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On the Structure of the Schild Group in
Relativity Theory

Gerd Jensen and Christian Pommerenke

Abstract. Alfred Schild has established conditions that Lorentz transformations mapworld-vectors
(ct, x , y, z)with integer coordinates onto vectors of the same kind. _ese transformations are called
integral Lorentz transformations.

_is paper contains supplements to our earlierworkwith a new focus on group theory. To relate
the results to the familiar matrix group nomenclature, we associate Lorentz transformations with
matrices in SL(2,C). We consider the lattice of subgroups of the group originated in Schild’s paper
and obtain generating sets for the full group and its subgroups.

1 Introduction

1.1 Notations

LetZ[i] be the ring ofGaussian integers m+ in with m, n ∈ Z. _e function π∶Z[i]→
Z2, deûned by π(m+ in) = 0 ifm and n are both even or both odd and π(m+ in) = 1
otherwise, is a ring homomorphism; π(w) is called the parity of w. If π(w) = 0, then
w is called even, otherwise odd. Using 2 = (1 + i)(1 − i), one concludes that w is even
if and only if it is divisible by (1 + i).

Let M(2,C) and M(2,Z[i]) be the rings of 2 × 2-matrices with components in
C and Z[i], respectively, and SL(2,C) = {A ∈ M(2,C) ∶ detA = 1}. _e symbols
a, b, c, d will always denote the components of

A = (
a b
c d) ∈ M(2,C).

Let ∥A∥2 ∶= ∣a∣2 + ∣b∣2 + ∣c∣2 + ∣d∣2. For A ∈ SL(2,C), we have ∥A−1∥2 = ∥A∥2.
Further we set

ω =
1 + i
2
, ρ = 1 + i

√
2
, I = (

1 0
0 1) , E ∶= (

1 1
1 1) ,(1.1)

T =
1

√
2

⎛
⎜
⎜
⎜
⎝

1 0 0 1
0 1 −i 0
0 1 i 0
1 0 0 −1

⎞
⎟
⎟
⎟
⎠

.
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_ematrix T is unitary. Let

(1.2) LA ∶= T∗
(A⊗ A)T ,

where ⊗ denotes the Kronecker product. _e expanded form is ([4])
(1.3)

LA=

⎛

⎜
⎜
⎜
⎜

⎝

1
2 (∣a∣

2
+ ∣b∣2 + ∣c∣2 + ∣d∣2) Re(ab + cd) − Im(ab + cd) 1

2 (∣a∣
2
− ∣b∣2 + ∣c∣2 − ∣d∣2)

Re(ac + bd) Re(ad + bc) − Im(ad − bc) Re(ac − bd)
Im(ac + bd) Im(ad + bc) Re(ad − bc) Im(ac − bd)

1
2 (∣a∣

2
+ ∣b∣2 − ∣c∣2 − ∣d∣2) Re(ab − cd) − Im(ab − cd) 1

2 (∣a∣
2
− ∣b∣2 − ∣c∣2 + ∣d∣2)

⎞

⎟
⎟
⎟
⎟

⎠

.

Evidently

(1.4) LuA = LA for ∣u∣ = 1, in particular L−A = LA.

From the properties of the Kronecker product it follows that A↦ LA is a ring homo-
morphism M(2,C)→M(4,R) and

det LA = 1 for ∣detA∣ = 1.(1.5)

Hence A↦ LA is a group homomorphism {A ∈ M(2,C) ∶ ∣detA∣ = 1}→ SL(4,R).

1.2 Schild’s Theorem

_e elements of the ring M(4,Z) will be called integral. Schild’s main theorem [8]
characterized the integral matrices of the form LA (see [4,_eorem 1.1]).

_eorem 1.1 (Schild) Let A ∈ M(2,C) and ∣detA∣ = 1. _en LA ∈ M(4,Z) if and
only if there is u ∈ C with ∣u∣ = 1 such that B ∶= uA satisûes detB ∈ {1, i,−1,−i}, and
one of the following.
(i) B ∈ M(2,Z[i]) and ∥B∥2 even.
(ii) B ∈ M(2,Z[i]) + ωE.

_e theorem describes S∗ ∶= {A ∈ M(2,C) ∶ ∣detA∣ = 1, LA ∈ M(4,Z)}. By (1.5),
S∗ is the inverse image of SL(4,Z) in the group {A ∈ M(2,C) ∶ ∣detA∣ = 1} under the
homomorphism A ↦ LA and therefore a group. It is not required that A ∈ SL(2,C).
_eweaker condition ∣detA∣ = 1 is in linewith the proof of_eorem 1.1where it leads
to comparatively few case distinctions. On the other hand, from (1.4) it follows that
{LA ∶ ∣detA∣ = 1} = {LA ∶ detA = 1}, so the same set of transformations LA is gathered
under the condition detA = 1 as under ∣detA∣ = 1. However, removing redundancies
by limiting the scope to SL(2,C) provides a better insight into the group structure and
discloses relations to familiar subgroups of SL(2,C). In Section 2 we will therefore
reformulate_eorem 1.1 and study

(1.6) S ∶= {A ∈ SL(2,C) ∶ LA ∈ M(4,Z)}.

By (1.5), S is the inverse image of SL(4,Z) in SL(2,C) under the homomorphism
A↦ LA and therefore also a group.

Deûnition 1.2 S shall be called the Schild group.
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1.3 Relation to the Lorentz Transformations

_e Lorentz groupO(1, 3) consists of the linear transformations ofR4 which preserve
the quadratic form t2 − x2 − y2 − z2 (the speed of light is assumed to be 1). Schild’s
concern was to determine which elements of O(1, 3) map Z4 onto itself. Using the
common identiûcation of linear transformations with their coeõcient matrices, this
amounts to the determination of O(1, 3) ∩M(4,Z), since thematrices in O(1, 3) are
unimodular. _is is the group of integral Lorentz transformations. From the outset
Schild simpliûed the task utilizing the following facts.
● _e Lorentz transformations preserving both the direction of time and the orien-

tation of space make up the subgroup SO+
(1, 3) ⊂ SL(4,R) of restricted Lorentz

transformations. Every element of O(1, 3) is a product of an element of SO+
(1, 3)

and one or both of the diagonal matrices diag(1,−1,−1,−1) and diag(−1, 1, 1, 1).
_erefore it is suõcient to characterize the elements of SO+

(1, 3) ∩M(4,Z).
● _e homomorphism A↦ LA produces a double cover of SO+

(1, 3) by SL(2,C) (see
for instance [1, Sec. 6.3]), hence

SO+
(1, 3) ∩M(4,Z) = {LA ∶ A ∈ SL(2,C), LA ∈ M(4,Z)}.

