
J. Austral. Math. Soc. (Series A) 51 (1991), 118-153

HARMONIC MORPHISMS AND CONFORMAL FOLIATIONS
BY GEODESICS OF THREE-DIMENSIONAL SPACE FORMS

PAUL BAIRD and JOHN C. WOOD

(Received 15 October 1989)

Communicated by J. H. Rubinstein

Abstract

A complete classification is given of harmonic morphisms to a surface and conformal folia-
tions by geodesies, with or without isolated singularities, of a simply-connected space form.
The method is to associate to any such a holomorphic map from a Riemann surface into the
space of geodesies of the space form. Properties such as nonintersecting fibres (or leaves) are
translated into conditions on the holomorphic mapping which show it must have a simple form
corresponding to a standard example.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 53 C 12, 58 E 20,
31 B99.

0. Introduction

A harmonic morphism is a smooth map (f>: M -> N between Riemannian
manifolds such that if / is a real-valued harmonic function on an open set
V of N and <f>~x{V) c M is nonempty, the composition fo<f> is harmonic
on <j>~l(V). Harmonic morphisms may be characterized as harmonic maps
which are horizontally weakly conformal [9, 16], or as Brownian path preserv-
ing mappings [5]. Examples are (i) orthogonal projection R 3 -»R 2 , and (ii)
the Hopf map S3 -> S2.

In [4] we showed that these are essentially the only nonconstant harmonic
morphisms from R3 or S3 to a surface. In the present paper we complete our
treatment of harmonic morphisms from simply-connected three-dimensional
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[2] Harmonic morphisms and foliations 119

space forms by considering harmonic morphisms from hyperbolic 3-space
H3 to a surface. We shall show that there are essentially two non-constant
harmonic morphisms: (iii) orthogonal projection I 3 - » H 2 ; and (iv) projec-
tion H 3 -»C to the plane at infinity; see Examples 1.6 for definitions. More
precisely, we have

THEOREM 3.5. Any nonconstant harmonic morphism from H3 to a Rie-
mannian 2-manifold N is, up to isometry ofB3, orthogonal projection H3 —•
H2 or projection H3 —> C to the plane at infinity followed by a weakly confor-
mal map of E2 or C to N.

Together with [4, Theorems 4.1 and 5.1] and facts about harmonic mor-
phisms into codomains of other dimensions, this completely describes all har-
monic morphisms from a simply-connected three-dimensional space form.

A conformal foliation of a Riemannian manifold is one given locally by
conformal submersions (see [20] and Section 1C), a Riemannian foliation
is a special case. Given a submersive harmonic morphism (j>: M —> N,
the fibres <j>~l(y), y € N, define a conformal foliation, and further if N
is two-dimensional, the fibres are minimal [3]. In particular, to a submer-
sive harmonic morphism from a */iree-dimensional manifold M to a surface
N is associated a conformal foliation of M by geodesies. There is an in-
verse construction; see Section 2C. Applying this construction to examples
(i) to (iv) above gives four standard foliations. Theorem 3.5 follows from
its counterpart for foliations: up to isometry, the only conformal foliations
by geodesies of a simply-connected space form R3, S3 or H3 are the four
standard foliations (see Theorems 2.14, 2.15 and 3.3).

For harmonic morphisms which are not submersions we need a factor-
ization theorem (Theorem 2.19) which shows that any harmonic morphism
from a convex domain U of a three-dimensional space form to a surface can
t>e factored into a submersive harmonic morphism followed by a weakly con-
formal map. This allows us to associate a conformal foliation by geodesies
to an arbitrary nonconstant harmonic morphism of U to a surface.

In §4 we study harmonic morphisms from space forms with isolated sin-
gularities. We first show (Theorem 4.2) that the only possible singularity
is radial projection, typified by the harmonic morphism <j> : R3\{0} —> S2,
x i-> x/\x\. We then give global implications showing that any non-constant
harmonic morphism with isolated singularities from R3, S3 or H3 to a sur-
face is, up to isometry, a standard example (a radial projection) followed by a
weakly conformal map (Theorem 4.2).

Again these results follow from a related result on conformal foliations by
geodesies with singularities (Theorem 4.1)
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The main idea of our proofs is that the locations of the leaves of a folia-
tion by geodesies of a convex open subset U of a space form are described
by a map i of the leaf space into the space Gv of geodesies of U. This
mapping is holomorphic if and only if the foliation is conformal. This gives
a unified treatment of the local theory of harmonic morphisms from a three-
dimensional space form to a surface. We prove our main results by studying
the global behaviour of the holomorphic mapping i. Constant curvature is
used in an essential way, for example only in this case do we know that the
space of geodesies is a complex surface (cf. [15]). Furthermore our factor-
ization theorem (Theorem 2.19) relies on an extension of certain functions
which are harmonic in the presence of constant curvature.

Let M be a no/i-simply-connected three-dimensional space form. Then
M = E3/F where E3 = R3, S3 or H3 and T is a discrete group of isome-
tries acting freely on E3 . Any harmonic morphism or conformal foliation
by geodesies of M lifts to one of E 3 . Thus our results imply results on
harmonic morphisms and conformal foliations by geodesies of non-simply-
connected three-dimensional space forms. As an example we give a complete
classification of harmonic morphisms to a surface and conformal foliations by
geodesies, with or without isolated singularities, of RP3 in Section 5 showing
that any such is, up to isometry, a standard example obtained from standard
examples on S 3 .

1. Preliminaries

(A) Space forms [21]. Let Em denote a simply-connected space form, that
is, a simply-connected complete Riemannian manifold of constant sectional
curvature K. By scaling we may assume K = + 1 , 0 or - 1 . Then Em is
isometric to a sphere Sm if K = +1, Euclidean space Rm if K = 0, or
hyperbolic space Hm if K = -1. Note all these manifolds have standard
orientations. We describe three models for Hm that we shall use.

(i) The Poincari model. Here Mm = the open unit ball Dm = {x e Rm :
|JC| < 1} with the metric

d

(1 - \x\2)2

(I • I will always denote the Euclidean norm |JC| = y/(xf H h xm).) The
maximal geodesies of Hm are the intersections of Euclidean circles with Dm

which meet the boundary dDm at right angles.
(ii) The Beltrami model. Again Hm = the open unit ball. The maximal

geodesies of Hm are the intersections of Euclidean lines with Dm. The
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(0 ,0 , -1 )

FIGURE 1

Poincare and Beltrami models are related by the difFeomorphism A : Dn

2x
Dm

A(x) =
\x\2

(homeomorphism on Dm) which sends any circle orthogonal to dDm (that
is, a geodesic of the Poincare model) to the straight line joining the same
points of dDm (that is, a geodesic of the Beltrami model). (This can be seen
by noting that A is the composition

Dm - i 2Dm "->'

where the first map sends x to 2x, a : H™ —> 2Dm is stereographic projec-
tion through ( 0 , . . . , 0, -1) of the open upper hemisphere H™ of the unit
sphere Sm to the tangent plane at (0, . . . , 0, 1) and v is vertical projection

(*i > • • • - *«+i) " • ( * ! . • • • . * « ) •) (See Figure 1.)
(iii) The half-space model. Here Hm is the upper half-space

with the metric

d:2 _ E*i dA
x2

This is related to the Poincare model by an isometry called the Cayley trans-
formation; see [21, page 71].

(B) Harmonic morphisms. Let (j>: M —> N be a smooth mapping between
Riemannian manifolds M = Mm, N = Nn of dimensions m and n re-
spectively. All Riemannian manifolds will be assumed connected and smooth
(that is, C°°) unless otherwise stated. For each x € M, let Vx = ker d<t>x

denote the vertical space at x, and let H denote its orthogonal complement
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in TXM called the horizontal space at x. Thus TXM decomposes as the
direct sum TXM = HX@VX. We denote by V and H the corresponding ver-
tical and horizontal distributions in the tangent bundle TM. Then <j> is said
to be horizontally {weakly) conformal if, for each x e M where d(j>x ± 0,
the restriction of d<j>x to Hx is conformal and surjective onto T,,x)N. Thus
there is some number X(x) e (0, oo), called the conformality factor or dila-
tion of 4> at x, such that \d^>x(X)\ = X(x)\X\ for each X e Hx . Setting X
equal to zero at critical points (that is, points x e M where d<j>x = 0), we
obtain a continuous function X : M -* R called the dilation of </>. Note that
A2 = |</</>|2/n is smooth. The set of critical points is called the critical set of

<t>.
We refer the reader to [4] for the basic properties of and further references

to harmonic morphisms.
Harmonic morphisms to surfaces, that is, two-dimensional Riemannian

manifolds, have a particularly nice characterization established in the case
that M is an open subset of Rm in [5] and in the general case in [3].

THEOREM 1.1 [3]. Let <£: Mm -> N2 be a submersion. Then 4> is a har-
monic morphism if and only if it is horizontally conformal and its fibres <f>~l{y)
(y e N2) are minimal in Mm.

Using this criterion it is easy to see that the following are harmonic mor-
phisms:

EXAMPLES 1.2. (i) Orthogonal projection <f>: R3 -> R2 = C, <f>(xl, x2, x3)
= (x,, x2) = xl + ix2 .

