Properties
 of the \mathcal{M}-Harmonic Conjugate Operator

Jaesung Lee and Kyung Soo Rim

Abstract. We define the \mathcal{M}-harmonic conjugate operator K and prove that it is bounded on the nonisotropic Lipschitz space and on BMO. Then we show K maps Dini functions into the space of continuous functions on the unit sphere. We also prove the boundedness and compactness properties of \mathcal{M}-harmonic conjugate operator with L^{p} symbol.

1 Introduction

Let B be the unit ball of \mathbb{C}^{n} with norm $|z|=\langle z, z\rangle^{1 / 2}$ where \langle,$\rangle is the Hermitian inner$ product, S be the unit sphere and σ be the rotation-invariant probability measure on S as we follow standard notations of [5] throughout the paper. For $z \in B, \xi \in S$, we define the kernel $K(z, \xi)$ by

$$
i K(z, \xi)=2 C(z, \xi)-P(z, \xi)-1
$$

where $C(z, \xi)=(1-\langle z, \xi\rangle)^{-n}$ is the Cauchy kernel and $P(z, \xi)=\left(1-|z|^{2}\right)^{n}$. $|1-\langle z, \xi\rangle|^{-2 n}$ is the invariant Poisson kernel. For each $\xi \in S$, the kernel $K(, \xi)$ is \mathcal{M}-harmonic. And for all $f \in A(B)$, the ball algebra, such that $f(0)$ is real, the reproducing property of $2 C(z, \xi)-1$ (3.2.5 of [5]) gives

$$
\int_{S} K(z, \xi) \operatorname{Re} f(\xi) d \sigma(\xi)=-i(f(z)-\operatorname{Re} f(z))=\operatorname{Im} f(z)
$$

For that reason we call $K(z, \xi)$ the \mathcal{M}-harmonic conjugate kernel.
For $f \in L^{1}(S)$, we define $K f$ on S by

$$
(K f)(\zeta)=\lim _{r \rightarrow 1} \int_{S} K(r \zeta, \xi) f(\xi) d \sigma(\xi)
$$

Since the limit exists almost everywhere (6.2.3 of [5]), $K f$ is well defined on S and we call $K f$ the \mathcal{M}-harmonic conjugate function of f. For $n=1$, the definition of $K f$ is the same as the classical harmonic conjugate function ([1], [2]). Many properties of \mathcal{M}-harmonic conjugate function come from those of Cauchy integral and invariant Poisson integral. Indeed the following properties of $K f$ follow directly from Chapters 5 and 6 of [5].

Received by the editors April 18, 2001; revised February 1, 2002.
The first author was partially supported by KOSEF (ABRL) R14-2002-044-01001-0(2002) and Sogang University Special Research Grant in 2001.

AMS subject classification: Primary: 32A70; secondary: 47G10.
Keywords: \mathcal{M}-harmonic conjugate operator.
(c)Canadian Mathematical Society 2003.

1. K is of weak type $(1,1)$ and bounded on $L^{p}(S)$ for $1<p<\infty$.
2. If $f \in L^{1}(S)$, then $K f \in L^{p}(S)$ for all $0<p<1$.
3. If $f \in L \log L$, then $K f \in L^{1}(S)$.
4. If f is in the euclidean Lipschitz space of order α for $0<\alpha<1$, then so is $K f$.

In this paper, we show additional properties of \mathcal{M}-harmonic conjugate operator; we show boundedness of $K f$ on BMO and on the nonisotropic Lipschitz space, and then we show boundedness and compactness properties of \mathcal{M}-harmonic conjugate operator with L^{p} symbol.