If (1.6) is written as S = {A ∶ A ∈ SL(2,C), LA ∈ M(4,Z)}, it becomes obvious that

SO+
(1, 3) ∩M(4,Z) = {LA ∶ A ∈ S}.

It is therefore suõcient to study integral transformations of the form LA.
● _e linear transformation of R4 brought about by LA can be replicated by one of
C2 in virtue of the equivalence

(1.7) LA(t, x , y, z)⊺⊺⊺ = (t′ , x′ , y′ , z′)⊺⊺⊺

⇐⇒ A(
t + z x + iy
x − iy t − z )A∗ = (

t′ + z′ x′ + iy′
x′ − iy′ t′ − z′ ) ,

see [4]. _is reduces a problem about 16 real componentswith 10 constraints down
to one with 4 complex components subject to only one (complex) constraint.

1.4 Overview

In Section 2 we introduce the subclasses of S necessary for a reformulation of Schild’s
theorem and derive various relations among them that are needed in Section 3 for the
investigation of subgroups of S and their cosets. With amethod originally advised by
H. S. M. Coxeter (see [8, Appendix]) and later used by Lorente and Kramer [5, §2],
we derive in Section 4 generators for the groups dealt with in Section 3, thus also
providing a systematic way to produce integer matrices which satisfy the Lorentzian
orthogonality relations. A diòerent approach was presented by Louck who used the
theory of Diophantine equations to develop algorithms for the construction of in-
tegral Lorentz transformations [6]. In Section 5 we give an example of an integral
Lorentz transformation that cannot be decomposed into an integral rotation and an
integral boost. In Section 6 the relation of the subgroup of integral Gaussianmatrices
in S to the group of all integral Gaussian matrices in SL(2,C) is discussed.
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2 Subclasses of S

2.1 Primary Subdivision

_e numbers ρ and ω were deûned in (1.1). _e following theorem is the announced
modiûcation of_eorem 1.1, already mentioned in Schild’s paper.

_eorem 2.1 _e group S is the union of the pairwise disjoint sets
G ∶= {A ∈ SL(2,C) ∶ A ∈ M(2,Z[i]) and ∥A∥2

∈ 2Z},(2.1)
H ∶= {A ∈ SL(2,C) ∶ A ∈ M(2,Z[i]) + ωE},
V ∶= {A ∈ SL(2,C) ∶ A ∈ ρM(2,Z[i]) and ∥A∥2

∈ 2Z},
W ∶= {A ∈ SL(2,C) ∶ A ∈ ρ(M(2,Z[i]) + ωE)}.

Proof Let A ∈ SL(2,C). By _eorem 1.1 we have A ∈ S if and only if there is u ∈ C,
∣u∣ = 1, such that B ∶= uA satisûes detB = ik = ρ2k for some k ∈ {0, 1, 2, 3}. Hence

1 = ρ−2k detB = det(ρ−kB) = det(uρ−kA) = (uρ−k
)
2 detA = (uρ−k

)
2 ,

and one of the following cases takes place.
● B ∈ M(2,Z[i]) and ∥ρ−kB∥2 = ∥B∥2 is even: _en

uρ−kA = ρ−kB ∈
⎧⎪⎪
⎨
⎪⎪⎩

G if k is even,
V if k is odd.

Hence from uρ−k = ±1, G = −G, and V = −V, it follows that A ∈ G or A ∈ V.
● B ∈ M(2,Z[i]) + ωE: Since ωilE = ω(il − 1)E + ωE ∈ M(2,Z[i]) + ωE, we have

uρ−kA = ρ−kB ∈
⎧⎪⎪
⎨
⎪⎪⎩

il(M(2,Z[i]) + ωE) ∈ H if k is even and k = −2l ,
ρil(M(2,Z[i]) + ωE) ∈W if k is odd and k = −2l − 1.

Hence from uρ−k = ±1,H = −H, andW = −W, it follows that A ∈ H or A ∈W.

For later reference we note that

(2.2) G−1
= G, H−1

= H, V−1
= V, W−1

=W.

We also add a more manageable deûnition for G; an analogous statement is true for
V, but we do not need it.

Lemma 2.2 Each of the following lines is equivalent to (2.1):
G = {A ∈ SL(2,C) ∶ A ∈ M(2,Z[i]) and a + b + c + d even},(2.3)
G = {A ∈ SL(2,C) ∶ A ∈ M(2,Z[i]) and a + b, c + d , a + c, b + d odd}.(2.4)

Proof _e equivalence of (2.1) and (2.3) follows from

π(∣a∣2 + ∣b∣2 + ∣b∣2 + ∣b∣2) = π(a)π(a) + π(b)π(b) + π(c)π(c) + π(d)π(d)
= π(a)2

+ π(b)2
+ π(c)2

+ π(d)2

= π(a) + π(b) + π(c) + π(d) = π(a + b + c + d).
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If A satisûes the conditions in (2.3), then a + b and c + d are both odd or both even.
_e latter is impossible because of 1 = ad − bc = (a + b)d − b(c + d). _e analogous
result holds for the column sums, so A satisûes the conditions in (2.4). Conversely, if
the conditions in (2.4) are fulûlled, then those in (2.3) also hold.

2.2 Refinement

If A ∈ H, then the sum of any two of its components is in Z[i], and if A ∈W, then the
sum of any two of its components is in ρZ[i].

Lemma 2.3 (i) If A ∈ H, then a + b + c + d is even.
(ii) If A ∈W, then (a + b + c + d)/ρ is even.

Proof (i) Let a = a′ + ω, b = b′ + ω, c = c′ + ω, d = d′ + ω with a′ , b′ , c′ , d′ ∈ Z[i].
_en

1 = ad − bc = a′d′ − b′c′ + ω(a′ + d′ − b′ − c′) = a′d′ − b′c′ + ω(a + d − b − c)
= a′d′ − b′c′ − (1 + i)(b + c) + ω(a + b + c + d).