(ii) The Hopfmap 4>: S3 -» S2 .
(Hi) Orthogonal projection <f>: H3 -»• H2 . This is denned as follows. Rep-

resent H3 by the Poincare model. Then the central disc D2 = {(xl, x2, 0) €
R3: x2 + xl < 1} may be identified with H2 , again by the Poincare model.
For x € H3 = D3, let <f>(x) be the intersection with H2 = D2 of the
unique hyperbolic geodesic through x which meets H2 orthogonally. The
fibres of <f> are shown in Figure 2(a). Horizontal conformality at points
(0, 0, x3) is a consequence of rotational symmetry about the x3-axis. Hor-
izontal conformality at other points follows by applying a suitable isometry.
In fact the group of isometries of H3 induced by the Mobius transforma-
tions Z K ( Z - a ) / ( z - I/a) on the boundary preserves the foliation and acts
transitively on the leaves.

By elementary geometry one can construct the formula for (j> which is
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(a) Fibres of orthogonal
projection H —> H

(b) Fibres of projection to
the plane at infinity

FIGURE 2. Standard harmonic morphisms and corresponding
conformal foliations of H3.

given by

, , x 3 ) =
L1/2

Ux* + xA\
(iv) Projection to the plane at infinity <f>: H3 —> C . To define this, represent

H3 by the upper half-space R .̂ = {(x , , x2, x3): x3 > 0} and define 4>: H3 -*

R2 = C by

4>{xl, x2 = (x , , x2) = ix
2.

The fibres of <p are vertical half-lines. If we use the Poincare model
<j> can be described as follows. Let x0 = ( - 1 , 0, 0) 6 dD3. Identify
dD3\{x0} = S2\{x0} with C by stereographic projection from x0. Then
4>{x) = intersection of the hyperbolic geodesic through x and x0 with
dD\{x0}. The fibres of <p are the geodesies emanating from x0 (see Figure

Corollary 3.7 states that these four examples are essentially the only non-
constant harmonic morphisms from a simply-connected three-dimensional
space form to a two-dimensional Riemannian manifold.

A further class of harmonic morphisms is provided by radial projections.
Let B3 be a geodesic ball centre p0 in a three-dimensional space form.
Let x = (x, ,x2,xi) denote normal coordinates centred on p0 (that is,
coordinates given by the exponential map at pQ). Then by radial projection
to p0 we mean the map 4>: B3\{p0} —> S2 given by

* >
The fibres of <j> are the "radial" geodesies of B3 emanating from pQ. Radial
projection extends to the following harmonic morphisms which we continue
to call radial projections.

3 2
EXAMPLES 1.3. (i) <f>: R3\{0}

jection to 0).
S2 defined by <j>(x) = x/\x\ (radialpro-
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(ii) (j>: S\{(\, 0 , 0 , 0 ) , ( - 1 , 0 , 0 , 0)} -» S2 denned by <t>(cost, s i n t t )
— x, t e (0, n), x e S2 . The fibres of (j> are half great circles through the
"poles" ( 1 , 0 , 0 , 0 ) , ( - 1 , 0 , 0 , 0 ) : this map extends radial projection to
either of those points and will be called radial projection to ( ± 1 , 0 , 0 , 0 ) .

(iii) With the Poincare model for H 3 , <j>: H3\{0} = D3\{0} -» S2 defined
by <f>{x) = x/\x\ (radialprojection to 0).

These may be considered as harmonic morphisms with isolated singular-
ities of E 3 , S 3 , H3. We prove in Section 4 that the only possible isolated
singularity of a harmonic morphism from a three-dimensional space form to
a two-dimensional Riemannian manifold is radial projection (Theorem 4.1)
and that any harmonic morphism with an isolated singularity from a domain
of a simply-connected space form must be, up to isometry, the restriction of
one of Examples 1.3.

(C) Conformal foliations [20]. We give here a treatment of conformal
foliations adapted to our purposes, there being no suitable reference.

Let Mm be a smooth Riemannian manifold. A smooth distribution V
of dimension k, codimension q = m - k, is a smooth subbundle of rank k
of the tangent bundle. A smooth distribution which is integrable is called a
C°° foliation and the connected components of the integrable submanifolds
of V are called the leaves of the foliation. We denote by H the orthogonal
distribution; we shall often call V (respectively H) the vertical (respectively
horizontal) distribution. Given xQ e Mm there is a neighbourhood U of x0

and a diffeomorphism y/ : U —• Ul x U2 c Rk x K* such that the intersection
of any leaf with U is given by y/~l{Ul x y) for some y € U2. Such a
y is called a foliated chart and the corresponding submersion n2 o y/: U ->

C / j C l ' , where n2: R x Rq —> R9 is projection onto the second factor, is
called a distinguished submersion. More generally, for 0 < r < oo, or r = co
(real analytic), Cr foliations on a Cr manifold can be defined in terms of
foliated charts or distinguished submersions; see, for example, [12]. Note
that in particular given a Cr submersion (f>: Mm —• W , the components of
the fibres (inverse images) of 4> form the leaves of a Cr foliation called the
foliation associated to the submersion <f>.

o
We next define conformal foliation. Let V be the Bott partial connection

on the horizontal bundle H defined by

for W e C°°(V), X e C°°(H). Here %? denotes orthogonal projection
onto H and 2CWX = [W, X] denotes the Lie derivative (or Lie bracket).
Let gH denote the metric on Mm restricted to H, that is, gH{Y, Z) =

o
, <8?Z), where g is the metric tensor on M . Let V now denote
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[8] Harmonic morphisms and foliations 125

the induced connection on Q2H*, the bundle of symmetric bilinear forms
on H.

DEFINITION 1.4. A foliation is conformal if, at all points x e Mm ,

for all W € Vx where k(W) is a positive number depending only on W. As
a special case if k(W) = 0 for all W e V, the foliation is called Riemannian
[18].

This definition can be understood more explicitly in several ways. Call
a vector field X basic (or foliate or projectable) if &WX e C°°(V) for
all W e C°°{V). This can be interpreted [18, Lemma 4.5] as saying that
X is an infinitesimal automorphism of the foliation. Equivalently, for any
distinguished submersion n : U -* U2 c R*, X projects to a vector field
on U2. A vector field X is basic if and only if its horizontal part ^X

o
is basic. The condition for this may be written V ^ (ZPX) = 0 , that is, a
horizontal basic vector field is simply a horizontal vector field which is parallel
with respect to the Bott partial connection. (Note that the concept of a vector
field along a leaf being basic is well-defined.)

Now we restrict to the case of a foliation with trivial linear holonomy.
Since the linear holonomy along a leaf coincides with that arising from the
Bott partial connection [17], the holonomy of the latter is also trivial. Thus
if x and y lie on the same leaf, parallel transport along the leaf gives a well-
defined isomorphism rxy: Hx -> Hy. Indeed if Xx e Hx, let X be the
unique basic vector field along the leaf with that value at x; then Txy{Xx) =
Xy, the value of X at y.

PROPOSITION 1.5. A foliation is conformal (respectively Riemannian) if and
only if parallel transport of horizontal vector fields along the leaves is conformal
(respectively isometric).

PROOF. For any horizontal vector fields X, Y,

$W8H)(X,Y) = W{gH(X,Y)}- gH(VwX,Y)-gH(X, VWY).

Now if X and Y are basic, the last two terms vanish. Thus from Definition
1.8, the foliation is conformal if and only if for all basic horizontal vector
fields X, Y,

W{gH(X,Y)} = k(W)gH(X,Y),

which is clearly equivalent to parallel transport being conformal.
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Proposition 1.5 can be phrased as follows: a foliation is conformal (re-
spectively Riemannian) if and only if its linear holonomy pseudogroup is a
subgroup of the group of conformal (respectively isometric) transformations.

Next we have the following useful characterization in terms of distin-
guished submersions:

PROPOSITION 1.6 (cf. [20]). A foliation & is conformal if and only if,
for each distinguished submersion n : U —> U2 c R*, U2 can be given a
Riemannian metric (or a conformal equivalence class of such) such that n is
a horizontally conformal submersion.

PROOF. Since a basic vector field is precisely one which projects to a vector
field on U2 for any distinguished submersion, we see that parallel transport
commutes with the differential of n . Thus, if & is conformal, if we choose
a Riemannian metric on n(U) such that n is horizontally conformal at one
point of a fibre, it will be horizontally conformal at all points.

Conversely, if n is horizontally conformal at all points of a fibre, parallel
transport is conformal and so by Proposition 1.5 the foliation is conformal.

REMARK 1.7. To check that a foliation is conformal it suffices to check
that for each point x of Mm, there is a distinguished submersion on a
neighbourhood of x with the property in the last proposition. In particular
the foliation associated to a conformal submersion is conformal.

We now specialize to the case of a codimension two foliation &~, still
with trivial linear holonomy, which is transversally orientable [12], that is,
each horizontal space Hx can be given an orientation in a consistent manner.
Then, for each x, we have an "almost complex structure" / = Jx : Hx -> Hx ,
that is, an isometry with Jx = — identity. We then have characterizations of
conformality of ZF in terms of / .

