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Abstract

In this paper, we examine the rate of convergence of moving block bootstrap (MBB) approximations to
the distributions of normalized sample quantiles based on strongly mixing observations. Under suitable
smoothness and regularity conditions on the one-dimensional marginal distribution function, the rate of
convergence of the MBB approximations to distributions of centered and scaled sample quantiles is of
order O (n ~'/4 log log n).
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1. Introduction

Let {X,}ieZ be a sequence of strictly stationary random variables defined on the
probability space (£2, &, P) with common marginal distribution function F, where
2 = {0, ± 1 , ±2 , . . . } denotes the set of all integers. Let F~x be the corresponding
quantile function, defined by

(1.1) F-\t) = mf[u:F(u)>t}, 0 < t < 1.

For a sample X[% ..., Xn,n > 1, let Fn denote the empirical distribution function,
putting mass 1/n on each Xh that is,

(1.2)
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where /(•) denotes the indicator function, with I(S) = 0 or 1 when the statement S is
false or true respectively. Then, F~l is the corresponding sample quantile function.

It is known that, under suitable mixing conditions on the process {X,},eZ and under
mild smoothness conditions on the one-dimensional marginal distribution F, the cen-
tered and scaled p-th sample quantile, Zn = s/n(F~l(p) - F'\p)), is asymptotically
normal with mean zero and variance given by <r^o/f

2(F~l(p)), where

(1.3) <rL=Yl Cov

i=—oo

(compare Sen [24], Theorem 2.1 of Sun [26]). Thus, under dependence, the asymptotic
variance of the p-th sample quantile not only involves the density of the random
variable Xi at the population quantile F~l(p), but at the same time, an infinite series
of lag-covariances of the transformed sequence {/(X, < F~l(p))}iez. Sun [26]
(compare Theorems 2.2 and 3.1) showed that, in spite of the more complicated form
of the limit distribution of Zn, the blocking mechanism of the moving block bootstrap
(MBB) method provides a valid approximation to distributions of normalized sample
quantiles in the almost sure sense, and the MBB estimator of the asymptotic variance
is also strongly consistent.

It is also known that, under weak dependence, the accuracy of the block bootstrap
approximations to the unknown sampling distributions of many regular statistics such
as smooth functions of sample means, is of order o(n~l/2) (see Lahiri [16, 18], Gotze
and Kiisch [11]). Thus, in these situations, the block bootstrap provides more accurate
approximations than the classical normal approximation, which has accuracy of size
0{n'1/2). However, this is not true with block bootstrap approximations to the distri-
butions of irregular statistics such as sample quantiles. Singh [25] proved that the exact
convergence rate of bootstrapping sample quantiles is of order 0(n~l/4(loglogn)1/2).
In this paper we extend Singh's result by showing that, under dependence, the rate
of convergence of the MBB approximations to distributions of sample quantiles is of
order 0(n~1/4 log log n).

The rest of this paper is organized as follows. We introduce some background
material and state the main theorem in Section 2. Proofs are given in Section 3.

2. Background

We first introduce some background material. It is well known that Efron's [8]
bootstrap method fails when the observations are dependent (see Singh [25]). Block
bootstrap methods for dependent data have been put forward by several authors,
notably by Hall [12], Carlstein [7], Kunsch [15], Liu and Singh [20], Politis and
Romano [22, 23], and Paparoditis and Politis [21]. See Lahiri [19] for a detailed
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[3] Bootstrapping sample quantiles 265

account of results on bootstrap methods in the dependent case. In this paper we
concentrate exclusively on the moving block bootstrap method (MBB) of Kiinsch [15]
and Liu and Singh [20]. Here we give a brief description of the MBB method. Let
Xu X2,..., Xn be a sample from the stationary process {X,},eZ- For I, a positive
integer between 1 and n, we define the overlapping blocks of size I as

Let B*,..., Bl be a random sample of blocks from {Bu ..., BN], where N = n -
I + 1, b = \n/l\, that is, B*, ..., B£ are independent and identically distributed as
U n i f o r m ^ , . . . , BN}. Here and in the following, for any real number x, we denote
by L*J the largest integer not exceeding x and by \x\ the smallest integer not less
than x. The observations in the resampled block B* are denoted by X*t_1)t+i,..., X*t,
1 < i < b. Then, X*,..., X*,..., X*n< is the MBB sample, where «, = bl. Let