Since 1/ω = 1 − i, we deduce that a + b + c + d = (1 − i)(1 − a′d′ + b′c′) + 2(b + c).

(ii) Let a/ρ = a′ +ω, b/ρ = b′ +ω, c/ρ = c′ +ω, d/ρ = d′ +ω with a′ , b′ , c′ , d′ ∈ Z[i].
_en

1 = ad − bc = ρ2
(a′d′ − b′c′ + ω(a′ + d′ − b′ − c′))

= i(a′d′ − b′c′ + ω(a + d − b − c)/ρ)
= i(a′d′ − b′c′) − i(1 + i)(b + c)/ρ + iω(a + d + b + c)/ρ.

Since 1/(iω) = −(1 + i), we deduce that

(a + b + c + d)/ρ = −(1 + i)(1 − i(a′d′ − b′c′)) + 2(b′ + c′ + 1 + i).

By Lemma 2.3, for A ∈ H, the row sums a + b and c + d are both even or both
odd, and the analogous statement holds for the column sums. Similarly, for A ∈ W,
the sums (a + b)/ρ and (c + d)/ρ are both even or both odd, and the same holds for
(a + c)/ρ and (b + d)/ρ. Let

H0
∶= {A ∈ H∶ row sums even}, W0

∶= {A ∈W∶ (row sums)/ρ even},
H1

∶= {A ∈ H∶ row sums odd}, W1
∶= {A ∈W∶ (row sums)/ρ odd},

H0 ∶= {A ∈ H∶ column sums even}, W0 ∶= {A ∈W∶ (column sums)/ρ even},
H1 ∶= {A ∈ H∶ column sums odd}, W1 ∶= {A ∈W∶ (column sums)/ρ odd}.

_is deûnes two partitions ofH and ofW:

(2.5) H = H0
∪̇H1

= H0 ∪̇H1 , W =W0
∪̇W1

=W0 ∪̇W1 .

Supplementing (2.2), we also note that

(2.6) (H0)
−1
= H0 , (H1)

−1
= H1 , (W0)

−1
=W0 , (W1)

−1
=W1 .
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Next we introduce two matrices P ∈ H and Q ∈ V which will serve as paradigms
and important tools:

P ∶=(
ω ω
−ω ω) = (

(1 − i)/2 (1 − i)/2
−(1 + i)/2 (1 + i)/2) = −(

i i
1 + i 0) + ωE ∈ H0

∩H1 ,(2.7)

P2
=(

−ω ω
−ω −ω) = (

−(1 + i)/2 (1 − i)/2
−(1 + i)/2 −(1 − i)/2) = −(

1 + i i
1 + i 1) + ωE ∈ H1

∩H0 ,(2.8)

P3
= − I,(2.9)

Q ∶=(
0 −(1 − i)/

√
2

(1 + i)/
√

2 0
) = ρ (

0 i
1 0) ∈ V,(2.10)

Q2
= − I.(2.11)

Lemma 2.4 With Q as in (2.10) we have

V = GQ = QG,(2.12)

W0
= H0Q = QH0 ,(2.13)

W1
= H1Q = QH1 ,(2.14)

W0 = H0Q = QH0 ,(2.15)
W1 = H1Q = QH1 ,(2.16)
W = HQ = QH.(2.17)

Proof Multiplication with Q/ρ transposes the rows or the columns among each
other and multiplies each entry by i or 1, and so does not change the parity of the
row and column sums; further detQ = 1. _is implies (2.12), and together with

ωEQ = ρ ((
0 −1
0 −1) + ωE) and QωE = ρ ((

−1 −1
0 0 ) + ωE)

also (2.13)–(2.17).

Lemma 2.5 With P as in (2.7) we have

(a) H0
= GP, (b) W0

= GQP = VP,(2.18)

(a) H1
= GP2 , (b) W1

= GQP2
= VP2 ,(2.19)

(a) H0 = P2G, (b) W0 = P2QG = P2V,(2.20)
(a) H1 = PG, (b) W1 = PQG = PV.(2.21)

Proof (i) Let A ∈ H0 and A = A′ + ωE with A′ ∈ M(2,Z[i]). _en

AP2
= ((

a′ b′
c′ d′) + ωE)((

−1 − i −i
−1 − i −1) + ωE)

= (
−(1 + i)(a′ + b′) −ia′ − b′
−(1 + i)(c′ + d′) −ic′ − d′) + iE + ω (

−2 − 2i + a′ + b′ −i − 1 + a′ + b′
−2 − 2i + c′ + d′ −i − 1 + c′ + d′)

(2.22)
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By_eorem 2.1 and since S is a group, we have AP2 ∈ G∪H. Since a′ + b′ and c′ + d′
are even by hypothesis, the entries of the last matrix in (2.22) are all even, so their
products with ω are in Z[i], therefore AP2 ∈ G. With (2.9) and G = −G, it follows
that A ∈ GP.
Conversely, if A ∈ GP, then there is A1 ∈ G such that

A = A1P = (
−ia1 − (1 + i)b1 −ia1
−ic1 − (1 + i)d1 −ic1

) + ω (
a1 + b1 − 1 a1 + b1 − 1
c1 + d1 − 1 c1 + d1 − 1) + ωE ,

so A ∈ H by (2.4), and the row sums of A are even.
_is proves (2.18) (a); (2.18) (b) follows from (2.12) and VP = QGP = QH0 =W0.

(ii) Let A ∈ H1 and A = A′ + ωE with A′ ∈ M(2,Z[i]). _en

AP = ((
a′ b′
c′ d′) + ωE)((

−i −i
−(1 + i) 0 ) + ωE)

= (
−ia′ − (1 + i)b′ −ia′
−ic′ − (1 + i)d′ −ic′) + iE + ω (

−1 − 2i + a′ + b′ −i + a′ + b′
−1 − 2i + c′ + d′ −i + c′ + d′)

(2.23)

By _eorem 2.1 and since S is a group, we have AP ∈ G ∪H. Since a′ + b′ and c′ + d′
are odd by hypothesis, the entries of the last matrix in (2.23) are all even in Z[i], so
that their products with ω are in Z[i], therefore AP ∈ G. With (2.9) and G = −G, it
follows that A ∈ GP2.
Conversely, if A ∈ GP2, then there is A1 ∈ G such that

A = A1P2
= (

−(1 + i)(a1 + b1) −ia1 − b1
−(1 + i)(c1 + d1) −ic1 − d1

) + ω (
a1 + b1 − 1 a1 + b1 − 1
c1 + d1 − 1 c1 + d1 − 1) + ωE ,

so A ∈ H by (2.4), and the row sums of A are odd, again because of (2.4).
_is proves (2.19) (a); (2.19) (b) follows from (2.12) andVP2 = QGP2 = QH1 =W1.