$2 \mathcal{M}$-Harmonic Conjugate Operator

Definition 2.1 Let $Q=Q(\xi, \delta)=\left\{\eta \in S: d(\xi, \eta)=|1-\langle\xi, \eta\rangle|^{1 / 2}<\delta\right\}$ be a nonisotropic ball of S. The space BMO consists of all $f \in L^{1}(S)$ satisfying

$$
\sup _{Q} \frac{1}{\sigma(Q)} \int_{Q}\left|f-f_{Q}\right| d \sigma=\|f\|_{\text {вмо }}<\infty
$$

where f_{Q} is the average of f over Q.
We denote $f \in \operatorname{lip}_{\alpha}$ the nonisotropic Lipschitz space of order $\alpha(0<\alpha<2)$ if

$$
\sup _{\xi, \eta \in S} \frac{|f(\xi)-f(\eta)|}{d(\xi, \eta)^{\alpha}}=\|f\|_{\operatorname{lip}_{\alpha}}<\infty
$$

BMO and $\operatorname{lip}_{\alpha}$ become Banach spaces provided that we identify functions which differ by a constant. The next lemma, using similar idea as [4], tells that we can regard BMO as the limit of lip ${ }_{\alpha}$ as α decreases to zero.

Lemma 2.2 Let $f \in L^{1}(S)$ and $0<\alpha \leq 2$, then the norm $\|f\|_{\operatorname{lip}_{\alpha}}$ is equivalent to

$$
\sup _{Q} \frac{1}{\sigma(Q)^{1+\alpha / 2 n}} \int_{Q}\left|f-f_{Q}\right| d \sigma
$$

Proof Suppose that $f \in \operatorname{lip} \alpha$. Let $Q=Q(\xi, \delta)$, then since $\sigma(Q) \approx \delta^{2 n}$, we have

$$
\begin{aligned}
\left|f(\xi)-f_{Q}\right| & \leq \frac{1}{\sigma(Q)} \int_{Q}|f(\xi)-f(\eta)| d \sigma(\eta) \\
& \leq\|f\|_{\operatorname{lip}_{\alpha}} \frac{1}{\sigma(Q)} \int_{Q} d(\xi, \eta)^{\alpha} d \sigma(\eta) \\
& \leq C\|f\|_{\operatorname{lip}_{\alpha}} \sigma(Q)^{\alpha / 2 n}
\end{aligned}
$$

Thus

$$
\sup _{Q} \frac{1}{\sigma(Q)^{1+\alpha / 2 n}} \int_{Q}\left|f-f_{Q}\right| d \sigma \leq C\|f\|_{\operatorname{lip}_{\alpha}}
$$

Conversely, suppose

$$
\sup _{Q} \frac{1}{\sigma(Q)^{1+\alpha / 2 n}} \int_{Q}\left|f-f_{Q}\right| d \sigma \leq C
$$

Fix $\xi, \eta \in S$. Let $\delta=2|1-\langle\xi, \eta\rangle|^{1 / 2}$ and $Q=Q(\xi, \delta)$. Then we get

$$
|f(\xi)-f(\eta)| \leq\left|f(\xi)-f_{Q}\right|+\left|f_{Q}-f(\eta)\right|=I+I I
$$

We will only estimate I, since the estimate of $I I$ is identical. Inductively, choose a sequence of nonisotropic balls $\left\{Q_{k}\right\}$ such that $k=1,2,3, \ldots$,

$$
\begin{gathered}
Q_{k} \searrow\{\xi\} \quad \text { as } \quad k \rightarrow \infty \\
\sigma\left(Q_{k}\right)=\frac{1}{2} \sigma\left(Q_{k-1}\right) \\
Q_{0}=Q .
\end{gathered}
$$

Then

$$
I \leq\left|f(\xi)-f_{Q_{k}}\right|+\sum_{j=1}^{k}\left|f_{Q_{j}}-f_{Q_{j-1}}\right|=I_{1}+I_{2}
$$

As $k \rightarrow \infty, I_{1}$ converges to 0 for almost all ζ. So it suffices to estimate I_{2}. Observe that

$$
\begin{aligned}
I_{2} & \leq \sum_{j=1}^{k} \frac{1}{\sigma\left(Q_{j}\right)} \int_{Q_{j}}\left|f-f_{Q_{j-1}}\right| d \sigma \\
& \leq 2 \sum_{j=1}^{k} \frac{1}{\sigma\left(Q_{j-1}\right)} \int_{Q_{j-1}}\left|f-f_{Q_{j-1}}\right| d \sigma \\
& \leq 2 C \sum_{j=1}^{k} \sigma\left(Q_{j-1}\right)^{\alpha / 2 n} \\
& =2 C \sigma(Q)^{\alpha / 2 n} \sum_{j=1}^{k} \frac{1}{2^{j \alpha / 2 n}} .
\end{aligned}
$$