(2.1) Tn=tn(Xl,...,Xn;9)

be a random variable of interest that is a function of the random variables {X i , . . . , Xn}
and of some (possibly vector valued) population parameter 0. Then, the MBB version
of Tn is defined as

(2.2) T; = tni(X*,...,X*ni;§n),

where 0n is a suitable estimator of 6 based on {X \,..., Xn}. The MBB estimator of the
distribution of Tn is the conditional distribution of T*, given X = {..., Xu X2, •••}•
Throughout this paper, we use Pt,Et, and Var, to denote, respectively, the conditional
probability, the conditional expectation, and the conditional variance, given X. An
alternative definition to the MBB version of Tn of (2.1) is given by resampling fn/^1
blocks from {Bu ..., BN], and using the first n out of the fn/Ill-many resampled
values. However, the difference between these two versions is asymptotically negligi-
ble. To simplify the proofs of the main results, here we use the version given by (2.2)
based on b complete resampled blocks.

Next we define the MBB versions of the p-th sample quantile and of its centered
and scaled version Zn, for a given p e (0, 1). Let F* denote the MBB empirical
distribution function, that is, F*(x) = n"1 £"^ , I(X* <x), x e R. Then, the MBB
version of the sample quantile | n = F~x(p) is defined as £* = F*~x{p). Similarly,
the MBB version of the centered and scaled sample quantile Zn = V"(ln ~ £/>) is

given by

(2.3) z ; = VHT(?; - 1 ) ,

F~\where £p = F~l(p), |B = F\p), and Fn{-) = EtF*{-). In the definition of the
MBB version of Zn, we center £* by | n . As in the case of the sample mean (compare
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Lahiri [17]), this appears to be the analogous centering constant for the bootstrap
sample quantile. Since F* is a valid distribution function for each set of resampled
[X*l,...,X*i], the function Fn(x) = EtF*(x),x 6 K is also a valid distribution
function. Hence, | n is well-defined. Let

(2.4) Gn(x) = P(Zn < x ) , x e R ,

denote the distribution function of Zn. Then, the MBB estimator of Gn(x) is given by
the conditional distribution of Z*, that is, by

(2.5) Gn(x) = Pt(Z* <x), xe R.

Next, we introduce a dependence condition on the X,'s. Suppose that {X,}i£z
are strictly stationary random variables defined on the probability space (£2, &, P).
Let ^ denote the a -field generated by random variables Xm, Xm+U ..., Xn,
—oo < m < n < oo. For n > 1, we define

sup sup \P(A n B) - P(A)P(B)\.
mel

The sequence is called strongly mixing or a-mixing if a(n) -> 0 as n -» oo. As a
convention, we assume throughout this paper that unless otherwise specified, limits
are taken as n —> oo.

We conclude this section with the statement of the main result of the paper.

THEOREM 1. Suppose that the MBB block length I satisfies t = o(nl/2). Suppose
also that {X,}ie2 is a strictly stationary a-mixing process that satisfies the follow-
ing:

(i) F is twice differentiate in a neighborhood JYP of%p with derivative function
f such that

(2.6) 0 < d0 = inf{f(x) :XZJYP\< sup{/(x) : x e J/p\ = dx < oo,

(2.7) 0 < inf{|/'(;c)| : *€ • /*£}< sup{|/'(x)| : x e J/p\ < oo;

(ii) OIQ(X) is positive and has a bounded derivative in a neighborhood of§p, say
JYP, where

(2.8) a^(x) = 5 J Cov(/(X! < x), I(Xi+j < x));
j=-00

(hi) there exists d e (0, 1) such that G,(j) = P(X, < y\Xj : j ^ /) satisfies

(2.9) P(Gi(t-p) = l ) < p - d , i e Z ;
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(iv) there exists p € (0, 1), C > 0, such that the a-mixing coefficients satisfy

(2.10) a(n)<Cpn, n>\.

Then, we have

(2.11) sup|Gn(;t)-Gn(;c)|

= O ( r 1 +^T1/2(loglogn)1/2 + «"1/4loglogn) almost surely.

Thus, any block length I satisfying Ci/i'^floglogw)"1 < t < C2«
1/4(loglogrc)-'/4

with C\, C2 > 0, will lead to the optimal rate of convergence, 0(n~l/4 log log n).