(iii) From (2.18) (a) and (2.19) (a), one obtains with (2.6) and (2.9)

H0 = (H0
)
−1
= P−1G−1

= −P2G = P2G,

H1 = (H1
)
−1

= P−2G−1
= −PG = PG,

which proves (2.20) (a) and (2.21) (a); (2.20) (b) and (2.21) (b) are proved analogously.

3 Group Structure

Now we study the structure of the sets deûned in _eorem 2.1.

_eorem 3.1 G is a group. _e only subgroups betweenG and S areG∪H andG∪V.
Furthermore
(i) [S ∶G ∪H] = 2 with coset V ∪W.
(ii) [G ∪H ∶G] = 3 with right cosets H0 andH1 and le� cosets H0 andH1.
(iii) [S ∶G ∪ V] = 3 with right cosets H0 ∪W0 and H1 ∪W1 and le� cosets H0 ∪W0

andH1 ∪W1.
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(iv) [G ∪V ∶G] = 2 with coset V.
(v) [S ∶G] = 6 with right cosets H0, H1, V, W0, W1 and le� cosets H0, H1, V, W0,

W1.

To each of the cosets in (i)–(v) a representative can be read oò from the formulas
in Lemmas 2.4 and 2.5. Subgroups of index 2 are always normal, hence their right and
le� cosets coincide. A further simple property of cosets is stated beforehand for the
sake of reference.

Lemma 3.2 If G, G′, S are groups and G ⊂ G′ ⊂ S, then a coset of G in S is either
contained in G′ or contained in S ∖G′.

Proof of_eorem 3.1 _e assertion is broken up in pieces which are dealt with one
by one.

(A) G, G ∪H, and G ∪ V are subgroups of S. It follows from (2.2) that A ↦ A−1

maps each of G, G ∪ H, and G ∪ V onto itself. _erefore it remains to show that a
product A1A2 ofmatrices in G, G ∪H, or G ∪V is again an element of G, G ∪H, or
G ∪V, respectively.

If A1 ,A2 ∈ G, then the sum of the components of A1A2 is

a1a2 + b1c2 + a1b2 + b1d2 + c1a2 + d1c2 + c1b2 + d1d2

= (a1 + c1)(a2 + b2) + (b1 + d1)(c2 + d2),

which is even according to (2.4), so A1A2 ∈ G by (2.3).
If A1 ,A2 ∈ G∪H, then A1A2 ∉ V and A1A2 ∉W. Hence A1A2 ∈ G∪H by_eorem

2.1.
If A1A2 ∈ G∪V, then A1A2 ∉ H and A1A2 ∉W. Hence A1A2 ∈ G∪V by _eorem

2.1.
(B) _e right and le� cosets ofG in S areH0 ,H1 ,V,W0 ,W1 andH0 ,H1 ,V,W0 ,W1,

respectively. It follows from _eorem 2.1 and (2.5) that S is the union of the pairwise
disjoint sets G, H0, H1, V,W0,W1. By (2.18), (2.19), and (2.12) they satisfy H0 = GP,
H1 = GP2, V = GQ, W0 = GQP, W1 = GQP2. Since G is a group, these 5 sets are
the right cosets of G in S. Similarly, H0 = P2G, H1 = PG, V = QG, W0 = P2QG,
W1 = PQG are the le� cosets of G in S.

(C) V ∪W is the coset of the subgroup G ∪H in S. _is follows from _eorem 2.1,
(2.12), and (2.17). It implies that there are no other subgroups containing G ∪H.

(D) If G′ is a group and G ⊂ G′ ⊂ S, then both H and V are either contained in
G′ or in S ∖ G′. _e alternatives V ⊂ G′ or V ⊂ S ∖ G′, H0 ⊂ G′ or H0 ⊂ S ∖ G′,
andH1 ⊂ G′ or H1 ⊂ S ∖G′ follow directly from (B) and Lemma 3.2. First of all, this
proves the assertion for V.

If H0 ⊂ G′, then P ∈ G′ by (2.7). Hence H1 = GP2 ⊂ G′ by (2.19) (a); similarly,
if H1 ⊂ G′, then P2 ∈ G′ by (2.8), Hence H0 = GP = −GP2P2 ⊂ G′ by (2.9) and
(2.18) (a). Hence the assertion is true also for H.

(E) If G′ is a group and G ⊂ G′ ⊂ S, then G′ = S or W ⊂ S ∖ G′. IfW ∩ G′ /= ∅,
then W0 ⊂ G′ or W1 ⊂ G′ by (B) and Lemma 3.2. IfW0 ⊂ G′, then it follows from
(2.13) that G′ ⊃ (W0)2 = H0QQH0 = −(H0)2. Hence P−1 = −P2 ∈ G′ by (2.7),Hence
P ∈ G′. _erefore H0 = GP ⊂ G′ by (2.18). If W1 ⊂ G′, then it follows from (2.14)
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that G′ ⊃ (W1)2 = H1QQH1 = −(H1)2. Hence −P4 ∈ G′ by (2.8). Hence P ∈ G′ by
(2.9) _erefore H1 = GP2 ⊂ G′ by (2.19). Because of (D), it follows in both cases that
H ⊂ G′. Hence G ∪H ⊂ G′. But then (C) andW ∩G′ /= ∅ imply that G′ = S.

(F) G, G ∪H, and G ∪V are the only subgroups of S containing G. By (D) and (E)
the sets G, G ∪H, G ∪ V, and G ∪H ∪ V are the only candidates. _e ûrst three are
indeed subgroups by (A), and the last drops out because of (C).

