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THE ENTRANCE SPACE OF A MEASURE-VALUED 
MARKOV BRANCHING PROCESS CONDITIONED 

ON NON-EXTINCTION 

STEVEN N. EVANS 

ABSTRACT. We explicitly identify the possible probability entrance laws for a class 
of measure-valued processes that are constructed by taking a particular measure-valued 
Markov branching process and conditioning it to stay away from the zero measure trap. 
The set of extreme points of the entrance space is larger than the state space of the con
ditioned process, and contains elements which correspond to starting the conditioned 
process at the zero measure. 

The continuous state branching process was discussed in [Feller, 1951] as a diffusion 
approximation to a suitably scaled critical Galton-Watson branching process when the 
initial number of individuals becomes large. This process, known also as the BES2(0) 
process, is a diffusion on [0, oo[ with generator that extends 2xd2/ dx2. The state 0 is a 
trap. 

Suppose we start a BES2(0) process away from 0 and condition on never hitting 0. 
That is, we consider the limit as T —+ oo for the process conditioned to have not hit 0 up 
to time T. It is a part of the folklore that this limit exists, that the resulting process corre
sponds to performing to a Doob /^-transform on the BES2(0) process using the function 
h(x) = JC, and that the resulting process is a BES2(4) process, i.e. a diffusion on ]0, oo[ 
with generator that extends 2xd2 j dx2 +4d/ dx (see, for example, Example 3.5 of [Pitman 
and Yor, 1982]). The state 0 now becomes an entrance but not an exit boundary. 

Our aim is to investigate the analogue of this result for a class of measure-valued 
branching Markov processes that generalise the continuous state branching process. The 
class of processes is a particular case of a construction given in [Watanabe, 1968] which 
we now review. 

Suppose that E is a locally compact, separable space. If E is non-compact, let A denote 
the point at infinity and put EA = EU { A}. For uniformity of notation, set EA = E 
when E is compact. Write C(E) for the Banach space of continuous functions on E with 
continuous extension to EA (equipped, of course, with the supremum norm). Let (Pt)t>o 
be the semigroup of a conservative Markov process on E. Assume that (Pt)t>o is Feller; 
that is (Pt)t>o maps C(E) to C(E) and is strongly continuous on C(E). We can extend 
(Pt)t>o to a Feller semigroup for EA by setting Ptf(à) — /(A). 
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Let M(E) (respectively, M(EA)) denote the space of finite Borel measures on E (respec
tively, EA) with the topology of weak convergence, so that M(EA) is a locally compact, 
separable space. 

In [Watanabe, 1968] it is shown that for each/ G C(EA) with/ > 0 the integral 
equation 

(1) ut(x) = Pjix) - £ps(x,u}_s)ds 

has a unique solution ut — Utf\ and there exists a unique Feller semigroup, (Qt)t>o on 
M(EA) for which 

(2) / QtUi,dv)e-v{f) = exp(-/xUf) 

for all such/. Let X = (W, Q, Çt,®uXt,P f) be a Feller process with the semigroup 
(Qt)t>o- It is shown in [El Karoui and Roelly-Coppoletta, 1987] and [Fitzsimmons, 1988] 
that if XQ belongs to M(E) almost surely then X almost surely has continuous, M(E)-
valued paths. We refer the reader to the introduction of [Fitzsimmons, 1988] for an up-
to-date selection of the considerable amount of work that has been done on this and 
related classes of measure-valued processes. Chapter 9 of [Ethier and Kurtz, 1986] pro
vides a discussion of how such processes arise as high density approximations for the 
configuration of a branching Markov process. 

It is easy to show that the total mass process {Xt(l) : t > 0} is a BES2(0) process 
(one can use the Laplace transform calculations on p. 100 of [Knight, 1981], for instance). 
The zero measure is a trap. As above, we can start the process X off at \i € M(E)\ { 0} , 
condition the process to be alive at time T (that is, to be away from 0) and then let 
T —• oo. It is shown in [Evans and Perkins, 1990] and [Roelly-Coppoletta and Rouault, 
1989] that the result of this procedure is a right Markov process (W, Ç, Qu 0,,X,, P^) 
with state space M(E)\ { 0} and semigroup (Qt)t>o, that is the Doob /i-transform of X 
using the function h(v) = i/(l). That is, 

QtFUi) = fFQtt) 

= n(irlP"[F(xtyxt(i)i 

Moreover, it is shown in [Roelly-Coppoletta and Rouault, 1989] that if/ G C(E) with 
/ > 0 then 

(4) /'Qt(li,dv)e-"«> = ( j ^ Q exp(-/i£//), 

where Ut is as above and Vf — vt is the solution of 

(5) vt = l+2£ps(vt-s(Ut-f))ds 

(the results in [Roelly-Coppolettaand Rouault, 1989] are for the case E = Kd, but they 
carry over to this setting). 
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From the introductory remarks above, it is clear that the total mass process {Xt(l) : 
t > 0} is a BES2(4) process (this can also be seen, of course, from an explicit computa
tion of Laplace transforms). By analogy, we might hope that we can, in some sense, start 
X off at the zero measure and treat the zero measure as some kind of entrance boundary. 
This turns out to be the case, but now there will be many ways to start from 0—one for 
each direction in which X can make its initial infinitesimal move away from 0. To make 
this claim precise, we recall the following concept. 

DEFINITION. A family (Nt)t>o of probability measures on M(E)\ { 0} is ^probability 
entrance law for the semigroup (Qt)t>o if for all s, t > 0 we have NsQt — Ns+t. 