Since $\delta=2|1-\langle\xi, \eta\rangle|^{1 / 2}$, we have $I_{2} \leq \operatorname{Cd}(\xi, \eta)^{\alpha}$. Thus we have $|f(\xi)-f(\eta)| \leq$ $C d(\xi, \eta)^{\alpha}$ for almost all ξ, η. Since f is a representation of some equivalent class in $L^{1}(S)$, we can redefine f so that

$$
|f(\xi)-f(\eta)| \leq C d(\xi, \eta)^{\alpha} \quad(\xi, \eta \in S)
$$

Therefore the proof is complete.

Theorem 2.3 K is bounded on $\operatorname{lip}_{\alpha}(0<\alpha<1)$, and on BMO.
Proof To show the bounedeness of K on lip ${ }_{\alpha}$, by Lemma 2.2 and the triangle inequality, it suffices to show that that for every $f \in \operatorname{lip}_{\alpha}$ there is a constant $\lambda=\lambda(Q, f)$ such that

$$
\begin{equation*}
\frac{1}{\sigma(Q)^{1+\alpha / 2 n}} \int_{Q}|K f(\eta)-\lambda| d \sigma(\eta) \leq C(\alpha)\|f\|_{\operatorname{lip}_{\alpha}} \tag{2.1}
\end{equation*}
$$

where $C(\alpha)$ is a constant, independent of Q and f.
For each $Q=Q\left(\xi_{Q}, \delta\right)$, we write

$$
\begin{aligned}
f(\eta) & =\left(f(\eta)-f_{Q}\right) \chi_{2 Q}(\eta)+\left(f(\eta)-f_{Q}\right) \chi_{S \backslash 2 Q}(\eta)+f_{Q} \\
& =f_{1}(\eta)+f_{2}(\eta)+f_{Q}
\end{aligned}
$$

Since $K f_{Q}=0$, we have

$$
K f=K f_{1}+K f_{2}
$$

Define

$$
g(z)=\int_{S}(2 C(z, \xi)-1) f_{2}(\xi) d \sigma(\xi)
$$

Then it is continuous on $B \cup Q$. By setting $\lambda=-i g\left(\xi_{Q}\right)$ in (2.1), we shall prove the theorem. The integral in (2.1) is estimated as

$$
\begin{aligned}
\int_{Q}\left|K f(\eta)+i g\left(\xi_{Q}\right)\right| d \sigma(\eta) & \leq \int_{Q}\left|K f_{1}\right| d \sigma+\int_{Q}\left|K f_{2}+i g\left(\xi_{Q}\right)\right| d \sigma \\
& =I_{1}+I_{2}
\end{aligned}
$$

Estimate of I_{1} : By Hölder's inequality we get

$$
\begin{aligned}
\frac{1}{\sigma(Q)} \int_{Q}\left|K f_{1}\right| d \sigma & \leq\left(\frac{1}{\sigma(Q)} \int_{Q}\left|K f_{1}\right|^{2} d \sigma\right)^{1 / 2} \\
& \leq\left(\frac{1}{\sigma(Q)} \int_{S}\left|K f_{1}\right|^{2} d \sigma\right)^{1 / 2} \leq \frac{C}{\sigma(Q)^{1 / 2}}\left\|f_{1}\right\|_{2}
\end{aligned}
$$

since K is bounded on $L^{2}(S)$. Now by replacing f_{1} by $\left(f-f_{Q}\right) \chi_{2 Q}$, we get

$$
\begin{aligned}
\left\|f_{1}\right\|_{2} & =\left(\int_{2 Q}\left|f-f_{Q}\right|^{2} d \sigma\right)^{1 / 2} \\
& \leq\left(\int_{2 Q}\left|f-f_{2 Q}\right|^{2} d \sigma\right)^{1 / 2}+\sigma(2 Q)^{1 / 2}\left|f_{2 Q}-f_{Q}\right|
\end{aligned}
$$

