Seventh Meeting, May 8th 1885.
A. J. G. Barclay, Esq., M.A., President, in the Chair.

On certain formalae for Repeated Differentiation. By Professor Cerfstal
In many questions of analysis relating to the theory of plane curves, it is convenient to be able to obtain quickly the expansions of $\left(\frac{d}{d x}\right)^{m}\left(y^{n}\right)$, and of $\left(\frac{d}{d x}\right)^{m}\left(x^{p} y^{n}\right)$. These may beobtained as follows:-

By an obvious extension of the theorem of Leibnitz we have
$\left(\frac{d}{d x}\right)^{m}\left(y_{1} y_{2} \ldots y_{n}\right)=\left(d_{1}+d_{2}+\ldots+d_{n}\right)^{m} y_{1} y_{2} \ldots y_{n}$,
where $d_{1}, d_{2}, \ldots d_{n}$ differentiate $y_{1}, y_{9}, \ldots y_{n}$ respectively.
Hence by the multinomial theorem

$$
\left(\frac{d}{d x}\right) m\left(y_{1} y_{2} \ldots y_{n}\right)=m!\Sigma\left(\frac{y_{1 r_{1}} y_{r_{r}} \cdots y_{n r_{n}}}{r_{1}!r_{2}!\ldots r_{n}!}\right),
$$

$$
\text { where } r_{1} \nless 0 \ldots r_{n} \nless 0 ; r_{1}+r_{2} \ldots+r_{n}=n
$$

Now in this formula let $y_{1}=y_{2} \ldots=y_{n}$, each $=y$, and observe that the term $\frac{\left(y_{r_{1}} \rho_{1}\left(y_{r_{2}}\right)^{\rho_{2}} \ldots \ldots\right.}{\left(r_{1}!\right)^{\rho_{1}\left(r_{2}!\right)^{\rho_{9}} \ldots \ldots}}$ will occur as often as there are permutations of n things taken all together, ρ_{1} of which are all alike, ρ_{2} all alike, \&c.; that is $n!/ \rho_{1}!\rho_{2}!\ldots .$. times; we then obtain
where

$$
\left(\frac{d}{d x}\right)^{m}\left(y^{n}\right)=m!n!\Sigma\left(\frac{\left(y_{r_{1}}\right)^{\rho_{1}}\left(y_{r_{2}}\right)^{\rho_{2}} \ldots \ldots}{\left(r_{1}!\right)^{\rho_{1}}\left(r_{2}!\right)^{\rho_{2}} \ldots \rho_{1}!\rho_{2}!\ldots \ldots}\right)
$$

$$
\begin{gathered}
r_{1} \nless 0 \ngtr m, r_{2} \nless 0 \ngtr m, \ldots \ldots ; \\
\rho_{1} \nless 1 \ngtr n, \rho_{2} \nless 1 \ngtr n, \ldots \ldots ; \\
r_{1} \rho_{1}+r_{2} \rho_{2}+\ldots \ldots=m ; \\
\rho_{1}+\rho_{2}+\ldots \ldots=n .
\end{gathered}
$$

Similarly from
$\left(\frac{d}{d x}\right)^{m}\left(x^{p} y_{1} y_{2} \ldots y_{n}\right)=\left(d+d_{1}+d_{2} \ldots+d_{n}\right)^{m\left(x^{p} y_{1} y_{2} \ldots y_{n}\right) \text { we derive }}$

$$
\begin{aligned}
& \left(\frac{d}{d x}\right)^{m\left(x^{p} y^{n}\right)} \\
& =m!\sum\left((n-r)!\frac{p(p-1) \ldots(p-r+1)_{x p-r}}{r!} \frac{\left(y_{r_{1}}\right)^{\rho_{1}}\left(y_{r_{2}}\right)^{\rho_{2}} \ldots \ldots}{\left(r_{1}!\right)^{\rho_{1}}\left(r_{2}!\right)^{\rho_{2}} \ldots \rho_{1}!\rho_{2}!\ldots \ldots}\right) ; \\
& \text { where } \\
& r \nless 0 \ngtr m, r_{1} \nless 0 \ngtr m, \ldots \ldots \text {; } \\
& \rho_{1} \nless 1 \ngtr n, \rho_{2} \nless 1 \ngtr n, \ldots \ldots \ldots ; \\
& r+\rho_{1} r_{1}+\rho_{2} r_{2}+\ldots \ldots=m ; \\
& \rho_{1}+\rho_{2}+\ldots \ldots=n . \\
& \text { Example } \\
& \left.\left(\frac{d}{d x}\right)\right)^{\rho}\left(y^{3}\right)=9!3!\left[\begin{array}{l}
y_{0} y^{2} \\
9!2!
\end{array}+\frac{y_{8} y_{1} y}{8!}+\frac{y_{7} y_{1}{ }^{2}}{7!2!}+\frac{y_{7} y_{2} y}{7!2!}+\frac{y_{6} y_{3} y}{6!3!}+\frac{y_{6} y_{2} z_{1}}{6!2!}+\frac{y_{5} y_{6} y}{5!4!}\right. \\
& \left.+\frac{y_{6} y_{3} y_{1}}{5!3!}+\frac{y_{3} y_{2}{ }^{2}}{5!(2!)^{3}}+\frac{y_{4}{ }^{2} y_{1}}{(4!)^{2} 2!}+\frac{y_{4} y_{3} y_{2}}{4!3!2!}+\frac{y_{3}{ }^{3}}{(3!)^{4}}\right] \\
& =3 y_{9} y^{2}+54 y_{8} y_{1} y+216 y_{7} y_{1}{ }^{2}+216 y_{7} y_{2} y+504 y_{6} y_{3} y_{1}+1512 y_{6} y_{2} y_{1} \\
& +756 y_{5} y_{4} y+3024 y_{5} y_{3} y_{1}+2268 y_{5} y_{3}^{2}+1890 y_{4}^{2} y_{1}+7560 y_{4} y_{3} y_{2}+1680 y_{3}{ }^{3} .
\end{aligned}
$$

On a method for obtaining the differential equation to an Algebraical Curve.

By Professor Chrystal.

1. Consider the conic represented by the general equation

$$
\begin{equation*}
a_{0}+b_{0} x+b_{1} y+c_{0} x^{2}+c_{1} x y+c_{2} y^{2}=0 \tag{l}
\end{equation*}
$$

Differentiating three times with respect to a we get

$$
\begin{equation*}
b_{1}(y)_{3}+c_{2}\left(y^{2}\right)_{3}+c_{1}(x y)_{3}=0 \ldots \tag{2}
\end{equation*}
$$

where $(y)_{3}$ stands for $\left(\frac{d}{d x}\right)^{3}(y)$.
Again, from (2) by successive differentiation we derive

$$
\begin{align*}
& b_{1}(y)_{4}+c_{2}\left(y^{2}\right)_{4}+c_{1}(x y)_{4}=0 \tag{3}\\
& b_{1}(y)_{5}+c_{2}\left(y^{2}\right)_{5}+c_{1}(x y)_{5}=0 \tag{4}
\end{align*}
$$

From (2) (3) (4), eliminating the remaining constants, we have

$$
\left|\begin{array}{ccc}
(y)_{3} & \left(y^{2}\right)_{3} & (x y)_{3} \tag{6}\\
(y)_{4} & \left(y^{2}\right)_{4} & (x y)_{4} \\
(y)_{5} & \left(y^{2}\right)_{3} & (x y)_{5}
\end{array}\right|=0 \quad \ldots \quad \ldots
$$

which is one form of the differential equation to the conic (1).