PROPOSITION 1.8. The following conditions on &~ are equivalent:
(i) & is conformal;

o o
(ii) Vw J — 0 for all W e V, where V is the [partial) connection induced

on the bundle of linear maps L{H, H) from the Bott partial connection on
H;

(iii) parallel transport commutes with J;
(iv) / maps horizontal basic vector fields to horizontal basic vector fields.

PROOF. Since parallel transport preserves orientation it is conformal if and
only if it commutes with / , showing equivalence of (i) and (iii). Now (iii)
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o o
is equivalent to Vw (JX) = J(VW X) for all horizontal vector fields X and
W e V. Since

(VwJ)(X)=Vfv(JX)-J(VlvX),

o o
this is equivalent to (ii). Lastly, (ii) holds if and only if VW(JX) = J(VWX)
for all horizontal basic vector fields X, that is, if and only if JX is basic
for all horizontal basic vector fields X, which is (iv).

2. Local theory of harmonic morphisms
on a three-dimensional space form

(A) Space of geodesies on a space form. Let E3 be a simply-connected space
form R3, S3 or H3 and let U be an open subset of E3 which is convex in
the weak sense that any two points can be joined by a not necessarily minimal
geodesic segment. Equivalently, the intersection of any maximal geodesic of
E3 with U must be connected. For example in S3 both a small disk and
the complement of its closure are convex in this sense as is the whole of 5 3 .
In R3 and H3 this notion of convexity clearly coincides with the usual one.
Note that through any two distinct points of U there is a unique maximal
geodesic y of U; if U c S3 these may be closed; in all cases y is the
intersection of a maximal geodesic of E3 with U.

Let Gu be the space of all (oriented maximal) geodesies of U. This can
be given the structure of a smooth real four-dimensional manifold as follows.

Given an oriented geodesic y &GV (see Figure 3), choose points p and q
on y, with p preceeding q with respect to the orientation and, if E3 = 5 3 ,
with dist(p, q) < n. (This ensures that p and q are not conjugate and
there are no conjugate points between them.) Let K and L be slices at p
and q, that is, connected open subsets of planes orthogonal to y at p and
q. (In case E3 = S3, K and L are assumed to be sufficiently small that

'q') < n, for all p € K, q eL.) Define a mapping cKL : KxL -> Gv

FIGURE 3
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by ip', Q) -* unique maximal geodesic through p and q with orientation
consistent with that of y. Then the collection of all cKL gives Gv the
structure of a smooth four-dimensional manifold. Note that Gv is the open
subset of (7E3 consisting of those y e <?E3 having non-empty intersection
with U; GE3 is clearly Hausdorff, and thus so is Gv .

The tangent space TyGv may be identified with TpKxTqL. Alternatively,
recall that a Jacobi field Y along y is a vector field along y which satisfies
the equation

V2
XY + R(Y, X)X = 0,

where X is the unit tangent to y, V is the Levi-Civita connection on E3

and R the curvature tensor. If 5 —> ys is a curve of geodesies in E3 with
y0 = y, then Y = dy/ds\ s=0 is a Jacobi field. By a normal Jacobi field we
mean one which is orthogonal to X at all points. The normal component of
any Jacobi field is a normal Jacobi field.

Given (v, w) e TpK x TqL, there is a unique normal Jacobi field along
y with the values v, w at p, q. We may thus identify TyGv with the
space of normal Jacobi fields along y . Now for any JC € y, write Hx for
the normal space ("horizontal space") {Txy)L ; thus Hp = TpK, Hq = TqL.
Give Hx the orientation which together with the orientation of y gives the
standard orientation of E3. Define J = Jx : Hx —• Hx to be rotation
through +7r/2. In terms of the vector cross product on TXE3 = R3 this
can be written J(Y) = X x Y, where X is the unit positive tangent to y.
As a consequence of constant curvature (see [15]), if Y is a normal Jacobi
field along y so is JY. Thus / defines an almost complex structure on Gv .
This is integrable (see [15]). Note that under the identification of TyGv with
TpK x TqL = Hpx Hq, J corresponds to the product (Jp, Jq).

(B) Conformal foliations by geodesies. Again, let U be a convex (in the
weak sense of Section A) open subset of E3 = R3, S3 or H3 and let 9~ be
an oriented C°° foliation by geodesies. (Note that if U is simply-connected,
in particular if U is convex in the usual sense, any foliation can be oriented
by transporting orientations along paths.)

LEMMA 2.1. The leaves of &~ are maximal geodesies of U.

REMARK. This result holds for an arbitrary open subset U of E3 whether
convex or not.

PROOF. Suppose not. Then some leaf contains an open interval, up to
x € U say, of a maximal geodesic y but does not contain x. But then x
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u

FIGURE 4

must lie on some other leaf and it is clear that f? cannot be a foliation near
x. (See Figure 4.)

Note that from the explicit description of geodesies on E3, any foliation
by geodesies has trivial holonomy.

Now let N be the set of leaves ("leaf space") of &. Since each leaf is an
oriented maximal geodesic of U, N is naturally a subset of Gv , that is, we
have an inclusion mapping i: N —• Gv .

LEMMA 2.2. N is a two-dimensional smooth submanifold of Gv.

PROOF. Let y e N, and let p, q, K, L be as in Section A. Thus
cKL : K x L —> Gv gives a chart for Gv near y. Define a map s from
a neighbourhood K' of p in K to a neighbourhood L1 of q in L ("slid-
ing along the leaves") by s(x) = the intersection of the leaf through x with
L. For a suitable choice of K' and l!, s is a diffeomorphism. Now in the
chart cKL , Nn cKL(K' X Lf) is the graph of s, that is, N D cKL(K' x L1) =
cKL({(x, s(x)) eK x L:x e K1}). This establishes the lemma.

REMARK 2.3. (i) It follows that charts for the smooth two-dimensional
manifold N are given as follows. Let y e N and choose a point x ey. Let
K be a slice for &~ at x, that is, K is a connected open subset of a plane
which cuts y orthogonally and is sufficiently small that leaves through points
of K intersect K transversally. Then cK: K -+ N given by p i-» maximal
geodesic of U through p , gives charts for N . In fact iV is oriented by this
atlas. Note that the tangent space TyN may be identified with TXK or with
the space of basic (Section A) horizontal vector fields along y . Evaluation
at x gives an isomorphism of the latter with the former.

(ii) We can consider N as the quotient space f//~, where x ~ y if and
only if they lie on the same leaf. It is easy to check that the quotient topology
agrees with the topology of iV as a submanifold of Gv. As in (i) above,
N may then be given the structure of a smooth oriented two-dimensional
manifold without reference to the inclusion i: N -> Gu ; cf. [4].

We now identify conformal foliations by the following
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PROPOSITION 2.4. N isa complex submanifold of Gv, that is, the inclusion
map i: N -+ Gu is holomorphic if and only if f? is a conformal foliation.

PROOF. Let y 6 N. It is clear that i*TyN is the subset of those normal
Jacobi fields along y which are basic. Thus / is holomorphic if and only if
J maps basic horizontal vector fields to basic horizontal vector fields. But
by Proposition 1.12, this is equivalent to & being a conformal foliation.

In particular we have

COROLLARY 2.5. If & is an oriented conformal foliation by geodesies of a
convex subset U of E3, the leaf space of & is a Riemann surface.

REMARK 2.6. (i) The charts described in Remark 2.3 (i) are complex charts
for the leaf space.

(ii) An alternative proof of Proposition 2.4 is to note that the differential
of the "sliding along the leaves map" s : K -» L (see proof of Lemma 2.2)
is parallel transport along the leaves (see Section 1C) and this respects / if
and only if the foliation & is conformal.

(C) Relationship between conformal foliations by geodesies and harmonic
morphisms; examples. As a special case of Proposition 1.10 and Remark 1.11
we have

LEMMA 2.7. Let <f>: M3 -»JV2 be a submersive harmonic morphismfrom
an oriented three-dimensional Riemannian manifold to a Riemann surface.
Then the foliation associated to <f>, that is, the foliation & whose leaves are
the connected components of the fibres of <f>, is a conformal foliation of Af3

by geodesies. Further & may be given a canonical orientation.

The canonical orientation is obtained as follows. Orient each horizontal
space Hx so that d<f>x\Hx is orientation preserving. Then orient each vertical
space Vx (= tangent space to the leaf through x) such that the orientation
of Hx and Vx together give the orientation of A/"3.

EXAMPLES 2.8 (cf Examples 1.2). (i) Corresponding to orthogonal projec-
tion <f>: R3 —* R2 is the conformal (in fact, Riemannian) foliation of R3 by
vertical straight lines.

(ii) Corresponding to the Hopf map <j>: S3 -> S2 is the conformal (in fact,
Riemannian) foliation of S3 by great circles.
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(iii) Corresponding to orthogonal projection <j): H3 —> H2 is the conformal
(not Riemannian) foliation of H3 by hyperbolic geodesies depicted in Figure
2(a).

(iv) Corresponding to projection to the plane at infinity <j> : H3 —• C is
the conformal (not Riemannian) foliation of H3 by hyperbolic geodesies
depicted by Figure 2(b). In the half-space model of H3 this foliation is the
foliation of the upper half-space by vertical straight lines.