(G) It remains to prove (ii), (iii), and (iv).
(ii) _is follows from Lemma 2.5 (a) and (2.5).
(iii) From (2.18) and (2.19) it follows that (G ∪ V)P = H0 +W0 and (G ∪ V)P2 =

H1 +W1. From _eorem 2.1 and (2.5) it now follows that H0 +W0 andH1 +W1

are the right cosets of G ∪ V in S. Similarly, H0 +W0 and H1 +W1 are the le�
cosets.

(iv) _is follows from (2.12).

While subgroups of index 2 are always normal, the subgroups in (ii), (iii), and (v)
are not.

Corollary 3.3 G is neither normal in G ∪H nor in S; G ∪V is not normal in S.

Proof If G were normal in G ∪H, then AG = GA for every A ∈ G ∪H; moreover,
because of (2.12), we would have QAG = QGA = GQA for every A ∈ G ∪H. Since
every element of S belongs toG∪H or Q(G∪H), this shows thatGwere normal in S.

If G ∪V were normal in S, then A(G ∪V) = (G ∪V)A. Hence

AG ∪ AV = GA∪VA

for all A ∈ S. We sort the matrices on both sides according to their number of
ρ-factors. If A ∈ (G ∪H), then the matrices without a ρ-factor are those in AG and
GA, hence AG = GA. If A ∈ (V∪W), then thematrices with exactly one ρ-factor are
those in AG and GA, so AG = GA again. Since AG = GA for all A ∈ S, the subgroup
G was normal in S.

_erefore it is suõcient to show thatG is not normal in S. We assume the contrary.
_en S/G can be represented by the system of cosets of G, with themultiplication of
complexes as binary operation. By (2.13) and (2.14) we have W0 = GPQ and W1 =

GP2Q. Since by reason of our assumption G commutes with every element of S, we
obtain

(W0
)
2
= G(PQ)

2
= G(

0 i
i 0) = G and (W1

)
2
= G(P2Q)

2
= G(

0 1
−1 0) = G,

_ereforeW0 = GPQ andW1 = GP2Q have order 2 in S/G. Hence (W0)−1 = W0

and (W1)−1 = W1. From (2.13) and (2.14), it now follows that (H0)−1 = H0 and
(H1)−1 = H1. _erefore by (2.6), H0 = H0 and H1 = H1. _is implies that the parity
of the column sums matches that of the row sums for all elements of H, which, for
instance, is wrong for P and P2.
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4 Generators of S and Its Subgroups

We establish for each of the groups G, G ∪H, G ∪V, and S ûnite sets {A1 ,A2 , . . .} of
generators such that all elements of the group are products of positive powers of the
generators. _e group is then written ⟨A1 ,A2 , . . .⟩.
For this purpose we apply a reduction procedure advised by H. S. M. Coxeter [8,

Appendix] and used in [5, §2]; the most important step is the introduction of the
transformations C1 and C2 in (4.6) below. _e method does not deal directly with
the matrices A ∈ S, but rather with their four-dimensional counterparts LA in (1.2);
Unlike Coxeter and Lorente–Kramer, we avoid spatial re�ections.

4.1 Spatial Rotations

_e Lorentz transformations of the form LA = ( 1 0
0 DA

) correspond to the rotations of
R3. _enDA ∈ SO(3), and the LA of this kind build a subgroup 1⊕SO(3) of SO+

(1, 3).
We consider the group

R ∶= S ∩ {A ∶ LA ∈ 1⊕ SO(3)} = {A ∶ DA ∈ SO(3) ∩M(3,Z)}.

Clearly A↦ DA is a group homomorphism of R into SO(3) ∩M(3,Z).
We show ûrst that P ∈ H and Q ∈ V, deûned in (2.7) and (2.10), belong to R. From

P (
t + z x + iy
x − iy t − z ) P∗ ( t + x y + iz

y − iz t − x )

and (1.7), it follows that LP ∈ 1⊕ SO(3) and

DP =
⎛
⎜
⎝

0 1 0
0 0 1
1 0 0

⎞
⎟
⎠
.

Hence P ∈ R, and DP causes a rotation through 120○ about {(x , y, z) ∶ x = y = z}.
Furthermore,

Q (
t + z x + iy
x − iy t − z )Q∗

= (
t − z y + ix
y − ix t + z ) ,

so (1.7) shows that LQ ∈ 1⊕ SO(3) and

DQ =
⎛
⎜
⎝

0 1 0
1 0 0
0 0 −1

⎞
⎟
⎠
.

Hence Q ∈ R, and LQ causes a rotation through 180○ about {(x , y, z) ∶ x = y, z = 0}.

Lemma 4.1 R = ⟨P,Q⟩.

Proof Because of the orthogonality, each row and column of amatrix D ∈ SO(3) ∩
M(3,Z) contains two 0’s and one entry from {−1, 1}. HenceD is a permutationmatrix
if the signs are ignored. By virtue of detD = 1 the number of minus signs is even, if
the permutation is even, and odd otherwise. So all elements of SO(3) ∩M(3,Z) are
obtained from the six permutation matrices and the allocation of none or two minus
signs in the matrices of the even and one or three minus signs in those of the odd
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permutations. It follows that SO(3)∩M(3,Z) has 24 elements and is the same as the
cube or octahedral group. On the other hand, if the 8matrices

DI =
⎛
⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟
⎠
, DQP2QP =

⎛
⎜
⎝

0 0 1
−1 0 0
0 −1 0

⎞
⎟
⎠
, DQPQP2 =

⎛
⎜
⎝

0 −1 0
0 0 1
−1 0 0

⎞
⎟
⎠
,(4.1)

DP2QPQ =
⎛
⎜
⎝

0 −1 0
0 0 1
−1 0 0

⎞
⎟
⎠
, DQ =

⎛
⎜
⎝

0 1 0
1 0 0
0 0 −1

⎞
⎟
⎠
, DP2QP =

⎛
⎜
⎝

−1 0 0
0 0 1
0 1 0

⎞
⎟
⎠
,

DPQP2 =
⎛
⎜
⎝

0 0 1
0 −1 0
1 0 0

⎞
⎟
⎠
, DQP2QPQ =

⎛
⎜
⎝

0 0 −1
0 −1 0
−1 0 0

⎞
⎟
⎠

are multiplied from the right with DI , DP and DP2 , we obtain 24 diòerent matrices.
_erefore DP and DQ generate SO(3) ∩M(3,Z).

Lemma 4.2 R ∩G = ⟨B1 , B2⟩.

