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An Isospectral Deformation on an
Infranil-Orbifold

Emily Proctor and Elizabeth Stanhope

Abstract. We construct a Laplace isospectral deformation of metrics on an orbifold quotient of a nil-

manifold. Each orbifold in the deformation contains singular points with order two isotropy. Isospec-

trality is obtained by modifying a generalization of Sunada’s theorem due to DeTurck and Gordon.

1 Introduction

A Riemannian orbifold (see [11,12]) is a mildly singular generalization of a Rieman-

nian manifold. For example, the quotient space of a Riemannian manifold under an

isometric, properly discontinuous group action is a Riemannian orbifold [16]. First

defined in 1956 by I. Satake, orbifolds have proven useful in many settings including

the theory of 3-manifolds, symplectic geometry, and string theory.

The local structure of a Riemannian orbifold is given by the orbit space of a Rie-

mannian manifold under the isometric action of a finite group. If a point p in the

manifold is fixed under a nontrivial group action, the corresponding element of the

orbit space p̄ is called a singular point of the orbifold. The isotropy type of a point p̄

in the orbit space is the isomorphism class of the isotropy group of a point p in the

manifold that projects to p̄ under the quotient. The singular set of an orbifold is the

set of all singular points of the orbifold.

The tools of spectral geometry can be transferred to the setting of Riemannian

orbifolds by exploiting the well-behaved local structure of these spaces (see [3, 14]).

Given a smooth function f on an orbifold O, the Laplacian of f is computed by

taking the Laplacian of lifts of f in the orbifold’s local coverings. As in the manifold

setting, the eigenvalue spectrum of the Laplace operator of a compact Riemannian

orbifold is a sequence 0 ≤ λ0 ≤ λ1 ≤ λ2 ≤ · · · → +∞ where each eigenvalue has

finite multiplicity. We say that two orbifolds are isospectral if their Laplace spectra

agree.

In this note we show that the formulation of Sunada’s Theorem found in [4] can

be used to obtain isospectral deformations on Riemannian orbifolds with nontrivial

singular sets. We prove this fact in Section 2 by observing that the proof of Theo-

rem 2.7 in [4] does not require that the action of the discrete subgroup Γ be free.

In Section 3 we display an example of an isospectral deformation of metrics on an

orbifold quotient of a nilmanifold.

The only other known examples of non-manifold isospectral deformations on

orbifolds were recently obtained by Sutton using a blend of the torus action method
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and the Sunada technique [15]. Other examples of non-manifold isospectral orb-

ifolds include pairs with boundary in [1] and [2]; isospectral flat 2-orbifolds that

are not conjugate (in terms of lengths of closed geodesics) [6]; a (2m)-manifold iso-

spectral to a (2m)-orbifold on m-forms [7]; pairs of isospectral orbifolds for which

the maximal isotropy groups have different orders [10]; and arbitrarily large finite

families of isospectral orbifolds [13].

2 Isospectral Deformations on Orbifolds

In this section we observe that the generalization of Sunada’s method found in [4]

can be further generalized to include isospectral deformations of metrics on orb-

ifolds. In what follows we will assume that G is a Lie group with simply connected

identity component G0. We let Γ be a discrete subgroup of G such that G = ΓG0 and

(G0 ∩ Γ)\G0 is compact.

Given an automorphism Φ : G → G, we say that Φ is an almost-inner automor-

phism if, for each x ∈ G, there exists an element a ∈ G such that Φ(x) = axa−1.

More generally, if Φ : G → G is an automorphism such that for each γ ∈ Γ there

exists a ∈ G satisfying Φ(γ) = aγa−1, we say that Φ is an almost-inner automorphism

of G relative to Γ. We denote the set of all almost-inner automorphisms of G (resp.

almost-inner automorphisms of G with respect to Γ) by AIA(G) (resp. AIA(G; Γ)).

We have the following theorem.

Theorem 2.1 ([4]) Let G, G0, and Γ be as above with G0 nilpotent, and let Φ ∈
AIA(G; Γ). Suppose that G acts effectively and properly discontinuously on the left by

isometries on a Riemannian manifold (M, g) and that Γ acts freely on M with Γ\M

compact. Then, letting g denote the submersion metric, (Φ(Γ)\M, g) is isospectral to

(Γ\M, g).

The proof of Theorem 2.1 is based on work by Donnelly in [5] concerning the

existence of a heat kernel on a manifold M that admits a properly discontinuous (but

not necessarily free) action by a group Γ. Donnelly shows that if Γ\M is compact,

then there exists a unique heat kernel on M. Furthermore, Donnelly gives the follow-

ing relationship between the heat kernels on M and on Γ\M.