We shall refer to the above four foliations as the standard foliations of
the simply-connected space forms E3 = R3, S and H . Our main result
(Corollary 3.4) is that, up to isometry of E3, these are the only conformal
foliations of these spaces by geodesies. However other conformal foliations
by geodesies can be defined on open subsets of these spaces. In particular
corresponding to the radial projections of Examples 1.7 we have the following
conformal foliations by geodesies.

EXAMPLES 2.9. (i) The conformal foliation of R3\{0} by radii, that is,
half-lines from the origin.

(ii) The conformal foli
greatcircles through (±1 , 0, 0, 0).

(iii) The conformal foliation of H3\{0} by radii, that is, geodesies from
the origin.

As a converse to Lemma 2.7 we have

LEMMA 2.10. Given an oriented conformal foliation & by geodesies of an
open subset U of E3 = R3, S3 or H3, convex in the weak sense of Section
2A, let N be its leaf space and let n:U —• N be the natural projection. Then
n is a (submersive and surjective) harmonic morphism with connected fibres.

PROOF. Clearly n is horizontally conformal and has geodesic fibres and
is therefore a harmonic morphism by Theorem 1.1.

Say that two nonconstant submersive surjective harmonic morphisms to
Riemann surfaces </> : Af3 -* N2 and $' : A/3 -+ N'2 are equivalent if
<j) = C ° <t> for some biholomorphic map £ : iV2 —• iV72 . Then combining
Lemmas 2.7 and 2.10 we have

PROPOSITION 2.11. Let U be an open subset of E3 = R3, S3 or H3, con-
vex in the weak sense of Section 2A. The above constructions give a one-to-one
correspondence between oriented conformal foliations of U by geodesies and
equivalence classes of submersive surjective harmonic morphisms with con-
nected fibres of U to a Riemann surface.

https://doi.org/10.1017/S1446788700033358 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700033358


132 Paul Baird and John C. Wood [15]

PROOF. Clearly equivalent harmonic morphisms give the same foliation.
Now let <f> : U -* N2 be a submersive surjective harmonic morphism with
connected fibres. Let 9~ be the associated foliation. Then up to biholomor-
phic equivalence, N2 is the leaf space of 9~ and <$> the natural projection
onto it and the Proposition is proved.

REMARK 2.12. (i) A version for codomains N, two-dimensional Rieman-
nian manifolds not necessarily orientable, is true if we replace biholomorphic
by bi-conformal (that is, conformal diffeomorphism) and drop the require-
ment that the foliations be oriented.

(ii) Since any harmonic morphism to a Riemann surface is Cw (for any
harmonic map is) any smooth conformal foliation by geodesies of an open
subset U of E3 = R3, S3 or H3 is actually Cw for it is (locally) given by
a (submersive) harmonic morphism.

If U is the whole of E3 we can say more about n:

PROPOSITION 2.13. Let E3 = R3, S3 or M3 and let & be a Cr foliation
of E3 by geodesies (r = 0, 1 , . . . , oo, co). Then the natural projection n :
E3 -»• N onto the leaf space is a principal Cr bundle with fibre I = R if
E3 = R3 or H3, / = S1 if E3 = S 3 .

Further if E3 = R3 or H3, N is contractible and n is globally trivial, that
is, there is a Cr diffeomorphism a, isometric on the second factor, such that
the following diagram commutes:

NxR-?* E3

N

PROOF. Orient &. Let p e E3 and let K be a slice at p. Then K may be
identified via a chart with an open subset of the leaf space N. Let a :KxI ->
E3 be the flow along the leaves, that is, a(x, t) = the point at a distance t
from x along the leaf through x. Then a is a Cr diffeomorphism and so
n is locally trivial. In fact, a is isometric on the second factor, showing that
n is actually a principal fibre bundle with structure group / .

If now E3 = R3 or H3 , the homotopy exact sequence of n (for example
[19]) shows that the surface N has nx(N) = n2(N) = 0. It is therefore
contractible. It follows (for example, [12, Proposition II.3.2]) that n has a
global section and is therefore globally trivial.

REMARK. We have not insisted that f? is conformal.
As a consequence of Proposition 2.13 we can translate the Bernstein the-

orems [4, Theorems 4.1 and 5.1] into the following theorems for foliations:
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THEOREM 2.14. Let &~ be a smooth conformal foliation by geodesies of
E3. Then, up to isometry of R3, 9~ is the standard foliation of Example

THEOREM 2.15. Let &~ be a smooth conformal foliation be geodesies of
S3. Then, up to isometry of S3, 9~ is the standard foliation of Example

For the corresponding result on H , see Theorem 3.3.
(D) Representation of harmonic morphisms by the inclusion map i and

examples. Let E3 = R3, S3 or H3. Let U c E3 be a convex open set
in the weak sense of Section 2A and let (f>: U —> N be a submersive sur-
jective harmonic morphism to a Riemann surface with connected fibres, or
equivalently (Proposition 2.11), an oriented conformal foliation 9" of U
by geodesies. Then as in Proposition 2.4 we have a holomorphic inclusion
map i: N -* GEi of a complex submanifold which describes the location of
each fibre. Conversely, given a holomorphic inclusion map / : N —• G^ of
a one-dimensional complex submanifold N, we obtain an "oriented confor-
mal distribution" of geodesies {i(y): y e N} which may or may not form a
foliation. However if U is an open subset of E3 such that

(a) each x e U lies on a unique geodesic i(y) for some y e N,
(b) for y{, y2 e N, yx ^ y2, the geodesies i(yx), i(y2) do not interest in

U,
(c) the distribution {i(y): y € N} has no envelope points (that is, infinites-

imally close geodesies do not intersect), then the distribution does define a
foliation &~ on U by geodesies. If U is convex, by Proposition 2.11 this
foliation corresponds to a harmonic morphism (f>: U —> N. In particular the
inclusion map i: N -» GEi here plays the role of the generalized harmonic
morphism of [4].

For examples of conformal foliations and the related inclusion maps for
E3 = R3 and S3, we refer to [4]. The case E3 = H3 will be discussed in
Section 3.

(E) Factorization of harmonic morphisms. We first discuss a map related
to the holomorphic inclusion map i: N —> Gv . Let U be an arbitrary open
subset of E3 and let 9~ be an oriented foliation of U by geodesies. We
define a mapping / : U -+ GEs by x i-> leaf through x.

PROPOSITION 2.16. Iff? is conformal, the components of I with respect to
any complex chart are harmonic morphisms. That is, let c = (cl,c2): V -> C2

be a complex chart on an open subset V of GEi; then the maps c, o / : [/ D
/ " ' ( F ) -> C are harmonic morphisms. Furthermore the real and imaginary
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parts of the components of I, Re(c(o/), Im(c(o/) : r ' ( K ) - » R are harmonic
functions.

PROOF. Let p e U and let Up be a convex neighbourhood of p. Then
we may form the leaf space N of &~\Up as in Section 2B and by Lemma
2.10 the natural projection n : Up -+ N is a harmonic morphism. Also by
Proposition 2.4 the inclusion map i : N —> (?E3 is holomorphic. Now, on
Up, I = ion, so cl;OI = (c, o /) o n , which exhibits ct o / as the composition
of a holomorphic map c( o / with the harmonic morphism n. As in Corollary
1.2(vii), this composition is a harmonic map and therefore so are its real and
imaginary parts.

We now wish to study harmonic morphisms 4> which may not be submer-
sions, nor have connected fibres. We shall show that we can still associate a
foliation to </>. So let (j>: U —> N2 be a non-constant harmonic morphism
from a convex open subset U of a three-dimensional Riemannian manifold
to a Riemann surface, and let K denote its critical set (Section 1A).

LEMMA 2.17. / : U\K -* G^ has a unique continuous extension to U
and the fibres of <f> give a C° foliation of U by geodesies with the connected
component of the fibre 4>~l{p) through p given by I(p) for all p e U.

PROOF. This is proved in [5] for E3 = R3. Since the notions of capacity,
polar set used in that proof are independent of the Riemannian metric (cf.
[7]), the same proof works for any three-dimensional Riemannian manifold.

For an alternative proof using the fact that the symbol of a harmonic
morphism is a harmonic morphism [9] see [2].

Now let U be an open subset of a space form E3 = R3, S3 or H3. Then
we can say more:

THEOREM 2.18. Let & be a C° foliation of U by geodesies which is C°°
and conformal on U\K where K is polar in U. Then 9" is C°° (in fact
C03) and conformal on U.

PROOF. Let I: U —> GEi be the mapping JC •-• leaf through x. Then / is
C° on U and C°° on U\K. Thus its four real components with respect to
a complex chart are C° on U and, by Proposition 2.17, C°° and harmonic
on U\K. By a well-known extension property for harmonic functions [14,
Corollary 7.8] these functions are C°° and harmonic on U, thus / is C°°
on U. It follows that & is C°° on U and therefore clearly conformal. It
is in fact Cw either by noting any harmonic function on a Cw manifold is
Cw orbyRemark2.12(ii).
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This theorem allows us to factorize nonsubmersive harmonic morphisms.

