
THE CHORDS OF THE NON-RULED QUADRIC 
IN PG(3, 3) 
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The 8-cage (3) may be defined as the simplest cubic graph having no 
circuit of fewer than eight edges. To construct it we first observe that it 
must contain a tree T whose vertices are of degrees 1 and 3 and in which 
each vertex of degree 1 is separated by an arc of just three edges from a 
central edge AB. These properties fix the structure of T uniquely. Starting 
with T we join the vertices of degree 1 by new edges so as to form a cubic 
graph, taking care to introduce no circuit of fewer than eight edges. It is 
found by trial that this can be done in essentially only one way. The resulting 
graph is the 8-cage. It has 30 vertices and 45 edges. 

The 8-cage is 5-regular, that is, if S and S' are any two oriented arcs of 
length 5 in it there is a unique automorphism of the 8-cage transforming S 
into S'. Hence it may be calculated that the automorphism group of the 
8-cage is of order 1440. It is shown in (3) that if in any 5-regular graph the 
length of the shortest circuit is m, then s < \m + 1. Thus if 5 = 5 then 
m > 8. Accordingly the 8-cage is the simplest 5-regular cubic graph. It is 
also shown that there is no 5-regular cubic graph such that s > 5. The 8-cage 
has therefore been called "the most regular of all graphs" (1). 

In (1) the 8-cage is exhibited as the Levi graph of the Cremona-Richmond 
configuration. The object of the present note is to describe another geometrical 
occurrence of the graph. 

Let P denote the finite 3-dimensional projective space PC7(3, 3) whose 
40 points have homogeneous co-ordinates x, y, z, t over the field of residues 
mod 3. Let Q denote the quadric x2 + y2 + z2 — t2 = 0 in P. The points of 
Q are the 4 points for which t = 0 while the remaining co-ordinates are non
zero, together with the 6 points for which two of the first three co-ordinates 
are zero and the other two co-ordinates are non-zero: 10 in all. It is easily 
verified that each plane of P is on at least one of these 10 points and that 
each tangent plane of Q is on just one of them. Thus Q has no generators. An 
account of the geometry of the "ellipsoid" Q is given in (2); here we are 
concerned only with the relation of this geometry to the 8-cage. 

Let V be the set of the 30 points of P not on Qy and let E be the set of the 
45 lines of P meeting Q in two distinct points. We can regard V and E as 
sets of vertices and edges respectively of a graph G, the intersections of the 
edges in points of Q being regarded as irrelevant to the graph structure. We 
proceed to show that G is an 8-cage. 
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If X Ç V the polar plane of X meets Q in the four points of a proper conic. 
The lines of E through V meet the other six points of Q in pairs. Hence G is 
cubic. It is now only necessary to show that G has no circuit of fewer than 
eight edges. 

Let vo, Vi, . . . , vn = VQ be the vertices of any circuit of G, taken in their 
natural cyclic order. We have n > 4, since no six points of Q are coplanar. 
We write Et for the edge joining vt and vi+i and Ft for the edge incident with 
Vt but not with z/*_i or vi+\. (Addition in the suffices is mod n.) Since no 
five points of Q are coplanar we have the rule that no two of the five edges of 
G incident with vt or vi+i have a common point on Q. In other words, each 
point of Q is on just one of these five edges. 

Suppose Eo is on the points A and B of Q. Then by the rule just stated 
neither A nor B is on any other edge of G incident with V\ or z/2, but each is 
on some edge of G incident with y2 or v$. Hence each of A and B is on one 
of the lines £3 and F%. Since neither of these lines is E0 we may suppose Ed 

is on A and F% is on B. Applying the same argument, but going round the 
circuit in the other direction, we find that each of A and B is on one of the 
lines En_3 and Fn-2. (Each of these is incident with vn-2-) These results have 
the following consequences: 

(i) If n = 4 then A is on two edges of G incident with v2 or z/3. 
(ii) If n = 5 then A is on two edges of G incident with Vz or Vi. 

(iii) If n = 6 then B is on two edges of G incident with Vz or z;4. 
(iv) If n = 7 then A is on two edges of G incident with v± or v$. 

Applying our rule we deduce that n > 8. Thus each circuit of G has 8 or 
more edges. 

Now let the points of Q be denoted by the letters a to j according to the 
following scheme: 

a (1,0, 0,1), 6 ( 1 , 0 , 0 , 2 ) , c (0 ,1 ,0 ,1 ) , d (0 , 1,0, 2), 
e (0, 0, 1, 1), / (0, 0, 1, 2), g (1, 1, 1, 0), h (l , 1, 2, 0), 
i (1 ,2 ,1 ,0) , j (1 ,2 ,2 ,0) . 

Postmultiplication of the co-ordinate vectors by the matrices 

(
2 0 1 0 \ /2 0 1 0 

2 0 2 0 \ and # 1 0 1 0 
0 0 0 1 I 1 0 0 0 1 
0 1 0 f/ \ 0 1 0 f 

effects the permutations R = (ajecifdg) (bh) and L = (ajbhecgfdi) of the points 
of Q. These induce automorphisms r and I of G. 

There is an oriented arc 5 of G of length 5 determined by the sequence 
(0, 0, 1, 0) (0, 0, 0, 1) (0, 1, 0, 0) (1, 0, 1, 0) (1,0, 2, 2) (1, 1, 2, 1) of vertices 
of G. Its edges, taken in the corresponding order, are ef, cd, gi, af, dj. The 
automorphisms r and I convert S into oriented arcs given by the edge-sequences 
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{cdy gi, af, dj, eg) and (cd, gi, of, dj, bi), respectively. Using the theory of 
(3, § 3), we deduce that r and / generate the whole group of automorphisms 
of G. Hence each automorphism of G is induced by some automorphism of Q, 
that is, some projective transformation of P under which Q is invariant. On 
the other hand, it is clear that at most one permutation of the letters a to j 
can correspond to a given automorphism of G. It follows that the auto
morphism groups of G and Q are isomorphic. 

Inspection of a diagram of G shows that when the edges through a specified 
point of Q are removed, the graph falls into two connected parts, each of 
these being a Thomsen graph with its edges once subdivided. 
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