On Sylvester's Dialytic Method of Elimination.

By Professor E. T. Whittaker, F.R.S.

Consider any two algebraic equations, which for simplicity we shall take to be a cubic

$$
\begin{equation*}
a x^{3}+b x^{2}+c x+d=0 \tag{1}
\end{equation*}
$$

whose roots are y_{1}, y_{2}, y_{3}, and a quadratic

$$
\begin{equation*}
\alpha x^{2}+\beta x+\gamma=0 \tag{2}
\end{equation*}
$$

whose roots are x_{1}, x_{2}. The equation which is obtained by eliminating x between these two equations represents the condition that the two equations should have a root in common: it must therefore be equivalent to the equation

$$
\begin{equation*}
\left(x_{1}-y_{1}\right)\left(x_{1}-y_{2}\right)\left(x_{1}-y_{3}\right)\left(x_{2}-y_{1}\right)\left(x_{2}-y_{2}\right)\left(x_{2}-y_{3}\right)=0 \tag{3}
\end{equation*}
$$

The result of eliminating x between the two equations (1) and (2) is however given by the well-known dialytic method of Sylvester in the form $D=0$, where D denotes the determinant

$$
\left|\begin{array}{lllll}
0 & a & b & c & d \\
a & b & c & d & 0 \\
0 & 0 & \alpha & \beta & \gamma \\
0 & \alpha & B & \gamma & 0 \\
\alpha & \beta & \gamma & 0 & 0
\end{array}\right|
$$

I do not remember to have seen anywhere a direct proof that the equation (3) is equivalent to the equation $D=0$, and the purpose of the present note is to supply such a proof.

We have

$$
\begin{aligned}
\left(x_{1}-x_{2}\right) D & =\left|\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
x_{1}^{4} & x_{1}^{3} & x_{1}^{2} & x_{1} & 1 \\
x_{2}^{4} & x_{2}^{3} & x_{2}^{2} & x_{2} & 1
\end{array}\right| \cdot\left|\begin{array}{ccccc}
0 & a & b & c & d \\
a & b & c & d & 0 \\
0 & 0 & \alpha & \beta & \gamma \\
0 & \alpha & \beta & \gamma & 0 \\
\alpha & \beta & \gamma & 0 & 0
\end{array}\right| \\
& =\left|\begin{array}{lllll}
0 & a & 0 & 0 & \alpha \\
a & & b & 0 & \alpha \\
b & c & \alpha & \beta & \gamma \\
b & & & \\
a x_{1}^{3}+b x_{1}^{2}+c x_{1}+d & a x_{1}^{4}+b x_{1}^{3}+c x_{1}^{2}+d x_{1} & 0 & 0 & 0 \\
a x_{2}^{3}+b x_{2}^{2}+c x_{2}+d & a x_{2}^{4}+b x_{2}^{3}+c x_{2}^{2}+d x_{2} & 0 & 0 & 0
\end{array}\right|
\end{aligned}
$$

$$
=\left|\begin{array}{cc}
a x_{1}^{3}+b x_{1}^{2}+c x_{1}+d & x_{1}\left(a x_{1}^{3}+b x_{1}^{2}+c x_{1}+d\right) \\
a x_{2}^{3}+b x_{2}^{2}+c x_{2}+d & x_{2}\left(a x_{2}^{3}+b x_{2}^{2}+c x_{2}+d\right)
\end{array}\right| \cdot\left|\begin{array}{ccc}
0 & 0 & \alpha \\
0 & \alpha & \beta \\
\alpha & \beta & \gamma
\end{array}\right|
$$

Therefore

$$
D=\alpha^{3}\left(a x_{1}^{3}+b x_{1}^{2}+c x_{1}+d\right)\left(a x_{2}^{3}+b x_{2}^{2}+c x_{2}+d\right) .
$$

Since

$$
a x^{3}+b x^{2}+c x+d \equiv a\left(x-y_{1}\right)\left(x-y_{2}\right)\left(x-y_{3}\right),
$$

we have therefore

$$
D=\alpha^{3} a^{2}\left(x_{1}-y_{1}\right)\left(x_{1}-y_{2}{ }^{\prime}\left(x_{1}-y_{3}\right)\left(x_{2}-y_{1}\right)\left(x_{2}-y_{2}\right)\left(x_{2}-y_{3}\right) .\right.
$$

The equation $D=0$ is therefore equivalent to the equation (3), which was to be proved.

