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ABSTRACT. The spectral dependence of natural light transmittance on ice algae concentration and
snow depth in Arctic sea ice provides the potential to study the changing bottom-ice ecosystem using
optical relationships. In this paper, we consider the use of functional data analysis techniques to
describe such relationships. Specifically, we created a functional regression model describing spectral
optical depth as a function of chlorophyll a concentration, snow depth and ice thickness. Measurements
of the aforementioned covariates and surface and transmitted spectral irradiance were collected on
landfast first-year sea ice in the High Arctic near Resolute Passage, Canada, during the spring of 2011
and used as model input. The derived model explains 75–84.5% of the variation in the observed
spectral optical depth curves. No prior assumptions of snow/sea-ice optical properties are required in
the application of this technique, as the model estimates the attenuation coefficients of each covariate
using only the measurements mentioned above. The quality and simplicity of the model highlight the
potential of functional data analysis to study the Arctic marine ecosystem.
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INTRODUCTION
Ice algae are an integral component of the Arctic ice-
covered marine ecosystem, where they provide an import-
ant initial food source for early spring grazers (e.g. Bradstreet
and Cross, 1982; Horner and others, 1992; Leu and others,
2011). In recent decades, the Arctic marine environment has
experienced numerous changes, including earlier melt onset
(Markus and others, 2009), shrinking and thinning of multi-
year sea ice (MYI) and a transition from MYI to pre-
dominantly first-year sea-ice (FYI) cover (Stroeve and others,
2012). These changes in algal habitat will influence ice
algae abundance and productivity. For example, an earlier
melt onset can shorten the ice algal bloom period (Campbell
and others, 2014), whereas a change from multi-year to first-
year ice cover could favour higher ice algal production
(Arrigo and others, 2010). However, we lack a sufficiently
detailed understanding of the ice-covered ecosystem to
quantify its actual response to the changing environment
with any certainty. In particular, there is a deficit of spatial
and temporal observations of ice algae and their environ-
ment across the Arctic (Arrigo and others, 2010). This
paucity of data is partially due to logistic and methodo-
logical challenges (Nicolaus and others, 2012), as well as
the destructive nature of most conventional ice algae
sampling methods (Mundy and others, 2007).
Multiple studies have demonstrated a significant influ-

ence of ice algal biomass on the spectral distribution of light
underneath ice covers (Maykut and Grenfell, 1975; Arrigo
and others, 1991; Legendre and Gosselin, 1991; Perovich
and others, 1993; Mundy and others, 2007; Fritsen and
others, 2011). Absorption by algal pigments decreases the

transmitted light, while acting to shift and narrow its spectral
distribution from a broad peak centred at �460 nm under an
ice cover with little algal biomass to a sharp peak centred at
�570 nm under high ice algal concentrations (Mundy and
others, 2007). In turn, this modification of transmitted light is
likely to feed back and affect ice algal growth (Horner and
Schrader, 1982; Grossi and others, 1987; Palmisano and
others, 1987). Comprehensive knowledge of the ice cover’s
optical characterization is therefore essential to improve our
understanding of the Arctic marine ecosystem, especially
considering the expected impact of observed sea-ice
changes on light transmission (Nicolaus and others, 2012).
Numerous efforts have been made to quantitatively

describe the optical properties of ice covers. Many of these
make use of radiative transfer models (e.g. Fritsen and
others, 1998; Hamre and others, 2004; Perovich, 2005).
While these models may be used effectively for purposes
such as analysing spatio-temporally varying ice covers
(Perovich, 1990) and estimating algae’s effect on transmit-
tance (Grenfell, 1991), they are limited by their requirement
of a priori knowledge of an ice cover’s qualitative
characteristics. Recently, Nicolaus and others (2012) pro-
duced an Arctic-wide map of light distribution under
summer sea ice, using a combination of satellite data and
measurements from a remotely operated vehicle (ROV).
Their approach allowed for large-scale estimations of light
transmission through different types of ice and surface
covers without a heavy dependence on assumptions and
parameterizations, and was used to make predictions about
the changing nature of the Arctic light environment.
However, it could not be used to describe the ice cover’s
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optical properties on the microscale, nor did it account for
the spectral distribution of transmitted light. Other attempts
to characterize ice covers have involved direct calculation
of spectral attenuation coefficients. For instance, Perovich
and others (1993) calculated a biomass-specific diffuse
attenuation coefficient for algae by comparing transmitted
irradiance beneath an ice cover before and after removing
the bottom algal layer. Light and others (2008) derived
spectral extinction coefficients for ice from irradiance
profiles using a finite-difference formula. These direct
methods allow more flexibility than radiative transfer
models, but require a range of additional measurements.
For instance, in the work of Light and others (2008)
irradiance profiles had to be taken every 0.10m within
boreholes through the ice.
In this paper, we consider the spectral optical depth of