THEOREM 2.19. Let (j> : U -> N2 be a nonconstant harmonic morphism
from a convex open subset of E3 = R3, S3 or H3 to a two-dimensional
Riemannian manifold. Then <j> factors as <f> = £ o n, where n : U -» N is a
submersive harmonic morphism onto a Riemann surface with connected fibres
and C : N -> N is a weakly conformal map.

PROOF. By Lemma 2.18 and Theorem 2.19, the components of the fibres
of <j> give a C°° conformal foliation 9~ of U. This can be oriented. As
in Section 2A, especially Corollary 2.5, we can form the leaf space N, a
Riemann surface and the natural projection n : U —> N is a submersive
harmonic morphism with connected fibres (Lemma 2.10). Since the leaves
of fF are components of the fibres of <j>, $ factors as ( o x for some
C: N -* N. As in Remark 2.3, local C°° charts for N are given by slices K
of y showing C is locally <j>\K and is therefore smooth. Since <f> and n are
both horizontally (weakly) conformal, £ must clearly be weakly conformal.

3. Harmonic morphisms and conformal foliations by geodesies of H3

In this section we study harmonic morphisms and conformal foliations by
geodesies defined on H3. Firstly we describe the space of geodesies on H3,
then we show how to represent a holomorphic inclusion map i'.N-* <JH3 by
a pair of meromorphic functions f,g. Then by studying the conditions on
/ , g for a foliation defined globally on H3 we show our main result that, up
to isometry, there are only two conformal foliations by geodesies defined on
the whole of H3 (Theorem 3.3) with consequences for harmonic morphisms
(Theorem 3.5).

Recall that in the Poincare model, three dimensional hyperbolic space H3

is identified with the open unit ball D3 = {x e K3 : \x\ < 1} and the maxi-
mal geodesies are the arcs of great circles whose closures meet the boundary
dD3 orthogonally. We thus have a bijection b: GHs -»• S2 x 52\A from the
space GH3 of maximal oriented geodesies to the product of spheres minus
the diagonal A = {(x, y) e S2 x S2 : x = y}, given by b(y) = (x, y) where
x and y are the beginning and endpoints of the arc y. We shall refer to y
as the geodesic (with endpoints) (x, y).

Now if Y is a Jacobi field (Section 2A) along a geodesic y, Y extends
smoothly to x and y and from our description of the tangent space to the
space of geodesies (Section 2A) we see that the differential of b at y e GHi
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FIGURE 5

is the map TyGKi -> TXS2 x TyS
2 , Y •-> (Yx, Yy). Giving GH, the almost

complex structure Y —> JY = X x Y, where X is the unit positive tangent
to y (see Section 2A) and giving S2 its standard almost complex structure
/ denned by JY = N x Y, where N is the unit outward normal, we see
that JY i-> (-JYX, JYy), the minus sign because dX x, N and nearby unit
positive tangents are oppositely sensed whereas at y they are in the same
sense. (See Figure 5.)

Let S2 denote the two-sphere with its standard almost complex structure
J and let S2 denote the two-sphere with the "conjugate" almost complex
structure -J. Then we have proved

LEMMA 3.1. The bijection b: GHi -* S2 x iS"2\A is biholomorphic.

Now let &" be an oriented conformal foliation by geodesies on a convex
subset U of H3. (Note that since a convex subset of H3 is simply connected
any conformal foliation by geodesies can be oriented.) Denote its leaf space
(Section 2B) by N: and let n : U —* N be the natural projection, that is,
for x G U, n(x) = leaf through x. We shall call n~\y) (ye N) the
leaf (or geodesic) parametrized by y. Then as in Proposition 2.4 we have a
holomorphic inclusion map i: N —> Gni. Define maps F, G : N -> S2 by

= (F(y),G(y))t

for each y € N. That is, (F(y), G(y)) are the endpoints of the geodesic
parametrized by y € N. Note F(y) ^ G(y) for all y e N. Further write
/ = aoF and g = aoG, where a : S2 —* CU{oo} is stereographic projection
and "" denotes complex conjugation on Cu{oo} . Then by Lemma 3.1, f,g:
JV-»CU{oo} are meromorphic. Thus to an oriented conformal foliation by
geodesies of U C H3 is associated a pair of meromorphic functions / , g
on the Riemann surface iV with f(y) ^ g(y) foryeN. Conversely, given
such a pair, if the resulting distribution {i(y) :y e N} satisfies conditions (a),
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(0,0,-1) = a (oo)

FIGURE 6

FIGURE 7

c (z)

(b) and (c) of Section 2D it defines an oriented conformal foliation whose
leaves are the oriented geodesies with end points («T~'(/(y)), o~\g(y))).
(See Figure 6.)

EXAMPLES 3.2. (i) Let N = D2, f(z) = l /z , g{z) = z. Then the
geodesies run between points F(z) = a~\l/z) and G(z) = a~x{z) which
are symmetrically placed with respect to the horizontal plane x3 = 0 of
H3 = D3 which they cross orthogonally. This ( / , g) thus corresponds to
the standard foliation of Example 2.8(iii). (See Figure 7.)

(ii) Let N = C, f(z) = oo, g{z) = z. Then the geodesies run from
the "South Pole" ( - 1 , 0, 0) of S2 to the variable point a~\z) of S2.
This (/ , g) thus corresponds to the standard foliation of Example 2.8(iv).
(Note that f{z) = z, g(z) = oo corresponds to the same foliation with the
opposite orientation.) (See Figure 8.)
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FIGURE 9

(iii) Let N = D , f(z) = l/z, g(z) = iz. Then each geodesic runs from
a point on a southern latitude to the point on the corresponding northern
latitude but with longitude increased by re/2. As z -» dD2 , the correspond-
ing geodesic tends to a geodesic yd joining points on the equator at an angle
n/2 apart. This gives a foliation which is not denned on the whole of H3

as the points of an annular region of the equatorial disc with outer boundary
the equatorial circle and inner boundary the envelope of the geodesies ya do
not lie on any leaves. (See Figure 9.)

This foliation is similar to [4, Example 3.4 and 1, Example 4.2]. More
generally, Examples (i) and (iii) are the extreme cases of a one-parameter
family of conformal distributions by geodesic on H3 denned by f(z) = l / z ,
g{z) = eiez, 0<d<n/2.

We now state and prove the main results of this chapter.

THEOREM 3.3. Let & be a smooth conformal foliation of 'H3 by geodesies.
Then up to isometry of H3, 9~ is one of the two standard foliations of H3

(Examples 2.8(iii) and (iv)).

Together with Theorems 2.14 and 2.15 this shows

COROLLARY 3.4. A smooth conformal foliation by geodesic of a simply-
mnected space form E3 i

foliations of Examples 2.8.
connected space form E3 is, up to isometry of E3, one of the four standard

THEOREM 3.5. Let <f>: H3 —• N be a non-constant harmonic morphism to
a two-dimensional Riemannian manifold. Then up to isometry of H3, 4> is
the composition <f> = £ o %, where n is either orthogonal projection H3 -> H2

(Example 1.2(iii)) or projection to the plane at infinity H 3 - » C (Example
1.2(iv)) followed by a weakly conformal map to N.
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COROLLARY 3.6. Let <f>: H3 —• N be a nonconstant harmonic morphism
to an arbitrary Riemannian manifold. Then either

(i) dim N = 1 and <f> is a harmonic map.
(ii) dimiV = 2 and <f> is as described in Theorem 3.5, or
(iii) dim N = 3 and <\> is a local homothety.

Further N is complete and N = H3(c)/r where F is a subgroup of the
group ofisometries of H3(c) which acts freely and properly discontinuously and
4>: H3 -> H3(c) —> H3(c)/r is a homothety followed by the natural projection.
(Here H3(c) denotes D3 with a metric c > 0 times the standard one of
Section lA(i).)

Together with [4, Theorems 4.1 and 5.1] this completely describes all har-
monic morphisms from a three-dimensional simply-connected space form
E3. In particular, we have

COROLLARY 3.7. Up to isometry ofE3,a non-constant harmonic morphism
from a simply-connected space form E3 to a two-dimensional Riemannian
manifold N must be one of the four standard examples (Examples 1.2) fol-
lowed by a weakly conformal map to N.

To prove Theorem 3.3 we need an analytic criterion for intersecting geode-
sies. This is furnished by the classical notion of cross-ratio.

Given four complex numbers zx, wx, z2, w2 e Cu{oo}, the cross-ratio
is denned by the expression

(see for example [6]).

W2-Wl

3
PROPOSITION 3.8. Consider a pair of geodesies yx, y2 in H3 with end-

points (xx ,yx), (x2, y2) € S1 x 5 2 \A , which we identify under stereographic
projection with pairs ( z , , w{), (z2, w2) G ( C U {OO}) X ( C U {OO})\A (that is,
zi = a(xi), wi = a(yi)). Then the geodesies y , , y2 intersect in H3 if and
only if the cross-ratio (zx, wx; z2, w2) belongs to the subset (0 , 1) U ( 1 , oo)
of the real line R c C.