Further, using Lemma 2.2 and triangle inequalities, we see

$$
\frac{1}{\sigma(Q)} \int_{Q}\left|K f_{1}\right| d \sigma \leq C_{1} \sigma(Q)^{\alpha / 2 n}\|f\|_{\operatorname{lip}_{\alpha}}\left(1+2^{2 n}\left(\frac{\sigma(2 Q)}{\sigma(Q)}\right)^{1 / 2}\right)
$$

Estimate of I_{2} : Since $f_{2} \equiv 0$ on $2 Q$, we have

$$
\begin{aligned}
I_{2} & =\int_{Q}\left|f_{2}+i K f_{2}-g\left(\xi_{Q}\right)\right| d \sigma \\
& \leq \int_{S \backslash 2 Q} 2\left|f_{2}(\eta)\right| \int_{Q}\left|C(\xi, \eta)-C\left(\xi_{Q}, \eta\right)\right| d \sigma(\xi) d \sigma(\eta)
\end{aligned}
$$

By Lemma 6.1.1 of [5], we get an upper bound such that

$$
\begin{equation*}
I_{2} \leq C_{2} \delta \sigma(Q) \int_{S \backslash 2 Q} \frac{\left|f_{2}(\eta)\right|}{\left|1-\left\langle\eta, \xi_{Q}\right\rangle\right|^{n+1 / 2}} d \sigma(\eta) \tag{2.2}
\end{equation*}
$$

where C_{2} is an absolute constant. Let $\eta \in S \backslash 2 Q$. Then

$$
\begin{aligned}
\left|f(\eta)-f_{Q}\right| & \leq \frac{1}{\sigma(Q)} \int_{Q}|f(\eta)-f(\xi)| d \sigma(\xi) \\
& \leq C_{3}\|f\|_{\operatorname{lip}_{\alpha}} \frac{1}{\sigma(Q)} \int_{Q} d(\eta, \xi)^{\alpha} d \sigma(\xi)
\end{aligned}
$$

Since $\xi \in Q$, by the triangle inequality we have

$$
\begin{aligned}
d(\eta, \xi)^{\alpha} & \leq C_{4}\left(d\left(\eta, \xi_{Q}\right)^{\alpha}+d\left(\xi_{Q}, \xi\right)^{\alpha}\right) \\
& \leq C_{4}\left(d\left(\eta, \xi_{Q}\right)^{\alpha}+\delta^{\alpha}\right)
\end{aligned}
$$

Thus

$$
\left|f(\eta)-f_{Q}\right| \leq C_{5}\|f\|_{\operatorname{lip}_{\alpha}}\left(d\left(\eta, \xi_{Q}\right)^{\alpha}+\delta^{\alpha}\right)
$$

where the constant C_{5} depends on α. The integral of (2.2) is bounded as follows

$$
\int_{S \backslash 2 Q} \frac{\left|f_{2}(\eta)\right|}{\left|1-\left\langle\eta, \xi_{Q}\right\rangle\right|^{n+1 / 2}} d \sigma(\eta) \leq C_{5}\|f\|_{\operatorname{lip}_{\alpha}} \int_{S \backslash 2 Q} \frac{\left|1-\left\langle\eta, \xi_{Q}\right\rangle\right|^{\alpha / 2}+\delta^{\alpha}}{\left|1-\left\langle\eta, \xi_{Q}\right\rangle\right|^{n+1 / 2}} d \sigma(\eta)
$$