Conditions (2.6) and (2.8) are frequently used to ensure a nondegenerate normal
distribution of the p-th sample quantile under dependence. Condition (2.9) is a reg-
ularity condition introduced on page 73 of Sun [26] for deriving the Berry-Esseen
Theorem for the sample quantiles of a-mixing sequences. It requires that the con-
ditional distribution of Xt given [Xj : j ^ i] has positive mass beyond £p. In
the independent case, G,(^) = P(Xt < t-p) = p and hence condition (2.9) holds.
Condition (2.10) holds generally for linear stationary processes such as autoregres-
sive processes (AR) and moving averages (MA), as well as for nonlinear stationary
processes including autoregressive conditional heteroscedastic (ARCH) models and
threshold autoregressive (TAR) models. One of the advantages of the MBB method
lies in its wide applicability to very general stationary processes.

Theorem 1 indicates that, under a suitable choice of the block length, the MBB
approximation to the distribution of the normalized sample quantile of a-mixing
sequence with exponentially decaying rate has accuracy of order O(n~1/4loglog«).
Thus, the MBB distribution approximation of the sample quantiles under a-mixing
dependence has approximately the same accuracy as Efron's bootstrap approximation
to the distribution of samples quantiles based on independent observations. Theorem 1
is an extension of Singh's [25] result, from the independent and identically distributed
case to the weakly dependence case.

It is well-known that the MBB approximation depends critically on the choice of
the block length t, which is not an easy task in practical implementation. This explains
partly why, in some special cases such as AR, and MA models, alternative bootstrap
methods, for example, sieve methods, are often preferred (compare Biihlmann [4, 5]).
There exist in the literature some investigations on the choice of optimal block lengths.
Biihlmann and Kiinsch [6] proposed a data-driven method for block length selection
in variance estimation problems. Hall, Horowitz and Jing [14] proposed an empirical
method for block length choice for situations where the optimal block length is
known to be proportional to an explicit function of the sample size n. A direct
application of Theorem 1 is that the theoretical result on the optimal block length
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may be used together with the empirical rule investigated by Hall, Horowitz and Jing
[14] to produce confident regions for some unknown parameters for a wide range of
stationary processes. In such cases, the confidence regions have asymptotic coverage
error of size O (n ~'/4 log log n).

REMARK 1. Note that cr^(x) is well-defined for any a-mixing process with expo-
nential decaying coefficients. The smoothness conditions imposed ono^OO (compare
(2.8)) and f(x) (compare (2.7)) are used here to derive the accuracy of the MBB ap-
proximation. These conditions are not required for the consistency results (compare
Theorem 2.2, Theorem 3.1 of Sun [26]).

REMARK 2. The slight order difference in log log n terms between Singh's result
and our result is due to the fact that, in the a-mixing case, one cannot obtain a bound
for the moment E\ £f=1 X, |2 that is as sharp as that in the independent case. This is
reflected in Lemma 3 and Lemma 4 below.

REMARK 3. In the independent and identically distributed case, smoothing tech-
niques have been introduced to improve the performance of the bootstrap distribution
approximation of sample quantiles. Hall, DiCiccio and Romano [13] showed that, if
the distribution function is sufficiently smooth, smoothing appropriately can improve
the accuracy of the bootstrap estimator from 0(/z~1/4(loglogn)1/2) to O(n~l/2+e), for
any e > 0. For other works in this context, we refer to Falk and Janas [9], and Falk
and Reiss [10]. However, as we may see from the proof of Theorem 1 below, un-
der dependence, smoothing may only improve the performance of MBB distribution
approximation to be of order O(«~1/4(loglogn)1/4). As in the independent and iden-
tically distributed case, if the marginal distribution function F is sufficiently smooth,
kernel smoothing can improve the right-hand side of equation (3.25) below to be of
order O(ln~l/2 + n~l/2+e), for arbitrary e > 0. However, smoothing may not reduce
the order of the right-hand side of equation (3.26) below.

3. Proofs

For proving the main theorem, we first present the following lemmas. The first
lemma gives some asymptotic properties on the deviatiohs of the empirical distribution
function and the sample quantile. These are generalizations of the results of Babu and
Singh [1].