Proof Let A ∈ R ∩ G. Since LA ∈ 1 ⊕ SO(3), it follows from (1.3) that ∣a∣2 + ∣b∣2 +
∣c∣2 + ∣d∣2 = 2. Since a, b, c, d ∈ Z[i], the components of one diagonal of A are units of
Z[i] and therefore have the form ik and il (k, l ∈ {0, 1, 2, 3, }), and the components of
the other diagonal are 0. If the non-zero elements are in themain diagonal, then the
condition 1 = detA = ik+l gives k = l = 0 or k = 1, l = 3 or k = l = 2, or k = 3, l = 1.
_e corresponding matrices are ±B0 and ±B1, where

B0 ∶= I = (
1 0
0 1) , B1 ∶= (

i 0
0 −i) .

If the non-zero elements are in the secondary diagonal, then 1 = detA = −ik+l gives
k = 0, l = 2 or k = 1, l = 1 or k = 2, l = 0, or k = 3, l = 3. _e corresponding matrices
are ±B2 and ±B3, where

B2 ∶= (
0 −1
1 0 ) , B3 ∶= (

0 i
i 0) .

_ematrices Z j ∶= LB j ( j = 0, 1, 2, 3) are
(4.2)
Z0 = I, Z1 = diag(1,−1,−1, 1), Z2 = diag(1,−1, 1,−1), Z3 = diag(1, 1,−1,−1).

_erefore B j ∈ R for j = 0, 1, 2, 3. Hence R ∩ G = {±B0 ,±B1 ,±B2 ,±B3 , }. Now the
assertion follows from B3 = B3

1B2. Since B2
j = −I for j = 1, 2, 3, the group R ∩G is not

cyclic, so at least two generators are necessary.

Lemma 4.3 R ∩ (G ∪H) = ⟨P, B2⟩.

Proof We refer to the proof of Lemma 4.1 and consider the two possibilities for the
elements ofR. _e products ofDI ,DP ,DP2 with the last fourmatrices in (4.1) have the
form DA where A is a product of P-factors and an odd number of Q-factors. Hence
the entries of A are rational multiples of ρ, so A cannot belong to G ∪H. Each of the
products of DI , DP , DP2 with the ûrst four matrices in (4.1) has none or two entries
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equal to −1. _ey produce Lorentz transformations in 1 ⊕ SO(3) which arise from
even 3 × 3 permutation matrices through the allocation of none or two minus signs;
therefore they have representations as products of DP- and Z2-factors. Hence they
have the form LA with A ∈ G ∪H.

4.2 The Reduction Procedure

A�er these preparations we can construct generators for the groups considered in
_eorem 3.1.

_eorem 4.4 _e group G is generated by

V ∶= (
1 1 + i
0 1 ) , V ∶= (

1 1 − i
0 1 ) , B1 = (

i 0
0 −i) , B2 = (

0 −1
1 0 ) ,(4.3)

i.e.,

G = ⟨V ,V , B1 , B2⟩.(4.4)

Proof _ematrices V and V belong to G and

(4.5) LV =

⎛
⎜
⎜
⎜
⎝

2 1 1 −1
1 1 0 −1
1 0 1 −1
1 1 1 0

⎞
⎟
⎟
⎟
⎠

, LV =

⎛
⎜
⎜
⎜
⎝

2 1 −1 −1
1 1 0 −1
−1 0 1 1
1 1 −1 0

⎞
⎟
⎟
⎟
⎠

.

Let

C1 ∶= LVZ1 = LVB1 =

⎛
⎜
⎜
⎜
⎝

2 −1 −1 −1
1 −1 0 −1
1 0 −1 −1
1 −1 −1 0

⎞
⎟
⎟
⎟
⎠

,(4.6)

C2 ∶= LVZ3 = LVB3
=

⎛
⎜
⎜
⎜
⎝

2 1 1 1
1 1 0 1
−1 0 −1 −1
1 1 1 0

⎞
⎟
⎟
⎟
⎠

.

For A ∈ G we write

LA =
⎛
⎜
⎜
⎜
⎝

α є ζ η
β ∗ ∗ ∗

γ ∗ ∗ ∗

δ ∗ ∗ ∗

⎞
⎟
⎟
⎟
⎠

.

_en

(4.7) α2
− β2

− γ2
− δ2

= α2
− є2 − ζ2

− η2
= 1.

It is seen from (1.3) that α > 0. If α = 1, then LA ∈ 1⊕ SO(3) and A ∈ R. Now let α > 1.
We multiply LA from the le� with a suitable matrix Zk from (4.2) such that the

second, third, and fourth elements in the ûrst column of ZkLA have the same sign
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and obtain

(4.8) ZkLA = LBkA =

⎛
⎜
⎜
⎜
⎝

α є ζ η
β′ ∗ ∗ ∗

γ′ ∗ ∗ ∗

δ′ ∗ ∗ ∗

⎞
⎟
⎟
⎟
⎠

,

where
(i) β′ ≥ 0, γ′ ≥ 0, δ′ ≥ 0 or
(ii) β′ ≤ 0, γ′ ≤ 0, δ′ ≤ 0.
In case (i), we consider

(4.9) C1LBkA = LVB1BkA =

⎛
⎜
⎜
⎜
⎝

2α − β′ − γ′ − δ′ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

⎞
⎟
⎟
⎟
⎠

,

and in case (ii)

(4.10) C2LBkA = LVB3BkA =

⎛
⎜
⎜
⎜
⎝

2α + β′ + γ′ + δ′ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

⎞
⎟
⎟
⎟
⎠

.

Because of (4.7) we have α2 − β′2 − γ′2 − δ′2 = α2 − β2 − γ2 − δ2 = 1. _erefore in (4.9)
and (4.10) at least two of the numbers α′ , β′ , γ′ are diòerent from 0, so in both cases
at least one of the products α′β′, β′γ′, γ′α′ is positive. It follows that

(α + β′ + γ′ + δ′)(α − β′ − γ′ − δ′) = 1 − 2α′β′ − 2β′γ′ − 2γ′α′ < 0.

_erefore α−β′−γ′−δ′ < 0 and 2α−β′−γ′−δ′ < α in case (i), and α+β′+γ′+δ′ < 0
and 2α + β′ + γ′ + δ′ < α in case (ii).