Since $0<\alpha<1$, the direct calculation as in 6.1 .3 of [5] shows that the right hand side of the above is less than or equal to

$$
C^{\prime} \frac{1}{1-\alpha} \delta^{\alpha-1}\|f\|_{\operatorname{lip}_{\alpha}}
$$

where the constant C^{\prime} is independent of δ and f. Therefore, there is a constant $C^{\prime \prime}$ depending on α such that

$$
I_{2}=C^{\prime \prime} \delta^{2 n+\alpha}\|f\|_{\operatorname{lip}_{\alpha}}
$$

Thus the proof of boundedness on $\operatorname{lip}_{\alpha}$ is complete.
Boundedness of K on BMO can be shown by the same way as on lip ${ }_{\alpha}$, once we use the fact that if $f \in \mathrm{BMO}$ and $1<p<\infty$, then

$$
\sup _{Q}\left(\frac{1}{\sigma(Q)} \int_{Q}\left|f-f_{\mathrm{Q}}\right|^{p} d \sigma\right)^{1 / p} \leq C_{p}\|f\|_{\mathrm{BMO}}
$$

and

$$
\left|f_{2^{k} \mathrm{Q}}-f_{\mathrm{Q}}\right| \leq 2^{2 n} k\|f\|_{\text {ВМО }}
$$

for every positive integer k.
We define the modulus of continuity ω_{φ} of a function ω_{φ} on S by

$$
\omega_{\varphi}(t)=\sup \{|\varphi(\xi)-\varphi(\eta)|:|\xi-\eta| \leq t\}
$$

We say that φ is a Dini function if

$$
\int_{0}^{\alpha} \omega_{\varphi}(t) \frac{d t}{t}<\infty
$$

for some $\alpha>0$.
Proposition 2.4 If f is a Dini function, then $K f$ is continuous on S.
Proof It is enough to show that the function

$$
F(z)=\int_{S} f(\xi) K(z, \xi) d \sigma(\xi)
$$

is uniformly continuous on B.
First, we extend f to a continuous function on \bar{B}, in such a way that $f(z)=$ $f(z /|z|)$ for $1 / 2 \leq|z| \leq 1$. And then we define $G(z, \xi)=(f(\xi)-f(z)) K(z, \xi)$ for $z \in \bar{B}, \xi \in S, z \neq \xi$.

Let $z=r \eta$ for $\frac{1}{2} \leq r \leq 1$ and $\eta \in S$.
Then there is a constant c_{n}, depending only on n, such that

$$
|G(z, \xi)| \leq c_{n} \omega(|\eta-\xi|)|C(\eta, \xi)|=c_{n}\left|F_{\eta}(\xi)\right|,
$$

since $P(z, \xi) \leq 2^{n}|C(z, \xi)| \leq 2^{2 n}|C(\eta, \xi)|$. From 6.5.2 of [5],

$$
\int_{S} F_{\eta}(\xi) d \sigma(\xi)<\infty
$$

and the family $\left\{F_{\eta} \mid \eta \in S\right\}$ is unitary invariant. Hence $\{G(z) \mid, z \in \bar{B}\}$ is uniformly integrable. Then we apply the Vitali's theorem to get that function

$$
H(z)=\int_{S} G(z, \xi) d \sigma(\xi)
$$

is continuous on \bar{B}. However, for $z \in B, F(z)=H(z)$ since

$$
\int_{S} K(z, \xi) d \sigma(\xi)=0
$$

Therefore, F is uniformly continuous on B and this completes the proof.

3 서-Harmonic Conjugate Operator With Symbol

Definition 3.1 Let $1 \leq p, q \leq \infty$ with $\frac{1}{p}+\frac{1}{q}=1$. For $\varphi \in L^{q}(S)$, we define the operator K_{φ} on $L^{p}(S)$ by $\left(K_{\varphi} f\right)(\xi)=K(\varphi f)(\xi)$ for $\xi \in S$.

Theorem 3.2

(a) For $\varphi \in L^{q}(S)(1<q<\infty)$, K_{φ} is bounded on $L^{p}(S)$ if and only if $\varphi \in L^{\infty}(S)$.
(b) For $\varphi \in L^{2}(S), K_{\varphi}$ is compact on $L^{2}(S)$ if and only if $\varphi=0$.