LEMMA 1. Suppose that conditions (2.6) and (2.10) hold. Then, almost surely

(i) s u p ^ \Fn(x) - F(x)\ =
(ii) ' '
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PROOF. It is known that, F(Xn),n > 1, are uniform-[0, 1] distributed random vari-
ables provided that F is continuous. Here we use En, and E~x to denote, respectively,
the empirical distribution function and the sample quantile function of the uniform
distribution defined on (0, 1). Under condition (2.6), F is continuous and strictly in-
creasing on jVp. Then, Fn o F~x = En, and Fn(x) = Fn(F~l(t)), t = F(x), x e J/p.
Hence

sup \Fn(x) - F(x)\ = sup \Fn(F-l(t)) - t\
xe^Vp tE{F(x):xz^Vp)

sup \En{t)-t\
te[F(x):x€^Vp)

< sup \En{t)-t\
0<t<\

< cn"1/2(loglogn)1/2, almost surely,

where c is a positive constant. The last inequality followed from Lemma 3.4 of
Babu and Singh [1]. So Lemma 1 (i) is proved. For the proof of Lemma 1 (ii), see
Lemma 4.2 of Babu and Singh [1]. •

LEMMA 2. Under conditions of Theorem 1, we have

(i) supxeR \Fn(x) - Fn(x)\ = O(tn-X), almost surely;
(ii) If, -IP\ = O{ln~x + rc-'^aoglogw)1/2), almost surely.

PROOF. For the proof of part (i), see Lemma 2.4 (i) of Sun [26]. Here we only
prove part (ii). By Lemma 2 (i), there exists a constant C\ > 0 such that

(3.1) sup \Fn(x) - Fn{x)\ < Cxln~x almost surely.

Thus, by the definition of quantile function, we have

(3.2) F~\p - Cxln~x) < F~\p) < F;l(p + Cxln~x) almost surely.

By the conditions imposed on the density function, the mean value theorem, and
Lemma 1,

(3.3) \F;\p ± din-1) - t-p\ < \Fn~
l(p ± dln~y)) - F~x(p ± dln~x)\

+ \F-l(p±dln'x))-F-\p)\

< 0(n-1/2(loglogn)1/2) + \-C\ln~x

do

= 0{ln~x + n-1/2(loglogn)1/2).

Hence, Lemma 2 (ii) follows from (3.2) and (3.3). •
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LEMMA 3. Under conditions of Lemma 1, there exists a p0 > 0 such that whenever
0 < F{a) < 1, 0 < e < 1 - F(a), \F(b) - F(a)\ < e, 1 < u < M, H > 0, and
eM59/60 < Q2

H+u

i=H+l

where, xt(a, b) = /(min(a, b) < X, < max(a, fe)) - \F(b) - F(a)|.

Lemma 3 is a slight modification of Lemma 3.5 of Babu and Singh [1] by replacing
(logM)"1 with (log log log M)~l. This exponential type of inequality is crucial to
the establishment of the main result in this paper. As can be seen in the proof of
Lemma 3.5 of Babu and Singh [1], the existence of the term log log log M is due to the
second moment bound for the sum of a-mixing random variables. One can prove this
lemma easily by following the same arguments used by Babu and Singh [1] and using
the fact that F(X) follows a uniform (0, 1) distribution for any continuous random
variable X with smooth underlying distribution function F. We omit the proof here.

LEMMA 4. Under the conditions of Theorem I, we have

sup Rn (x, y) = O («"3/4 log log n), almost surely.

where

Rn(x, y) = Fn

PROOF. Lemma 4 can be proved by repeatedly applying Lemma 3, the countable
subadditivity property of a probability measure and the Borel-Cantelli Lemma (com-
pare Theorems 2.1 and 4.3 of Billingsley [2]). First we borrow the partition idea used
by Singh [25] in his Lemma 3.2. By the nondecreasing property of Fn(-) and F(-),
and the smoothness condition on F(-),

(3.4)

where

(3.5)

sup

n n
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Define nr = e-^, Ar = {n : nr < n < nr+l], and

271

«„, = , dni = , dr =
[rlognr+l}

Then we have n/(2\Jr + 1) < nr+i — nr < nr/*/r, and

(3.6)

where

nLn < Lni

Lni = max (1 + |x | )-1 / 2

1 < | | W < *

L{r) = max (1 + \x\y1/2

\<M,\y\<dr

(3.7) Ln2 = max
\z\<d,:

(3.8) = 7(min{a, b) < X, < max{a, b}) - \F{b) - F(a)\.