We can now state our result classifying the possible probability entrance laws for 
(Qt)t>o- We let M\{E) denote the space of probability measures on E. Part of our proof 
is along the lines set out in [Dynkin, 1989] and [Fitzsimmons, 1988] for determining the 
entrance space of a class of measure-valued Markov branching processes. 

THEOREM. There is a one-to-one correspondence between the class of probability 
entrance laws for (Qt)t>o and the class of probability measures on M\(E) x [0, oo[. A 
probability entrance law (Nt)t>o corresponds to a probability measure T on M\(E) x 
[0, oo[ by the relationship 

(6) J M(d/i)exp(-/i</)) = Jridi/idxXi/Vtftexpt-xi/Utf) 

for allf G C(E) withf > 0. Moreover, ifwesetp(fi) — \i(-)/ ii(\)andm(n) = ^{\)for 
\x G M(E)\ { 0} then T is the weak limit as t [ 0 ofNt o (p, m)_1. 

PROOF. Suppose firstly that (Nt)t>o is a probability entrance law for (Qt)t>o- Let 
W+ denote the space of continuous paths from ]0, oo[ to M(E) and write (X+)?>o for the 
coordinate process on W+. There is a unique probability measure P on W+ under which 
(X+) is Markovian with semigroup (Qt) and 1-dimensional distributions (Nt) (cf. §40 of 
[Sharpe, 1988]). Let (C*)t>o denote the P -augmentation of the natural filtration of (Xf) 
made right-continuous. 

Recalling remarks made above, we see that (ra(X^)) is Markovian under P with the 
BES2(4) semigroup and that (Nt o m~l)t>o is a probability entrance law for the BES2(4) 
semigroup. From the theory of 1-dimensional diffusions we conclude that there is a ÇQ-
measurable, [0, oo[-valued random variable xo+ such that limrjo m(X+) = xo+ P-a.s. and 
Nt o m~l = (P o x^)St, where we write St for the semigroup of BES2(4) considered as 
a diffusion on [0, oo[. 

Suppose that/ G C(E) with/ > 0. For a > 0 set Uaf = J0°° e'^Pfdi. From the 
first moment calculations in Proposition 2.7 of [Fitzsimmons, 1988] or Theorem 1.1 of 
[Dynkin, 1988] and (3) we see that the process exp(—at)X+(Uaf) / X+(\) is abounded su
permartingale, and so Ximt^X+i^f)/X+(l) exists P-a.s. As the set of functions 
{ Uaf : / G C(£), / > 0} is dense in C(E)H {/ : / > 0} , we can conclude that there ex
ists a QQ -measurable, M\ (£)-valued random variable F0+ such that l im^0^(-)/^ f

+(l) = 
Y0+. 
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Set r = P o (Fo+,*o+) l- Then, by part (ii) of the following lemma and (4) we have 
for each/ G C{E) with/ > 0 that 

fNt(dn)txp(-n(fj) = P[exp(-#(f))] 

= limP[exp(-X;+^))] 

[ |â(^^/ i )exp(- / i ( f ) ) 

5|0 

= limP 

= limP 
40 

Ŵ exp(-X,£//) 
X+(1)J 

-P[(F0+V/)exp(-x0+Fo+f//)] 

= | r(di/, d*)(i/ Vtf) exp(-jo/£//). 

To show the reverse correspondence, it suffices to consider the case when T is the 
unit point mass at some pair (V, x). When x ^ 0 the family of measures (Qt(xv, •)) 0 is 
clearly an entrance probability law for (Qt)t>o which satisfies (6). Suppose that x — 0. 
From (4) we see that 

lim l Qt(zv,dp,)exp(-p(fj) = vVj 
e 0 J v ' eiO 

for a l l / G C(£) with/ > 0. As vVfi = 1, it follows that for each f > 0 there 
exists a probability measure Nt on M(£)\{0} such that \\mEioQt{£v,') => Nt and 
SNt(dn)exp(-ti(fj) = vVj (cf. Lemma 5.1 of [Kallenberg, 1983]). In order to show 
that (Nt)t>o is a probability entrance law for (Qt)t>o and hence complete the proof, it will 
suffice to show that NsQtF = Ns+tF for all s, t > 0 and all bounded, continuous functions 
F on M(E)\ { 0} . This, however, is clear from the above, part (i) of the following lemma 
and the fact that Qs{QtF)(ev) = Qs+tF(ei/). 

We required the following lemma in the course of the preceding proof. 

LEMMA, (i) For each t > 0 the map ji \—> Qt(^, •)> fi G M(E)\ { 0} is continuous, 
(ii) For each t > 0 and each f G C(E) with / > 0 the maps x i—• Utf(x) and 

x i—• Vjf(x) are continuous. 

PROOF, (i) By the Feller property, p, t—> Qt(p, •) is continuous. From Theorem 1.1 of 
[Dynkin, 1988] or Proposition 2.7 of [Fitzsimmons, 1988] we know that p H-> 
PM[X,(1)2] is locally bounded. The result now follows from (3) and a standard uniform 
integrability argument. 

(ii) The claim regarding UJ is a consequence of (2) and the Feller property of (Qt)t>o-
The claim regarding Vtf, now follows from (4) and part (i). 

REMARK. In [Roelly-Coppoletta and Rouault, 1989] the process X is identified as 
the solution to a martingale problem that resembles the martingale problem for X except 
for the addition of an extra drift term, which the authors describe as representing an 
interactive immigration effect. For probability entrance laws that correspond to pairs of 
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the form (y, 0) E M\ (E) x [0, oo[, the measure v can be thought of in these terms as giving 
the disposition of an initial immigration that puts mass into the system and pushes the 
process away from the zero measure. 
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