Proof First we prove (a). Suppose $\varphi \in L^{\infty}$. If $f \in L^{p}$, then $\varphi f \in L^{p}$. Since K is bounded on $L^{p}(S)$, it is obvious that K_{φ} is bounded on $L^{p}(S)$. Conversely, suppose the operator K_{φ} is bounded on L^{p}. Now we define for $z \in B$ and $\xi \in S$,

$$
P_{z}(\xi)=\frac{\left(1-|z|^{2}\right)^{\frac{n}{2}}}{(1-\langle z, \xi\rangle)^{n}}
$$

Then for each $z \in B, \bar{P}_{z} \in A(S)$ and $P_{z}(\xi) \bar{P}_{z}(\xi)=P(z, \xi)$. By Proposition 1.4.10 of [5],

$$
\left\|P_{z}\right\|_{p}^{p} \leq C\left(1-|z|^{2}\right)^{(1-p / 2) n}
$$

Thus Hölder's inequality yields

$$
\begin{aligned}
\left|\int_{S} K_{\varphi} P_{z} \bar{P}_{z} d \sigma\right| & \leq\left\|K_{\varphi} P_{z}\right\|_{p}\left\|P_{z}\right\|_{q} \\
& \leq\left\|K_{\varphi}\right\|\left\|P_{z}\right\|_{p}\left\|P_{z}\right\|_{q} \\
& \leq C\left\|K_{\varphi}\right\|
\end{aligned}
$$

where C is an absolute constant. Note that from the theorem of Koranyi and Vagi [3] (Theorem 6.3.1 of [5]) we have

$$
\int_{S}\left|\int_{S} K(r \xi, \zeta) g(\zeta) d \sigma(\zeta)\right|^{q} d \sigma(\xi) \leq C_{q}\|g\|_{q}^{q}
$$

for every $g \in L^{q}(S)$. Write $z=t \eta$ for $\eta \in S$ and for $0<t<1$. Thus there is a constant c_{q} such that

$$
\begin{array}{rl}
\int_{S} \mid \bar{P}_{t \eta}(\xi) \int_{S} K & \left.K(r \xi, \zeta) P_{r \eta}(\zeta) \varphi(\zeta) d \sigma(\zeta)\right|^{q} d \sigma(\xi) \\
& \leq\left(\frac{1+t}{1-t}\right)^{n q / 2} \int_{S}\left|\int_{S} K(r \xi, \zeta) P_{r \eta}(\zeta) \varphi(\zeta) d \sigma(\zeta)\right|^{q} d \sigma(\xi) \\
& \leq c_{q}\left(\frac{1+t}{1-t}\right)^{n q / 2}\left\|P_{t \eta} \varphi\right\|_{q}^{q} \\
& \leq c_{q}\left(\frac{1+t}{1-t}\right)^{n q}\|\varphi\|_{q}^{q}
\end{array}
$$

Since the last term of the above inequalities is independent of r, the integrand of the first term of the above is uniformly integrable. By applying Vitali's theorem and Fubini's theorem

$$
\begin{aligned}
\int_{S}\left(K_{\varphi} P_{t \eta}\right) \bar{P}_{t \eta} d \sigma & =\int_{S^{r} \nearrow^{1}} \lim _{S} K(r \xi, \zeta) P_{t \eta}(\zeta) \varphi(\zeta) d \sigma(\zeta) \bar{P}_{t \eta}(\xi) d \sigma(\xi) \\
& =\lim _{r \nearrow^{1}} \int_{S} \int_{S} K(r \xi, \zeta) P_{t \eta}(\zeta) \varphi(\zeta) d \sigma(\zeta) \bar{P}_{t \eta}(\xi) d \sigma(\xi) \\
& =\lim _{r \nearrow^{1}} \int_{S} P_{t \eta}(\zeta) \varphi(\zeta) \int_{S} K(r \xi, \zeta) \bar{P}_{t \eta}(\xi) d \sigma(\xi) d \sigma(\zeta) \\
& =\int_{S} P_{t \eta}(\zeta) \varphi(\zeta)\left(i\left(1-t^{2}\right)^{n / 2}-i \bar{P}_{t \eta}(\zeta)\right) d \sigma(\zeta)
\end{aligned}
$$