Next we use Lemma 3 to show that the three terms Lni, L(r), and Lni are all bounded
by O(nl / 4 loglogn). Without loss of generality, we may assume jjc | > 0. Let
Q = (l + |;c|)1/2n1/4loglogrt, e = din~1/2\x\, and M = nrr-l/\ Then,

Q2 (1 + \x\)nl/2(loglogn)2 l + \x\
- 2

dx\x\
V/60(loglognrr

2<l,
~ 1 + x

and, it can be easily verified that Q2/(ei/2Mn/l°) < 1, which leads to

€M
59/6O<Q2<€i/2Mli/l0.

Now we apply Lemma 3 to [Wj] with Q, e, and M chosen as above and arrive at

> 2 p o G |

|x |- | )n(loglogn)V1/-1 / 2( logloglog(nrr-1 / 2))-1 / 2))-1}

K2(nrr'i/2y4

K2n;4r2 < O(n;*r2).
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Then, by Theorem 2.1 of Billingsley [2] and (3.6),

p(\J{Ln, >2p0n
1/4loglog«)J

< (nr+1 - nr)d
2

ni0(n;4r2) < nrr~l/2(logn)2O(n;V) < n~2.

Thus X^Li P (UneAr(Ln, > 2/Oo«1/4loglogn)) < oo, which together with Borel-
Cantelli Lemma yields

(3.9) Lni < 2p0n
l/4\oglogn, almost surely.

Similarly, we may apply Lemma 3 with Q = (1 + |*|)1/2«1/4(loglogn), M = nr,
e — d\n~l/l\x\ and Q — n1/4loglogn, M = nr, and e = dtn~l/2r~l, respectively, to
the sequence {W,(-, •)} and get

(3.10) L(r) < 2p0n1/4loglogn, almost surely,

(3.11) Lni < 2po«l/'4loglog«, almost surely.

Finally, equations (3.4), (3.6), (3.9)-(3.11) lead to

sup Rn(x, y) = O(n~3/4loglogn), almost surely.

This completes the proof of Lemma 4. •

LEMMA 5. Under the conditions of Theorem 1, if\x\ < log«, we have

Fn(£n) - p = xf(lp)n~1/2 + O(t

almost surely, where, | n = \n +xn~1/2.

PROOF. By Lemma 1, Lemma 2 (ii) and Lemma 4, if \x \ < log n,

(3.12) \Fn($n) - F(§n) - Fn{ln) -

< (1 -\- \x\) sup

= O((l + |x|)1/2rt-3/4loglogn), almost surely,
and

(3.13) \Fn(l) -p\< \Fn(l) - FAl ~ 0)1 < \FH(ln) - Fn(l - 0)| + 0{tn~x)
< \Fn(ln) - Fn(i;p) - F&) + p\

< 2 sup Rn (0, y) -

< 0{ln~x + n~3/4loglogn), almost surely.

https://doi.org/10.1017/S1446788700016074 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700016074


[11] Bootstrapping sample quantiles 273

Thus, by (3.12) and (3.13), we have, almost surely,

Fniln) -P = [Fn(L) - FB(iB)] + [#„(!„) - p]

= [F n ( | j - F(fB) - Fn(l) + F(l)] + [F(l) - F(l)]

+ O(£n~l) + O(ln~x + n-3/4loglogn)

= f(en)xn'l/2 + (ln~l + (1 + |;c|)1/2>T3/4loglogK)

+ (1 + |x|)1/2n-3/4loglog«),

where en is a random quantity between | n and | n . We used condition (2.7) in the last
equation. •

The next two lemmas investigate, respectively, the asymptotic propertirs of the MBB
variance estimator and the tail behavior of the MBB distribution function estimation
of the sample quantile. We first introduce some more notation.

Ui(x) = j

1

7 = '
t

7 = 1

(3.14) a 2
W ^ E ( l - -

7 = -(n-l) v

We define f „ = f„ + x«~1/2. In the proof of Theorem 2.2 of Sun [26], it was shown
that I Var, f/,*(|n) -»• 0^(1;,,) = cr^ as « —>• oo. The next lemma gives a refinement.

LEMMA 6. Under the conditions of Theorem 1, j/7/ie block length I = o(nl/2), then
we have I Var, C/*(|n) = CT^ + 0(£~' + £«"1/2(loglogn)1/2) almost surely.