PROOF. First note that the two geodesies with end points (xx, yx), (x2, y2)
intersect in H3 if and only if the corresponding (Euclidean) straight lines
from xx to yx and from x2 to y2 intersect in the unit ball D3. For as in
Section 1A, the mapping f(q) = q/(l + \q\2) is a homeomorphism of the
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FIGURE 10

closed unit ball which sends the arc of a circle from x, e 5 2 to y, 6 S2

and orthogonal to dD3 = S2 at x{ and y , , to the straight line from x, to
J>J . Thus the two geodesies intersect if and only if the corresponding straight
lines intersect. In this case the two lines determine a plane which intersects
the boundary dD = S in a circle containing the four points xx, y{, x2,
y2 in alternating order, that is the pair (x2, y2) separates the pair (xl, yx)
along the circle. (See Figure 10.)

Conversely, given four distinct points JC, , yx, x2, y2, arranged in al-
ternating order around a circle, then the corresponding straight lines joining
them must intersect in D3.

Now under stereographic projection, circles on S2 are mapped to either
circles or straight lines in the extended complex plane C U {oo} and con-
versely. It is easily checked that the four distinct points zx, wx, z2 , w2

lie on a circle or straight line in C in alternating order if and only if the
cross-ratio (zl,wl;z2,w2) is real, positive and not equal to 1.

Now let & be a smooth conformal foliation of H3 by geodesies and let
N denote its leaf space. Recall from Corollary 2.5 that N is a Riemann
surface and from Proposition 2.4 that we have a holomorphic inclusion map
i: N -» G H 3 .

LEMMA 3.9. The leaf space N is biholomorphically equivalent to either the
unit disc D2 or the complex plane C.

PROOF. By Proposition 2.13, N is contractible. The result follows by the
Riemann mapping theorem (see for example [6]).

As described above the inclusion map i for & is represented by a pair
of meromorphic functions / , g : N -» C U {oo} on the leaf space.

LEMMA 3.10. Either (a) / and g are both injective or (b) one of them is
constant and the other is injective.

PROOF. Suppose that both / and g are non-constant and suppose that
/ is not injective; say f(z0) = f{zx) for some zQ, zx e N, z0 ^ r , .
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F(Zo)-F(z,)

G(z,)

FIGURE 11

Then g(zQ) ^ g{z{) since the leaves parametrized by z0 , zx are dis-
tinct geodesies. Now it is intuitively clear that, as z circles z0 one of the
geodesies (f(z),g(z)) will intersect the geodesic ( / (z , ) , g(z,)) . (Hereby
the geodesic (f(z),g(z)) we mean the geodesic with endpoints (a~\(f(z))),
a~x(g{z)).) We prove this precisely by using the cross-ratio. (See Figure 11.)

We may assume z0 is not a branch point of / , for if zQ is a branch point,
then close to z0 we can find two points w{, w2 with f(w{) = f(w2) and
wx, w2 not branch points for / . We use the inverse function theorem on
the cross-ratio

Q(z) = (ftz),g(z);f(zl),g(zl))=- /W-foJ I ^ z ) "

At z = z0, by the hypothesis / (z0) = f{z{),

Therefore by the inverse function theorem, Q is a local diffeomorphism at
z0 and maps a neighbourhood U of z0 onto a neighbourhood of 0 e C. In
particular, there is a one-parameter family of points z e U with Q(z) real,
positive and distinct from 1. By Proposition 3.8, the geodesies over such a
point z and z, intersect, a contradiction. By similar arguments, if both /
and g are nonconstant g must be injective.

Now suppose that one of / , g is constant, say g. Then / must be injec-
tive. For if / (z0) = /(Zj) for some z0 ^ Zj, then the leaves parametrized
by z0 , z, are identical geodesies which is impossible.

Note that this lemma shows that neither / nor g can have any branch
points. As before write F = a~l°f and G = a~xog where a : S2 -> Cu{oo}
is stereographic projection.

LEMMA 3.11. (i) F(N) and G(N) are disjoint subsets of S2.
(ii) Closure {F(N) U G(N)} = S2 .

https://doi.org/10.1017/S1446788700033358 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700033358


142 Paul Baird and John C. Wood [25]

F(z,)

FIGURE 12

PROOF. Let z0, zxe N, z0 ^ z, and suppose that ^(ZQ) = G{z^). Then
/(z , ) ^ C?(z0), otherwise the leaves parametrized by z0 and z, would be
the same geodesic (with opposite orientations), which is impossible. Now, it
is intuitively clear that as z varies in a neighbourhood of z0, the geodesic
over z must intersect the geodesic over z{. As in Lemma 3.10 we prove
this using the cross-ratio. (See Figure 12.)

Recall that / and g cannot both be constant; without loss of generality
assume that / is nonconstant. Consider the cross-ratio

f(z)-g(z)

Then

<2(zo) = i , § § (

dQ, , = / (
dzK 0) [f{zQ)-

Thus by the inverse function theorem, Q maps a neighbourhood of z0 dif-
feomorphically to a neighbourhood of 1 6 C. Therefore there are points
z e N close to z0 which map under Q to a positive real number distinct
from 1. By Proposition 3.8 the geodesic over such a z intersects the geodesic
Zj, a contradiction.

For the second part of the lemma suppose F(N)l)G(N) omits an open
set V of S2 . We may assume that this is a geodesic disc of S bounded by
a small circle on S2 . (See Figure 13.)

Recall that under the homeomorphism A : D3 —• D3 of Section 1A, the
geodesies of the Poincare model transform to straight lines (geodesies of the
Beltrami model) with the same endpoints. But these straight lines have no
points lying in the region between the plane of the circle bounding V and
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FIGURE 13

FIGURE 14

Since A is a homeomorphism, it follows that the union of the leaves
of &~ cannot be the whole of H3, a contradiction.

Recall from Lemma 3.9 that the leaf space of 9~ must be biholomorphi-
cally equivalent to the disc D2 or the complex plane C. We consider these
cases in turn.

CASE 1. Suppose that N is biholomorphically equivalent to D2. Then
neither / nor g can be constant since, if for example, g is constant say
g = oo, the leaves of the foliation are geodesies with endpoint at oo and
we must therefore have the standard foliation of Example 3.2(ii). But this
clearly has leaf space 52\{oo} = C, contradicting our assumption on N.

LEMMA 3.12. Let z0 e dD2. Then dist(F(z), G(z)) -> 0 as z -• z0

(z e D2). (Here dist( , ) denotes standard distance between points of S2.)

PROOF. We use the Beltrami model for H3. Suppose that the assertion of
the lemma is false. Then there exists a sequence (zn) in D2 with zn —> zQ

such that dist(F(zn), G{zn)) •/* 0 . Since S2 is compact, by extracting a
subsequence if necessary, we may assume that F(zn) -> Fo and G(zn) ->
Go for some Fo, Go e S2, FQ ^ Go. In particular the sequence of line
segments (geodesies) n~x(zn) with endpoints (F(zn), G(zn)) approaches
the line segment I joining Fo, Go. (See Figure 14.)

Let x0 e £ and let U be a neighbourhood of n(x0) — £ in D2 whose
closure does not contain z0 . Then n~l(U) is an open set of H3 containing
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I. Now, since n~l(zn) approaches I, for sufficiently large n, the geodesic
n~\zn) must intersect n~\U), therefore zn e U. But this contradicts
zn—>z0£U. The lemma follows.

To translate Lemma 3.12 into a statement about the meromorphic func-
tions f(z) and g(z) we must ensure that neither tends to infinity as z
approaches the boundary dD2. To do this apply an isometry of H3 such
that f attains the value oo at some point of D2. For example, we can ro-
tate D3 about 0 to achieve this. Since by Lemma 3.10, f(z) is injective,
it is bounded away from oo as z approaches 3D2, by Lemma 3.11 this
is also true of g{z). Then Lemma 3.12 implies that, for all z0 e dD2,
J[z)~g{z)-^0 as z^zo.

LEMMA 3.13. The meromorphic functions f,g:D2-^Cli {oo} extend
to meromorphic functions on the extended complex plane C U {oo} . Further
f(z) = gjljl) for all z e C U {oo} .

PROOF. Set h{z) = / ( l / z ) . Then h is meromorphic on CU{oo}\D and,
for all z0 e dD2 , g{z) -f(z) = g(z)-h(l/z) - » 0 a s z - » z 0 . Furthermore
g and h are analytic near the boundary dD2 (see below). By Carlemann's
extension principle [13, page 303] it follows that there is a meromorphic
function on C U {oo} extending g and h. The lemma follows.

More explicitly, for each z0 e dD2, there is a ball B(z0) such that g
and h are analytic in B(z0) n D2 and B(z0) n (C\D2) respectively. There
is a bilinear transformation which sends B(z0) n dD2 to an interval of the
real axis, for example, if z0 ^ - 1 , w = i(z - l)/(z + 1). Under such a
transformation points z , 1/z correspond to points to, W and [13] may be
applied to conclude that there is an analytic function on B(zQ) extending g
and h . Such extensions for each z0 e dD glue together to give the required
extension.

LEMMA 3.14. After an isometry of H3, the meromorphic functions f, g
are given by / (z ) = 1/z, g(z) = z .