Theorem 2.2 ([5]) Let Γ act properly discontinuously on M with compact quotient

M = Γ\M. Suppose that F is a fundamental domain for Γ\M. If x̄, ȳ ∈ M, then set

E(t, x̄, ȳ) =

∑
γ∈Γ

E(t, x, γ · y),

where x, y ∈ F, x̄ = π(x), and ȳ = π(y). If E is the heat kernel of M, the sum on the

right converges uniformly on [t1, t2] × F × F, 0 < t1 ≤ t2, to the heat kernel on M.

Notice that since the action of Γ need not be free, the quotient space M may not

be a manifold.

Theorem 2.1 relies on the fact that two manifolds (M1, g1) and (M2, g2) are iso-

spectral if and only if they have the same heat trace, i.e.,∫
M1

E1(t, x, x) dx =

∫
M2

E2(t, x, x) dx,
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where Ei denotes the heat kernel on Mi . In particular, the proof uses Theorem 2.2

to pull the heat trace back from the quotient Γ\M to the cover M in order to use

combinatorial arguments to reexpress the heat trace on Γ\M. The new expression

of the heat trace makes it evident that, when comparing the heat trace of (Γ\M, g)

with the heat trace of (Φ(Γ)\M, g), if certain volumes (which depend only on Γ and

Φ(Γ)) are equal, then the respective heat traces are equal. DeTurck and Gordon show

that when Φ is an almost-inner automorphism, these volumes are in fact equal, and

hence (Γ\M, g) and (Φ(Γ)\M, g) are isospectral.

We note that, as with Theorem 2.2, the proof of Theorem 2.1 does not rely on the

freeness of the action of Γ on M. Therefore we make the following generalization of

Sunada’s theorem.

Theorem 2.3 Suppose that G, G0, and Γ are as above and G0 is nilpotent. Suppose

that G acts effectively and properly discontinuously on the left by isometries on (M, g)

with Γ\M compact. Let Φ ∈ AIA(G; Γ). Then, letting g denote the submersion metric,

the quotient orbifolds (Γ\M, g) and (Φ(Γ)\M, g) are isospectral.

3 Examples

Now we apply Theorem 2.3 to give an example of a nontrivial isospectral deformation

on an orbifold. We first note the following.

Lemma 3.1 Suppose that G is a Lie group and that Γ is a uniform discrete subgroup

of G. Suppose that G acts on M on the left by isometries. If Φ is an automorphism of

G and G acts on M in such a way that there exists a diffeomorphism Ψ of M satisfying

Ψ(a · x) = Φ(a) · Ψ(x) for all a ∈ G and x ∈ M, then (Γ\M,Ψ∗g) is isometric to

(Φ(Γ)\M, g).

Proof First, notice that if g is a metric on M and Ψ : M → M is a diffeomorphism,

then, by design, Ψ : (M,Ψ∗g) → (M, g) is an isometry. Furthermore, if G acts on

(M, g) by isometries, then Φ(Γ), which is a subgroup of G, also acts on (M, g) by

isometries. Since Ψ(a · x) = Φ(a) ·Ψ(x) for all a ∈ G and x ∈ M, Γ acts on (M,Ψ∗g)

by isometries. Thus we may consider the Riemannian manifolds (Φ(Γ)\M, g) and

(Γ\M,Ψ∗g), where g and Ψ
∗g denote submersion metrics.

Consider the map Ψ̄ : (Γ\M,Ψ∗g) → (Φ(Γ)\M, g) given by

Ψ̄( p̄) = πΦ(Γ) ◦ Ψ ◦ π−1
Γ

( p̄),

where πΦ(Γ) and πΓ denote the natural projection maps. Since Ψ(a · x) = Φ(a) ·Ψ(x)

for all a ∈ G and x ∈ M, this map is well defined and bijective. By the definitions of

the submersion metric and pullback metric, Ψ̄ is an isometry.

Applying Theorem 2.3 in conjunction with Lemma 3.1 will allow us to produce an

isospectral deformation on a fixed orbifold Γ\M. Theorem 2.3 gives isospectral met-

rics on two distinct orbifolds Γ\M and Φ(Γ)\M. We will ultimately use Lemma 3.1

to convert to a pair of isospectral metrics on a fixed orbifold, Γ\M.

In [4, Appendix B], K. B. Lee translates Theorem 2.1 to the setting of infranil-

manifolds. For a group G we have that Aut(G) ⋉ G acts on G by (φ, g) · h = gφ(h).
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Consider the case when G is a simply connected nilpotent Lie group and Γ is a uni-

form discrete subgroup of G. Take Π to be a finite extension of Γ in Aut(G) ⋉ G. If

the action of Π on G is free, then Π\G is an infranilmanifold. Lee observes that by

setting Γ, G0, and G from Theorem 2.1 equal to Π, G, and ΠG, and assuming that the

action of Π on G is free, we can find isospectral deformations on infranilmanifolds.

We note that a priori, the action of Π on G need not be free. Thus by working in this

setting we introduce the possibility of finding isospectral orbifold quotients of G.

Lee gives a specific example to illustrate his case. His example is based on a similar

example found in [8].