PROOF. Let o-2(x) and a^ix) be defined as in (3.14) and (2.8), respectively. Then

(3.15) o2(x)= J2

00

= £ Cov(/(X, <
; = - o o

\j\=n
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1 ""'
^ L/|Cov(/(X,<je),/(X1+;<x))

since, by Billingsley's inequality (see Lemma 2 of Billingsley [2, page 365])

I Cov(/(X, <x), I(Xi+J < x))\ < 4 • 1 • 1 • a(J) =

which leads to £ ~ = n |Cov(/(X, < x), I(Xi+J < x))\ < Z™=n4a(j) = O(n~m),
for any m > 1, and

n - l n - l

Y \JCov(I(Xl<x),I(Xl+j<x))\< J2 \j\4a(j)<oo.
j=-(n-\) j=-(n-i)

We next employ similar arguments used in Sun [26, Chapter 2, pages 31-33] for
investigating I Var* t/f (!„)•-> ^ ( t p ) = <>£,. By Lemma 2, there exists constant a C
such that |fn - ^p| < C/i~1/2(loglogn)1/2, almost surely. Now we let

XnA = Hp+xn-1'1 - OT1 / 2( loglogn)1 / 2 , and

xn,i = Hp + xn'112 + Cn-1/2(loglog«)1/2.

Then, there exists a set A € & with P(A) = 1, such that, for any co e A, there exists
a positive integer nw and for all n > nm, we have

xn,\ < I n M = In + JC«" ' / 2 < ̂ n,2, almost surely.

Thus, almost surely,

(3.16) ^

1
E[t/((JCB.2) - F(xn,2)]

2 + 2F(xn,2)Fn(xn,2)
i—l

- F2(xn,2) - F2

and, almost surely,

1
(3.17) Var,(£/,*(!„)) > -

1
T[U^^ F ^ ) ] 2 2F(xnA)Fn(xn,i)

- F2{xnA) - F2(xn,2).
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By Lemmas 1 and 2 above, we have

\2F{xn,2)Fn(xn,2) - F2(xn,2) - F2(xnA)\

< \F2(xn,2) - F2
n(xnA)\ + (Fn(xn,2) - F{xn,2)f

< 2\Fn(xn,2) - Fn{xn,\)\ + (Fn(xn,2) - F{xn,2)f

= 2\Fn(xn<2) - Fn(xn,i)\ + O(i2n~2), almost surely,

and by Lemma 4

\Fn(xn.2) - Fn(xnA)\ = \[Fn{xn,2) - FnQp)] - [FB(*„.,) - Fn{HP)]\

< \Fn(xn,2) ~ Fn(i-P) - FOc.2) + F($p)\

+ \Fn(XnA) - Fn{^P) - F(xnA) + F($p)\

+ \F(xn,2) - F(xnA)\

< 2O(n-3/4loglogn) + dx\xn,2 - xnA\

= O(n"I/2(loglogn)1/2), almost surely.

Thus, almost surely,

(3.18) l\2F(xn,2)Fn(xn,2) - F2(xn,2) - F2(xnA)\ = I / 2 1 / 2

Likewise, almost surely,

(3.19) l\2F{xnA)Fn(xnA) - F2(xnJ) - F2(xn,2)\ =

We now evaluate IN'1 £,",[£/,•(*„.;) - F(xnJ)]
2, j = 1, 2. Let

WnA=l[U;{xn)-F{xn)]
2, i = l,...,N, and {*„} = {*„,,}, {xn,2}.

Then
N N

~1 Y^U^) F(x)f(3.20) IN~1 Y^U^n.;) - F(xnJ)f = N~> V Wn,it j = 1, 2.
/=i /=i

By (3.15) and condition (2.8) on ^ ( J C ) , we get, for |x| < logn

(3.21) EWnJ = El[Ut(xn) - F(xn)f - <£(*„) l

= a^ + 0(n~l/2 log n+rl).

Note that wn<0O — || Wn,, H^ < I, where || • ||oo indicates the infinity norm, and

< 2 = EWnJ = E(e[U,(Xn) ~ F(Xn)}
2)2

< lE{l[Ui{xn) - F(xn)]
2) < C5i, for some C5 > 0.
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On the other hand, (3.21) indicates that, there exists some positive constant C6 such
that w2

n2 > lEW^il2 > C6. We next apply Lemma 2.2 of Sun [26] to the triangular
array [Wn,} with a = 1, q = 2, dn = (logn)2, and en = ^^n'^logn)3, which yields

< C* exp -
2,2C\[n/dn\\

wjj.2

[ -1 , , 2/5 r / ,

-̂Imax 1 , ^ \a(±

4/5

< C* exp {- C*»2(logn)-4£n-2(logn)

+
C*n(logn) -2

4/5

c ' ( l o g M ) 2

^/5n7/5 (log n)-
16/5

< 0{n~m), for all m > 1.