Thus

$$
\left|\int_{S}\left(K_{\varphi} P_{t \eta}\right) \bar{P}_{t \eta} d \sigma\right|=\left|\int_{S} P_{t \eta}(\zeta) \varphi(\zeta)\left(-\left(1-t^{2}\right)^{n / 2}+\bar{P}_{t \eta}(\zeta)\right) d \sigma(\zeta)\right| \leq C\left\|K_{\varphi}\right\| .
$$

Since $C\left\|K_{\varphi}\right\|$ is a constant independent of t, taking $t \nearrow 1$, by the reproducing property of the invariant Poisson integral, we have $|\varphi(\eta)| \leq C\left\|K_{\varphi}\right\|$ at almost all η. Therefore φ is bounded and this proves (a). Now we will prove (b). Pick $f \in L^{2}(S)$. Choose a sequence of polynomial $\left\{g_{k}\right\}$ such that $\left\|g_{k}-\bar{f}\right\|_{2}$ converges to zero. Then

$$
\left|\int_{S} P_{z} \bar{f} d \sigma-\int_{S} P_{z} g_{k} d \sigma\right| \leq C\left\|\bar{f}-g_{k}\right\|_{2}
$$

converges to zero uniformly on z. Thus

$$
\begin{aligned}
\lim _{|z| \rightarrow 1} \int_{S} P_{z} \bar{f} d \sigma & =\lim _{|z| \rightarrow 1} \lim _{k \rightarrow \infty} \int_{S} P_{z} g_{k} d \sigma \\
& =\lim _{k \rightarrow \infty} \lim _{|z| \rightarrow 1} \int_{S} P(z, \xi) g_{k}(\xi) \frac{(1-\langle\xi, z\rangle)^{n}}{\left(1-|z|^{2}\right)^{\frac{n}{2}}} d \sigma(\xi) \\
& =\lim _{k \rightarrow \infty} \lim _{|z| \rightarrow 1}\left(1-|z|^{2}\right)^{\frac{n}{2}} g_{k}(z)=0
\end{aligned}
$$

which means P_{z} converges to zero weakly as $|z| \rightarrow 1$. From (a)

$$
\left|\int_{S}\left(K_{\varphi} P_{t \eta}\right) \bar{P}_{t \eta} d \sigma\right|=\left|\int_{S} P_{t \eta}(\zeta) \varphi(\zeta)\left(-\left(1-t^{2}\right)^{n / 2}+\bar{P}_{t \eta}(\zeta)\right) d \sigma(\zeta)\right| .
$$

Since K_{φ} is compact, the left hand side converges to zero as $t \rightarrow 1$. And the righthand side converges to $\varphi(\eta)$. This completes the proof.

Acknowledgement The authors want to express their heartfelt gratitude to the anonymous referees and to the Editors for many helpful comments.

References

[1] J. B. Garnett, Bounded analytic functions. Academic Press, New York, 1981.
[2] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics. North-Holland Mathematics Studies 116, New York, 1985.
[3] A. Koranyi and S. Vagi, Singular integral on homogeneous spaces and some problems of classical analysis. Ann. Scuola Norm. Sup. Pisa 25(1971), 575-648.
[4] N. G. Meyers, Mean oscillation over cubes and Hölder continuity. Proc. Amer. Math. Soc. 15(1964), 717-721.
[5] W. Rudin, Function theory in the unit ball of \mathbb{C}^{n}. Springer-Verlag, New York Inc., 1980.

Department of Mathematics
Sogang University
Seoul 121-742
Korea
e-mail: jalee@sogang.ac.kr

DIP Lab Corp.
Bangwoo B/D 636-2
Shinsa Kangnam
Seoul 135-869
Korea
e-mail: ksrim@diplab.com