In both cases a product S1 of factors from {B1 , B2 , B3 ,V ,V} ⊂ G was found such
that the element in the ûrst row and columnof LS1A is smaller than that of LA. Contin-
uing in thiswaywe construct LS2S1A, LS3S2S1A, etc., until a�er n steps this element is re-
duced to 1. If A ∈ G, then LSn ⋅⋅⋅S1A ∈ R and Sn ⋅ ⋅ ⋅ S1A ∈ G. Hence Sn ⋅ ⋅ ⋅ S1A ∈ 1⊕SO(3),
A ∈ S−1

1 ⋅ ⋅ ⋅ S−1
n (1⊕ SO(3)), so by Lemma 4.2 and the structure of the Sν , A is a prod-

uct of factors of the form B1, B2, B−1
1 , B−1

2 , B−1
3 , V−1, V−1

. By means of B−1
1 = B3

1 ,
B−1

2 = B2
1 B2, B−1

3 = B1B2, V−1 = B3
1VB1, V

−1
= B3

1VB1, and −I = B2
1 we can eliminate

the inverses and possible negative signs and replace them with products of positive
powers of B1, B2, V , and V . _is proves (4.4).

_eorem 4.5 _e group G ∪H is generated by

V = (
1 1 + i
0 1 ) , V = (

1 1 − i
0 1 ) , B2 ∶= (

0 −1
1 0 ) ,

P = (
(1 − i)/2 (1 − i)/2
−(1 + i)/2 (1 + i)/2) ,

i.e.,
(4.11) G ∪H = ⟨V ,V , B2 , P⟩.
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Proof Let A ∈ G∪H. Wemust apply the reduction procedure oncemore. _e proof
is the same as for _eorem 4.4, except that we admit LP as an additional multiplier in
the step leading to (4.8). Due to B1 , B3 ∈ ⟨P, B2⟩, according to Lemma 4.3, besides LP
only Z2 is necessary to reach (i) or (ii).

_e multipliers Sν belong to ⟨V ,V , B2 , P⟩. In the ûnal step of the recursion we
arrive at LSn ⋅⋅⋅S1A ∈ R and Sn ⋅ ⋅ ⋅ S1A ∈ G ∪ H. By Lemma 4.3, Sn ⋅ ⋅ ⋅ S1A ∈ ⟨P, B2⟩.
Hence A ∈ S−1

1 ⋅ ⋅ ⋅ S−1
n ⟨P, B2⟩, so A is a product of factors B1, B−1

1 , P, P2, V−1, and V−1
.

By means of B−1
1 = B3

1 , V−1 = B3
1VB1, V

−1
= B3

1VB1, −I = B2
1 , and B1 = PB2P−1 we

eliminate the inverses and negative signs and replace them with products of positive
powers of B2, V , V , and P. _is proves (4.11).

_eorem 4.6 _e group G ∪V is generated by

V = (
1 1 + i
0 1 ) , V = (

1 1 − i
0 1 ) , B2 ∶= (

0 −1
1 0 ) ,

Q = (
0 −(1 − i)/

√
2

(1 + i)/
√

2 0
) ,

i.e., G ∪V = ⟨V ,V , B2 ,Q⟩.

Proof _is follows from (2.12),_eorem 4.4, and B1 = (B2Q)2.

_eorem 4.7 _e group S is generated by

V = (
1 1 + i
0 1 ) , P = (

(1 − i)/2 (1 − i)/2
−(1 + i)/2 (1 + i)/2) , Q = (

0 −(1 − i)/
√

2
(1 + i)/

√
2 0

) ,

i.e., S = ⟨V , P,Q⟩.

Remarks (1)Only three generators are suõcient,whereas four seem to benecessary
if re�ections are allowed (cf. the transformations S1 , S2 , S3 , S4 in [5, §2]).

(2) While the generators P and Q are rotations which leave the time axis ûxed, V
incorporates a boost, as we show in the following section.

Proof of_eorem 4.7 Similarly to the proofs of _eorem 4.4 and 4.5, we must re-
sort to the reduction procedure. _is time we have the multipliers LP and LQ at our
disposal for the step leading to (4.8). With them we can always reach case (i) in (4.8),
so thematrixC2 isnotneeded. _emultipliers Sν belong to ⟨V , P,Q⟩. In the ûnal step
we arrive at LSn ⋅⋅⋅S1A ∈ 1⊕SO(3). Hence Sn ⋅ ⋅ ⋅ S1A ∈ R. FromLemma 4.1 it follows that
A ∈ S−1

1 ⋅ ⋅ ⋅ S−1
n ⟨P,Q⟩, so A is a product of factors P, P2, Q, and V−1 = B3

1VB1. Since
B1 ∈ R = ⟨P,Q⟩, we can write A as a product of positive powers of P, Q, and V .

5 Decompositions in Boost and Rotation

A restrictedLorentz transformation can be decomposed into a boost and a subsequent
rotation or the otherway round, in each case in a uniquemanner [3, Chapter 7-2]. For
a boost, thematrix A in (1.2) is Hermitian and for a rotation, it is unitary [7, §1.2]. To
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dealwith the general situation in other cases, it is convenient to refer to the kinematic
representation of Lorentz transformations. If LA is deûned as in (1.7) and the 4 × 4
matrices are written in (1, 3)-block form, then
(5.1)

LA = L(v⃗ ,D) ∶= (
1 0
0 D)

⎛
⎜
⎝

γ −γv⃗ ⊺⊺⊺

−γv⃗ I + (γ − 1)
v⃗ v⃗ ⊺⊺⊺

v2

⎞
⎟
⎠
=
⎛
⎜
⎝

γ −γv⃗ ⊺⊺⊺

−γu⃗ D + (γ − 1)
u⃗ v⃗ ⊺⊺⊺

v2

⎞
⎟
⎠
,

where γ = 1√
1−v2 . _is is the concatenation of a boost and a spatial rotation. _e 3-

vector v⃗ is the velocity of the primed system with respect to the unprimed according
to (1.7), and v =

√
∣v⃗∣2. _e 3× 3 matrix D is orthogonal with detD = 1. Furthermore,

u⃗ = Dv⃗.
If the range of Lorentz transformations is conûned to integral transformations,

then the 24 matrices in R produce all possible rotations, so R is equal to the set of
unitary matrices in S. Furthermore, there is an inûnite set of Hermitian matrices
which produce boosts with integer components, e.g., thematrices in G, given by

A(p, q) = (
p2 + q2 + 1 p + iq

p − iq 1 ) , p, q ∈ Z both even or both odd.