Then, the Borel-Cantelli Lemma implies that

<€„= £y/2n '(logn)3, almost surely,

which together with (3.21) leads to

N

(3.22) A 1 nJ = EWnA + O(l1/2n-laogn)3)

= o^ + Oil"1 + H~1/2logn), almost surely.

Hence, by (3.16)-(3.20) and (3.22), we have

U*(ln) = AT1
'n,i + O(en-[/i(\oglogny/z)

" '+>T1 / 2 logn) + <9(£/T1/2 (log log n)1/2)

"' +£n"1/2(loglogn)1/2), almost surely.

Lemma 6 is proved. •
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LEMMA 7. Under the conditions of Theorem 1, for any m > 1, we have, almost
surely, P.(yfii\£ - f B ) | > log/i) = 0{n~m).

PROOF. Let yn = | n + n~1/2 logn, then

(3.23) P . (>/^(§; - i B )>logn)

= />•(£ > L +n-l/2\ogn) < P.(F;& +n-1 / 2logn) < p)

= P* [I
Also, by Lemma 5, there exists Co > 0 such that Fn(yn) — p > Con~l/2 \ogn, almost
surely. So, we have, by (3.23), Lemma 6, and Bernstein's inequality (see Bosq [3])

< P.

6

= P,

<2exp —

= 2exp -

?{y») - Fn(yn)]
2

C*b(logn)2

AM Vart U*(yn) + 2COVI2 logn
C2(logn)2

logn

< O(n'm), for all m > 1, almost surely.

Likewise, we may show that Pt{^Jn(£* - | n ) < - logn) < O(n~m), for all m > 1,
almost surely. This completes the proof of Lemma 7. •

PROOF OF THEOREM 1. By Lemma 1 (ii) and Lemma 7, it suffices to show that
almost surely

sup \Gn{x)-Gn{x)\ =
\x\<\oen
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/»($„-£,)<*), and Gn(x) = Pt(Ji(£-$n)<x).

We can show, by the Berry-Esseen Theorem for independent random variables, that

^ ,'Vb(Fn(i) - p)
P) ~

and by the Berry-Esseen Theorem for sample quantiles under dependence (see Theo-
rem 4.1 of Sun [26]), that

Therefore,

(3.24)

sup

sup
\x\<\ogn

< SUp

+ sup
ui<iogB

We have, by Lemma 5, almost surely that

(3.25) yfr(Fn(tn) -p)= */(£,

and, by Lemma 6, almost surely that

(3.26)
1

So, (3.25) and (3.26) imply, almost surely that

(3 27) ^ ( ^ » > - ^

On

jn) - p)

|x|)1/2n-1/4loglogn),

T/i-i/4 log log
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Then, for \x\ < logn,

(3.28) <t

Also,

^ f . n / r d j £t(f/,(|n))i <
b b

= O(£n~l/2)

Thus

( 3

Hence, by (3.24), (3.28), and (3.29), almost surely

sup « (£ - £„) <x)- P{y/nQn - §p) < JC)

+ £n-1/2(loglogn)1/2 + n-1/4loglog«)

and any block length I satisfying Ci/i'^Ooglogn)"1 < C2n1/4(loglog«)"1/4 with
C\, C2 > 0 will lead to the optimal rate O(n-1/4loglogn). This completes the proof
of Theorem 1. •

We may sharpen the right-hand side of (3.29) to be of order O(£1/2n"1/2), by
borrowing the same arguments as used in Lemma 6. However, the result from (3.29)
is sufficient for handling our problem here.

We also point out that it is possible to extend our main result to the situation where
the a-mixing coefficients decay at a sufficiently fast polynomial rate. As can be
seen, Theorem 1 is mainly built upon Lemmas 1-3 and the Berry-Esseen Theorem
of Sun [26]. It should not be difficult to modify Lemmas 1 and 2 by using the
exponential type of inequalities for the sums of a-mixing random variables. The
Berry-Esseen Theorem actually applies to situations where the a-mixing coefficient
a(n) converges to zero at a (sufficiently fast) polynomial rate. As for the possible
extension of Lemma 3, one may need to modify the conditions on M and Q in order
to get a sufficiently sharp order for the right-hand side of the inequality.
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