PROOF. After a rotation of H3 we can assume that /(0) = oo. Then by
Lemma 3.10, / has a simple pole at 0 and no other poles in D2 . By Lemma
3.11, g has no poles in D2 . As in the arguments leading up to Lemma 3.13
neither / nor g can have a pole on dD2. Since g(z) = f(l/2) for all

z e C U {oo}, g has no poles in C U {oo}\D2, except for a simple pole at
oo. Therefore g{z) = ao + a{z for some a0, a, € C and f(z) = a^ + ~a[jz.
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Now recall that any Mobius transformation interpreted as a transformation
of S2 = dD2 induces an isometry of H3 . The Mobius transformation z •->
(z-ao)/al transforms the pair f{z), g(z) into \/z, z as required.

CASE 2. Suppose that N is biholomorphically equivalent to C.

LEMMA 3.15. After an isometry of H3, with respect to a suitable global
complex coordinate z on N, f(z) = oo, g(z) = z or f(z) = z, g(z) = oo.

PROOF. By Lemma 3.10, / and g cannot both be constant. Assume
that g is non-constant. Again by Lemma 3.10 the meromorphic map g
is injective so that its image g(N) c C U {oo} omits precisely one point.
By a rotation of H3 we may assume this point is oo. Then g : N —> C
is biholomorphic and so, with respect to a suitable complex coordinate z
(namely that given by the chart g), g(z) = z for all z e N. By Lemma
3.11, / must be constant and equal to oo. If / is nonconstant we argue
similarly.

PROOF OF THEOREM 3.3. Let y be a conformal foliation by geodesies of
H3. Orient y . By Lemma 3.9 the leaf space N is D2 or C. If N = D1,
Lemma 3.14 shows that, up to isometry of H3, y is the standard foliation
of Example 3.2(i) (and 2.8(iii)). If N = C, Lemma 3.15 shows that, up to
isometry of H3, y is the standard foliation of Example 3.2(ii) (and 2.8(iv)).

PROOF OF THEOREM 3.5. Let <j>: H3 -> N be a nonconstant harmonic mor-
phism to a two-dimensional Riemannian manifold. Then by Propositions
2.11 and 2.13, <j> = £ o n where n: H —> N is a submersive harmonic mor-
phism with connected geodesic fibres onto a Riemann surface and £: N -> N
is a weakly conformal map. By Theorem 3.3, the foliation associated to n
must be one of the standard ones (Examples 3.2(i) or (ii)). It follows (cf.
Proposition 3.11) that n is one of the two standard harmonic morphisms of
H3 (Examples 1.2(iii) and (iv)).

PROOF OF COROLLARY 3.6. By Proposition 1.2, n < 3 . The case n — 1
follows from that Proposition and the case n = 2 is Theorem 3.5.

For the case n = 3 note first that by [9, Theorem 8] </> is homothetic.
Then N is complete, for let p e N and x e f ' ( p ) c H 3 . Then the expo-
nential map exp^ : T' N -> N is defined on all of T N, since any smooth
geodesic emanating from p is the image of a smooth geodesic emanating
from x in H3, which can be continued indefinitely. By the Hopf-Rinow
Theorem [21, Theorem 2.8.8], N is complete (and <£(H3) = N). The result
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now follows from the theorem of Killing and Hopf [21, Corollary 2.4.10]
describing complete connected Riemannian manifolds of constant curvature.

4. Harmonic morphisms with isolated singularities

In this chapter we study harmonic morphisms and conformal foliations
by geodesies defined on connected open subsets of a simply-connected three-
dimensional space form E3 = R3, S3 or H3 which have isolated singu-
larities. We show that any such conformal foliation must be a foliation by
radii and correspondingly any harmonic morphism to a surface with an iso-
lated singularity is locally a radial projection (see Theorems 4.1 and 4.2).
Then we draw global conclusions showing that any conformal foliation by
geodesies of E3 (or of an open subset U of E3) with isolated singularities
is, up to isometry, (the restriction of) a standard example (Examples 2.9)
and correspondingly any harmonic morphism from U to a surface with iso-
lated singularities is, up to isometry, (the restriction of) one of the standard
examples (Examples 1.7).

(A) Local theory. Let B3(p0) denote a convex ball centre p0 in a space
form. By a radius we mean one of the two connected components y,, y2 of
y\{p0} , where y is a geodesic of B3(p0) through pQ . Our main result is

THEOREM 4.1. Let & be a smooth conformal foliation of the deleted ball
B3(Po)\{Po} by geodesies. Then either &~ is the radial foliation, that is, the
foliation with leaves given by the radii, or &~ extends to a smooth conformal
foliation of B3(p0).

THEOREM 4.2. Let <p : Bi{p0)\{p0} -> N be a smooth harmonic morphism
to a two-dimensional Riemannian manifold. Then either <f> is radial projection
B3(p0)\{pQ} -* S2, X H x/\x\ followed by a weakly conformal map S2 -> N
(and so N = S2 or RP2), or 4> extends to a smooth harmonic morphism

Here x = (xx, x2, x3) denotes normal coordinates centred on p0 and, as
usual, |JC| = y/(x2 + x2 + x2). In these coordinates the radii are the half-lines
emanating from the origin. For convenience we shall use these coordinates
so that B3(p0) becomes the ball B3 with centre 0 = (0, 0, 0 ) .

To prove Theorem 4.1, we let & be a smooth conformal foliation by
geodesies of the deleted ball J?3\{0} . Then by Lemma 2.1 and the subsequent
remark, the leaves of &~ are maximal geodesies of 53 \{0} . These may either

https://doi.org/10.1017/S1446788700033358 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700033358


[30] Harmonic morphisms and foliations 147

be radii or leaves avoiding 0. Note that since #3\{0} is simply connected
&" may be oriented; we assume this has been done.

LEMMA 4.3. At least one radius is a leaf.

PROOF. Choose a small ball centre 0, B3 c B3. Then any leaf through
a point of B \{0} must intersect the boundary dB . Suppose no radius is
a leaf. Then the function d : dB3 —> [0, oo) given by d(x) = minimum
distance from 0 of a point on the leaf through x, is continuous and does not
attain the value 0. Therefore it has a minimum value e > 0. But then no
leaf goes inside the ball centre 0, radius e, in contradiction to the definition
of foliation.

Now let yl c 53\{0} be a radius which is a leaf and let x0 e yi. Let W
be a slice for y at xQ (that is, a connected open subset of a plane which cuts
the leaf through x0 orthogonally and is sufficiently small that leaves through
points of K cut K transversally). We have two cases.

CASE 1. There is a sequence of points xn e W with xn -* x0 such that
the leaves through each xn are radii.

CASE 2. With W replaced by a smaller slice if necessary, all the leaves
through W\{xQ) avoid 0.

LEMMA 4.4. In Case 1, the foliation is the radial foliation.

PROOF. Let GBJ be the space of oriented maximal geodesies on B3; this is
a two-dimensional complex manifold; see Section 2A. Then [15] the subset of
those oriented geodesies through 0 is a complex one-dimensional submanifold
P1, biholomorphic to a complex line. Consider the map / : 53\{0} —> GB3
(cf. Section 2E). On any convex subset U of £ 3 \{0} , / factors as the
natural projection U —> Nv onto the leaf space of &'\u, followed by the
holomorphic inclusion map i: Nv —> GBi of the complex submanifold Nv.

Since 53\{0} is covered by a finite number of convex open sets, it follows
that the image of / is an immersed complex submanifold. But for the points
xn , I(xn) G P 1 . Thus the intersection of Im(/) and P1 has an accumulation
point on P 1 . It follows by analyticity that Im(/) c P 1 , so that all leaves of
9~ are radii as required.

We now turn to Case 2. If yx is a radius, by the opposite radius y2 we
mean the radius y2 such that y = y, U {0} U y2 is a geodesic through 0.

LEMMA 4.5. In Case 2, let yx be a radius which is a leaf. Then the opposite
radius y2 is also a leaf with orientation such that yx u {0} U y2 is oriented.
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PROOF. Let / : 53\{0} —> GBJ be the map x i-> oriented maximal geodesic
containing the fibre through x (cf. Section 2E). Let y e y2 . Let x0 € yx and

let xn be a sequence of points of #3\{0} tending to x0. Then since / is
continuous, we can find a sequence of points yn lying on the leaves through
xn which approach y. Then

I(y) = ]imI{yn)=limI(xn) = I(x0),

showing y2 is a leaf with orientation induced from the oriented maximal
geodesic y, U {0} U y2 of B3.

LEMMA 4.6. In Case 2, the foliation extends uniquely to a C° foliation on
B3. This foliation is Cw.

PROOF. By Lemma 4.5 the leaves y{, y2 of & can be joined together
to give a geodesic y through 0. We claim that in this way we obtain a C°
foliation 9~ with leaves those of &~ but with y{ and y2 replaced by y. To
show this is a foliation we must construct a foliated chart on a neighbourhood
of 0. To do this consider the solid cylinder ? = [ / x ( 0 , r ) c I 3 , which we
obtain by identifying the slice W with an open neighbourhood U of 0 in
R2. Let d be the distance from x0 to 0 along yl and choose r = d + e
for some e > 0. Assume that W and e are chosen sufficiently small that
for x e W, the geodesic leaf through x, yx(t) is contained in B3 for
t e (0, r). Orient yx to point towards the center 0 of the ball and orient
nearby yx accordingly.