Let G be the Lie group {(x1, x2, y1, y2, z1, z2)|xi , yi , zi ∈ R}, where group multi-

plication is defined by

(x1, . . . , z2)(x ′

1, . . . z ′2)

= (x1 + x ′

1, . . . , y2 + y ′

2, z1 + z ′1 + x1 y ′

1 + x2 y ′

2, z2 + z ′2 + x1 y ′

2).

Suppose that Γ is the integer lattice in G and define Φt : G → G by

Φt (x1, x2, y1, y2, z1, z2) = (x1, x2, y1, y2, z1, z2 + t y2),

where t ∈ [0, 1). In the original example Gordon and Wilson show that each Φt is an

almost-inner automorphism so, applying Lemma 3.1 (with Ψ = Φt ), the family Φt ,

t ∈ [0, 1), gives rise to an isospectral deformation on Γ\G. They also show that the

deformation is nontrivial.

In his example, Lee defines α ∈ Aut(G) ⋉ G by

α(x1, x2, y1, y2, z1, z2) = (x1, x2,−y1,−y2,−z1,−z2 + 1
2
)

and lets Π = Γ ∪ αΓ. Since α commutes with Φt for all t , we can extend each Φt to

an element Φ̃t of AIA(ΠG; Π). If g is a ΠG-invariant metric on G, then for each t ,

(Φ̃t (Π)\G, g) is isospectral to (Π\G, g).

Lee implicitly assumed that the action of Π on G is free. However, we can see by

closer inspection that the action of Π on G is not free. For example, any point of

the form (x1, x2, 0, 0, 0, 1
4
) is fixed by α ∈ Π. In fact the set of all fixed points of the

action of Π on G is:

{(x1, x2, y1, y2, z1, z2) ∈ R
6 | x1, x2 ∈ R, y1, y2, z1 ∈

1
2

Z, z2 =
n
2

+ 1
4
},

where n is any integer. The isotropy group of a point in this set has the form

{1, (φ, (0, 0, 2y1, 2y2, 2z1, 2z2))},

where φ(x1, x2, y1, y2, z1, z2) = (x1, x2,−y1,−y2,−z1,−z2). So we see that Π\G is

an orbifold containing singular points with Z2 isotropy type. Thus Lee’s example is

an illustration of Theorem 2.3. After applying Lemma 3.1 with Ψ = Φt and Φ = Φ̃t ,

we have an isospectral deformation of metrics on the orbifold Π\G.
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This example is a nontrivial deformation. Indeed, suppose that τ : (Π\G, g) →
(Π\G,Φ∗

t g) is an isometry. Then because G is simply connected and Π is discrete, G

is the universal cover of Π\G. Thus τ lifts to an isometry, also called τ from (G, g)

to (G,Φ∗

t g). Since G is a nilpotent Lie group, τ must be an element of Aut(G) ⋉ G

(see [9]). Furthermore, because τ is a lift, we have that τ ◦ Π ◦ τ−1
= Π within the

transformation group Aut(G) ⋉ G. On the other hand, G is normal in Aut(G) ⋉ G,

so conjugation by τ maps G to itself. Therefore, conjugation by τ leaves Γ invariant.

This implies that τ must descend to an isometry τ : (Γ\G, g) → (Γ\G,Φ∗

t g). How-

ever, from [8] we know that no such isometry can exist. Thus (Π\G, g) cannot be

isometric to (Π\G,Φ∗

t g).

Note that Lee’s example can be modified to produce examples of isospectral de-

formations on manifolds. For example, suppose that we define β : G → G by

β(x1, x2, y1, y2, z1, z2) = (x1, x2, y1, y2,−z1, z2 + 1
2
).

Letting Π
′
= Γ∪βΓ, we see that since β2 is simply translation by (0, 0, 0, 0, 0, 1), Π ′

is a finite extension of Γ. Since β commutes with the maps Φt defined above, we can

extend each Φt to an element Φ̃t of AIA(Π ′G; Π ′). Finally by direct computation we

can see that the action of Π
′ on G has no fixed points.

Notice that the manifold Π
′\G is nonorientable. Indeed, if Π

′\G were orientable,

it would possess a nonvanishing orientation form. This form would have to lift to a

Π
′-invariant nonvanishing orientation form on G. However, the fact that the deter-

minant of the Jacobian of β ∈ Π
′ is negative makes this impossible.

On the other hand, suppose that

γ(x1, x2, y1, y2, z1, z2) = (−x1, x2,−y1, y2, z1 + 1
2
, z2 + 1

2
).

Then we see that γ2 is translation by (0, 0, 0, 0, 1, 1). Letting Π
′ ′ be the group gen-

erated by Γ and γ, and using the same reasoning as above, we find an isospectral

deformation on the orientable manifold Π
′ ′\G.

Thus we have isospectral deformations of metrics on manifolds. The proof that

the deformations are nontrivial is identical to the one given above.
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