUC(G) is a SIN group.
_e following partial answer was proved by Itzkowitz et al [5] andMilnes [8] for lo-
cally compact groups, and by Protasov [12] for almostmetrizable (in particular locally
compact or metrizable) groups.

Lemma 4.3 Let G be a topological group that is locally compact or metrizable and
such that LUC(G) ⊆ RUC(G). _en G is a SIN group.
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As in [10, §6.5],when each element x of a topological groupG is identiûedwith the
point mass ∂(x) ∈LUC(G)∗ and LUC(G)∗ is equipped with its weak∗ topology, we
obtain topological embeddingsG ⊆ Ĝ ⊆ GLUC ⊆ LUC(G)∗. Here, Ĝ is the completion
of G (with its right uniformity) and GLUC = p̂G is its uniform compactiûcation. _e
embedding G ⊆ Ĝ is not only topological but uniform as well. Both Ĝ and GLUC are
subsemigroups of LUC(G)∗ with the convolution operation.

_e following theorem will be applied in two cases:When G is locally compact or
completely metrizable, we let S = G. When G is merely metrizable, we let S = Ĝ.

_eorem 4.4 Let G be a topological group that is locally compact or metrizable. Let
S be a subsemigroup of GLUC such that the following hold:
(i) G ⊆ S;
(ii) the topology of S is locally compact or completely metrizable;
(iii) for everym ∈GLUC themapping x ↦ m ⋆ x from S to GLUC is continuous.
_en G is a SIN group.

_emain argument in the following proof is used in the proof of [1, 4.4.5].

Proof Take any f ∈LUC(G). Deûne φ∶GLUC × G → R by φ(m, x) ∶= m ⋆ x( f ) for
m ∈GLUC, x ∈G.
From the deûnition of ⋆, for every n ∈LUC(G)∗ themappingm↦ m ⋆ n is weak∗

continuous on LUC(G)∗. _at alongwith (iii) implies that the convolution operation
is separately continuous on the product GLUC × S, therefore jointly continuous on
GLUC ×G by [1, 1.4.2].

It follows that φ is jointly continuous on GLUC × G. _en by [1, B.3] the mapping
x ↦ ∖mφ(m, x) is continuous from G to ℓ∞(GLUC) with the sup norm. Hence, the
mapping x ↦ ∖mφ(m, x) ↾ G is continuous fromG to ℓ∞(G)with the sup norm. But
φ(y, x) = f (yx) for x , y ∈G, and we get f ∈RUC(G) by the deûnition of RUC(G).
_at proves LUC(G) ⊆ RUC(G). Using Lemma 4.3, we conclude that G is a SIN
group.

For locally compact non-SIN groups the following corollary was proved by Lau
and Pym [7, 3.1].

Corollary 4.5 Let G be a non-SIN group whose topology is locally compact or com-
pletely metrizable. _en there exists m ∈GLUC for which the mapping x ↦ m ⋆ x from
G to GLUC is not continuous.

Many inûnite-dimensional groups of automorphisms, such as those discussed by
Pestov [11], aremetrizable by a completemetric and not SIN._is includes the groups
of autohomeomorphisms of the interval [0, 1] and of theCantor set 2ℵ0 with the topol-
ogy of uniform convergence, groups of automorphisms of many Fraïssé structures
with the topology of pointwise convergence, and the unitary group of an inûnite-
dimensional Hilbert space.
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Corollary 4.6 Let G be a metrizable non-SIN group. _en there exists m ∈GLUC for
which themapping x ↦ m ⋆ x from Ĝ to GLUC is not continuous.

Proof Apply_eorem4.4with S = Ĝ,which of course is completelymetrizable.

By [10, Cor. 6.13] theUEB andweak∗ topologies coincide on Ĝ. _at togetherwith
the two corollaries shows that for any non-SIN group G that is locally compact or
metrizable there exists m ∈GLUC for which the mapping x ↦ m ⋆ x from Ĝ to GLUC

is not UEB continuous, and thus convolution is not separately UEB continuous on
GLUC.

More generally, to exhibit such a discontinuity it is enough to show that one of the
two corollaries applies to a subgroup H of G. Indeed, if H is a topological subgroup
of G, then H is a uniform subspace of G when both are considered with their right
uniformities [13, 3.24]. Hence, HLUC is embedded in GLUC, both topologically and
algebraically (with the convolution operation). It follows that convolution is not sepa-
ratelyUEB continuous onGLUC wheneverG contains a locally compact ormetrizable
subgroup that is not SIN.

_us, Corollary 4.6 holds for a large class of not necessarily metrizable non-SIN
groups. We do not know whether it holds for every non-SIN group.
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