Define / :ff —> B3 by f(y, t) = the point obtained by moving a distance
t along the geodesic leaf passing through y e U « W. Put f{W) = V c B.
Then / is injective since no two geodesies intersect. Furthermore / is
continuous. By invariance of domain [10, Theorem 18.9], / has a contin-
uous inverse / " ' : V -• W and so / is a homeomorphism onto V. By
construction V contains 0. Thus f~l is the desired foliated chart on a
neighbourhood of 0 and so & Is a C° foliation on B3. That this is a Cw

foliation follows from Theorem 2.19.

PROOF OF THEOREM 4.1. Simply combine Lemmas 4.3, 4.4, 4.5 and 4.6.

PROOF OF THEOREM 4.2. Let !? be the foliation associated to 4>, that is,
with leaves the connected components of the fibres of <j>. Then by Theorem
4.1, either (1) the foliation is the radial foliation, or (2) the foliation extends
to a C°° foliation & on B3.

In Case (1), <j> is constant on radii and therefore factors into radial pro-
jection n : B3\{0} -• S2 , x^ x/\x\ followed by a map C : S2 -> N. Now
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the S2 can be identified with a geodesic sphere in B3 centre 0 and £ may
be identified with (f> restricted to this sphere. Therefore £ is smooth. Since
the geodesic sphere is everywhere horizontal, horizontal weak conformality
of <j> implies weak conformality of £.

In Case (2), with the notations of Lemmas 4.5 and 4.6, first note that if
x eyl, y ey2 since <p is continuous,

4>{y) = lim0(yB) = Hm<f>(xn) = <p(x).

Set <j>(0) = (/•(y,) = (j>(y2). Then the foliation associated to <j> is precisely the
extended foliation fF. Since this is C°° so is <f>.

(B) Global theory. Let U be a connected open subset of a three-dimen-
sional Riemannian manifold. Say that 9~ (respectively <j>) is a conformal
foliation by geodesies (a harmonic morphism) on U with an isolated singu-
larity at xQ e U, if it is defined and C°° on Z)\{x0} where D is a disc
centre xQ, but does not have a C°° extension to D.

REMARK. If &" (respectively (j>) has other singularities, simply replace U
by U\W, where % is the set of other singularities. Thus theorems below
apply to foliations and harmonic morphisms with any number and type of
singularities provided one of them is an isolated singularity.

THEOREM 4.7. Let 9"be a conformal foliation by geodesies with an isolated
singularity of a connected open subset U of E3 = R3, S3 or H3. Then, up to
isometry of E3, & is the restriction of one of the foliations of Example 2.9,
that is, radial foliation of R3 or H3, or foliation by half great circles through
the poles of S3.

PROOF. By Theorem 4.1, 9 must be the radial foliation on some geodesic
ball B3 of U centred on the singularity. Performing an isometry of E3 , we
can assume this singularity is at 0 (for R3, H3) or at ( 1 , 0 , 0 , 0 ) (for
S3). But radial foliation on B3 is the restriction of one of the global radial
foliations &~Q of Examples 2.9. Since any conformal foliation is real analytic,
9~ and 9~0 must agree on their common domain, that is, 9 is the restriction

THEOREM 4.8. Let <f> be a harmonic morphism with an isolated singularity
from a connected open subset U of E3 = R3, S3 or U3 to a two-dimensional
Riemannian manifold N. Then, up to isometry of E3, <£ is the restriction
of one of the standard radial projections (Examples 1.3), followed by a weakly
conformal map from S2 to N. (Hence N is conformally equivalent to S2

or RP2.)
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PROOF. By Theorem 4.2, <f> restricted to some ball B3 of U is radial
projection to the centre of the ball followed by a weakly conformal map
C : S2 —> N. But the radial projection is the restriction of one of the harmonic
morphisms <f>0 of Examples 1.3. Since <j> and C ° <£0

 a 8 r e e o n B3 > by real
analyticity they must agree on their common domain, i.e. <f> is the restriction
of (j>0 followed by the weakly conformal map f :S2 -> N.

5. Harmonic morphisms and conformal foliations by geodesies of RP3

As explained in the introduction, our results for simply connected space
forms imply results for other space forms. As an example we give a complete
treatment for RP3 = S3/Z2 .

EXAMPLES 5.1. (i) The Hopf map S3 -> S2 factors to a map RP3 -> S2

which we still call the Hopf map.
(ii) The radial projection 5 3 \{(1 , 0, 0, 0), ( - 1 , 0, 0, 0)} -> S2 down

geodesies through the poles factors to a map RP 3 \{[1 ,0 ,0 ,0]} -> RP2,
given by [x, ,x2,x3, x4]»-+ [x2, x , , x 4 ] .

(iii) Associated to the Hopf map is a conformal foliation by geodesies of
RP3.

(iv) Associated to the projection R/>3\{[1, 0, 0, 0]} -• RP2 is a confor-
mal foliation by geodesies with an isolated singularity of RP3.

THEOREM 5.2. Let & be a conformal foliation by geodesies of RP3. Then,
up to isometry, fF is the foliation associated to the Hopf map RP3 -* S2

(Example 5.1 (iii)).

THEOREM 5.3. Let <j> : RP3 -* N be a nonconstant harmonic morphism
to a two-dimensional Riemannian manifold. Then up to isometry, <f> is the
Hopf map RP -» S (Example 5.1(i)) followed by a weakly conformal map
S2 —> N. (In particular N is conformally equivalent to S2 or RP2.)

PROOF OF THEOREM 5.2. 9" lifts to a conformal foliation by geodesies of
S3. By Theorem 2.14, up to isometry, this must be the foliation correspond-
ing to the Hopf map S3 —> S2 . The theorem follows.

PROOF OF THEOREM 5.3. Let n : S3 -* RP3 be the standard projection.
Then by [4, Theorem 5.1], <j> o n must be the Hopf map <f>0 : S3 -> S2
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followed by a weakly conformal map £ : S2 —• iV2 .

Let <j>0 : RP3 -» S2 be the Hopf map of Example 5.1(i). Then <f> o n =
£ o <pQ = £o<£0o7r. Therefore, since n is surjective, </» = C ° $0

 a n c * t n e

theorem is proved.

Regarding harmonic morphisms and conformal foliations by geodesies
with isolated singularities of RP 3 , we have

THEOREM 5.4. Let &~ be a conformal foliation by geodesies with an isolated
singularity of a connected open subset U of RP3. Then, up to isometry of
RP3, &~ is the restriction to U of the foliation associated to the projection
RP\{[1, 0, 0, 0]} -» RP2 (Example 5.1(iv)).

THEOREM 5.5. Let <j> be a harmonic morphism to a two-dimensional Rie-
mannian manifold N with an isolated singularity defined on RP3 or more
generally on an open subset U ofRP3 such that TC~1(C/)C5'3 is connected,
where n : S3 —> RP3 is the standard projection. Then, up to isometry of RP3,
(j> is the restriction to U of projection RP3\{[1, 0, 0, 0]} -• RP2 (Example
5.1(iii)) followed by a weakly conformal map RP2 -»iV.

PROOF OF THEOREM 5.4. By an isometry of RP3 we may assume that the
isolated singularity is at [ 1 , 0 , 0 , 0 ] . By Theorem 4.1, in the neighbourhood
of the singularity, &" must be the radial foliation to [ 1 , 0 , 0 , 0 ] . But this
foliation is the restriction of that of Example 5.1(iv). By real analyticity
(Remark 2.12(ii)), they must agree on their common domain.

PROOF OF THEOREM 5.5.

5 3 { ( ± l , 0 , 0 , 0 ) } D 7i~

R P 3 \ { [ l , 0 , 0 , 0 ] } D

Let n1: S2 -* RP2 be the standard projection. By Theorem 4.8, since
i~x(U) is connected, up to isometry of S3, <f> o n is the restriction of the
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standard radial projection <£0 : 5
3 \{(±1, 0, 0, 0)} -> S2 (Example 1.3(ii))

followed by a weakly conformal map £ : S2 —>• N. Now for any y e S2,
there exists an x e n~\U) such that <}>0(x) = y since 4>0 is surjective (on
any neighbourhood of (1 , 0, 0, 0) (or ( - 1 , 0, 0, 0)), and so

t(-y) = tiki-*)) = <K*{-x)) = <K*W) = t(4>0(x)) = ay),
therefore £ factors to a weakly conformal map £ : RP2 -» N. But then
4>o7i = Con' o$0 = £o<pQon where <£„ : RP3\{[1, 0, 0, 0]} -> RP2 is the
standard projection (Example 5.1 (ii)) and since n is surjective this implies
4> = C ° 4>0 and the result is proven.

REMARK. The result is false if n~l(U) is not connected. For exam-
ple, if U is a geodesic disc of RP3 centre [ 1 , 0 , 0 , 0 ] , radial projection
U\{[1, 0, 0, 0]} -> S2 does not factor through RP2 .
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