Nevertheless, in contrast to the situation for general restricted Lorentz transfor-
mations, it is not possible to write every matrix in S as the product of a Hermitian
matrix and a unitarymatrix. An example is LV , displayed in (4.5),where V is deûned
in (4.3). We compare it with the kinematic form analogous to (5.1).

_e ansatz LV = L(v⃗ ,D) leads to γ = 2. Hence v = 1
2

√
3 and

LV = (
2 −2v⃗ ⊺⊺⊺

−2u⃗ D + 4
3 u⃗ v⃗

⊺⊺⊺) .

_erefore v⃗ ⊺⊺⊺ = (− 1
2 ,−

1
2 ,

1
2 ), u⃗

⊺⊺⊺

= (− 1
2 ,−

1
2 ,−

1
2 ) and

D =
⎛
⎜
⎝

1 0 −1
0 1 −1
1 1 0

⎞
⎟
⎠
−

1
3

⎛
⎜
⎝

1 1 −1
1 1 −1
1 1 −1

⎞
⎟
⎠
=
⎛
⎜
⎝

2/3 −1/3 −2/3
−1/3 2/3 −2/3
2/3 2/3 1/3

⎞
⎟
⎠
.

_en D is orthogonal and detD = 1, as expected; since (1,−1, 0)⊺⊺⊺ is a ûxed point of
D, it causes a rotation about the axis {(x , y, z) ∶ y = −x , z = 0}. _e decomposition
in (5.1) is

LV =

⎛
⎜
⎜
⎜
⎝

1 0 0 0
0 2/3 −1/3 −2/3
0 −1/3 2/3 −2/3
0 2/3 2/3 1/3

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

2 1 1 −1
1 4/3 1/3 −1/3
1 1/3 4/3 −1/3
−1 −1/3 −1/3 4/3

⎞
⎟
⎟
⎟
⎠

.

None of the factors is in S, i.e., the uniquely determined factors in the decomposition
of LV in boost and rotation are not matrices with integer components.

6 Relation to the Picard Group

_e group G consists of those elements of SL(2,Z[i]) which via A ↦ LA generate
integral Lorentz transformations; SL(2,Z[i])will be referred to as a Picard group. _e

https://doi.org/10.4153/CMB-2016-084-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-084-8


On the Structure of the Schild Group in Relativity _eory 789

use of this term is not uniform; sometimes it stands for PSL(2,Z[i]), for instance, in
[2], where the subgroups of PSL(2,Z[i]) are extensively studied. For our subject this
distinction is inessential.

Let A ∈ SL(2,Z[i]). From 1 = detA ≡ π(a)π(d)−π(b)π(c) it follows that exactly
three components of A are odd, or themembers of one diagonal are odd and those of
the other even. We call A1 ,A2 ∈ SL(2,Z[i]) congruent if homologous components
have the same parity (see subsection 1.1). _en A is congruent to exactly one of the
six matrices

K0 ∶= I, K1 ∶= (
0 i
i 0) , K2 = (

1 1
0 1) , K3 = K1K2 = (

0 i
i i) ,

K4 ∶= K2K1 = (
i i
i 0) , K5 ∶= K1 K2K1 = −(

1 0
1 1) .

_is decomposes SL(2,Z[i]) into six disjoint classes K j ( j = 0, 1, 2, 3, 4, 5) such that
every A ∈ K j has a representation

(6.1) A = (1 + i)A′ + K j

with A′ ∈ M(2,Z[i]) and uniquely determined j ∈ {0, 1, 2, 3, 4, 5}.

Lemma 6.1 (see [2,_eorem 2 (3)]) K0 is a normal subgroup of SL(2,Z[i]) of index
6 with cosets K1 ,K2 ,K3 ,K4 ,K5. _e factor group is the non-cyclic group of order 6. It
has the cyclic subgroup {K0 ,K3 ,K4}; furthermore, K2

1 = K2
2 = K2

5 = K0.

Proof It is evident thatK0 is a subgroup of SL(2,Z[i]). Since each of the expressions
K0, −K2

1 , 2K2 −K2
2 , iK3 −K2

3 , iK4 −K2
4 , and −2K5 −K2

5 represents the identitymatrix
I, we can factor out K j in (6.1) to the right or to the le� and obtain A ∈ K0K j and
A ∈ K jK0. Since this holds for every A ∈ K j , it follows that K jK0 = K0K j , i.e., for each
j the right coset of K0 with respect to K j coincides with the le� coset with respect to
K j and is equal to K j . _erefore K0 is normal. _e factor group SL(2,Z[i])/K0 can
be represented by the systemof cosets,with themultiplication of complexes as binary
operation.

_eorem 6.2 K0 is a subgroup of index 2 in G; G is a subgroup of index 3 in
SL(2,Z[i]),

but not a normal subgroup.

Proof If A ∈ G, then ∥A∥2 must be even. Hence π(a)+π(b)+π(c)+π(d) = 0. _is
is impossible with three odd components, so j = 0 or j = 1 in (6.1) and G = K0 ∪ K1,
in accordance with (2.4). _e ûrst assertion now follows from K1 = K0K1.

With K1K2 = K3, K2K1 = K4, and K1K2K1 = K5, we obtain further

GK2 = K0K2 ∪K1K2 = K0K2 ∪K0K1K2 = K2 ∪K3 ,
GK2K1 = K0K2K1 ∪K0K1K2K1 = K4 ∪K5 .

_e three sets G,GK2, andGK2K1 are disjoint. Hence theymake up a decomposition
of SL(2,Z[i]) into the subgroup G and its right cosets with respect to K2 and K2K1
(these are also representatives of the le� cosets). It follows that [SL(2,Z[i]) ∶ G] = 3.
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However, G is not a normal subgroup, for otherwise the factor group would be the
cyclic group of order 3, and (K2K1)K2 = ( 1 2

1 1 ) would have been an element of G,
which is not true.

Actually SL(2,Z[i]) does not have normal subgroups of index 3 at all [2, Proposi-
tion 1].
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