Arctic sea ice. The spectral optical depth, denoted �ð�Þ, is a
dimensionless, wavelength-dependent parameter that de-
scribes the attenuation of light at wavelength � as it passes
through a medium and can be given by

�ð�Þ ¼ ln
Ed, topð�Þ
Ed, botð�Þ

� �

, ð1Þ

where Ed, topð�Þ and Ed, botð�Þ are the downwelling incident
(on top of the snow-ice cover) and transmitted (below the
bottom ice algal layer) spectral irradiances (Wm� 2 nm� 1),
respectively. For Arctic first-year snow-covered sea ice, the
main components of light attenuation during the spring algal
bloom are ice algal biomass, snow depth and sea-ice
thickness (Perovich and others, 1998), although sediments
and other absorbing constituents (e.g. soot) can also play an
important attenuation role in specific areas of the Arctic
(Light and others, 2008). Because of the strong dependence
of attenuation on algae, snow and ice, a functional model
can be used to describe optical depth at specific wave-
lengths as a function of these main attenuating components.
To create such a model, we used a statistical technique

from the field of functional data analysis (FDA). FDA is the
extension of traditional statistical methods, such as multiple
linear regression and significance testing, to data that are
curves over a domain, such as time or wavelength (Ramsay
and Silverman, 2005). The main goal of FDA is to consider
discrete measurements of these curves and to describe the
underlying smooth functions from which the measurements
originated. FDA techniques have been successfully applied
in various fields, such as medicine (Sørensen and others,
2013), psychology (Vines and others, 2006) and biology
(Müller and others, 2009).
Here we consider functional linear regression where the

response variable is a smooth function and the covariates
can be scalar or functional. We used discrete measurements
of incident and transmitted irradiance to create smooth
representations of optical depth as a function of wavelength.
A functional linear regression model was then developed
using optical depth as a functional response. Chlorophyll a
(chl a) concentration (a commonly used proxy for algal
biomass), snow depth and ice thickness were used as scalar
covariates. In this case, the regression coefficients were also
smooth functions of wavelength.
The utility and uniqueness of our approach is a result of

its entirely data-driven nature. Using only measurements of
irradiance and the aforementioned covariates, our model
estimated spectral attenuation coefficients for the entire ice
cover without any prior assumptions about its composition.

Thus, it provides a relatively simple and computationally
inexpensive way to analyse the optical properties of sea
ice. FDA methods, such as those described here, may
therefore facilitate improved understanding of the Arctic
marine ecosystem.

METHODS

Data collection
Field data were collected on landfast FYI during the Arctic-
ICE (Ice-Covered Ecosystem) 2011 campaign near Resolute
Passage, Nunavut, Canada (74°43.1650N; 95°10.0990W)
between 27 April and 24 June. A description of the dataset
used in this paper is provided in detail elsewhere (Campbell
and others, 2014). In short, every fourth day, three new and
separate snow depth sites were selected for sampling to
capture the range of snow depths in the region, which
included high (>0.18m), medium (0.1–0.18m) and low
(<0.1m) snow sites. Sample sites were selected with
snowdrifts that had relatively consistent depths over at least
a 2m diameter area. As conditions progressed into melt, the
high and low sites transitioned into white ice and melt-pond-
covered sea ice, respectively. During the morning and before
the sites were disturbed, measurements of incident and
transmitted spectral downwelling irradiance were made
using a dual-head visible near-infrared spectrometer (Field
Spec Pro, Analytical Spectral Devices Inc.) with a cosine
receptor (180° field of view) that measured spectral irradi-
ance in Wm� 2 nm� 1 over wavelengths 350–1050nm at a
1.4 nm bandwidth. Due to low transmittance that resulted in
measurement noise towards shorter and longer wavelengths,
we confined the spectral range used in this study to 400–
700nm, i.e. the range of photosynthetically active radiation
(PAR). At each measurement site, five transmitted irradiance
spectra were recorded, then averaged.
Immediately following transmitted irradiance measure-

ments, spread within the 2m diameter area selected for site
sampling, five snow depths were measured, three to five ice
cores were extracted using a Kovacs Mark II corer (0.09m
diameter) and ice thickness was determined in each core
hole. The number of cores collected depended on the
amount of material required for analysis, visually deter-
mined in the field. Figure 1b and c show the range of site-
averaged snow depths and ice thicknesses used in our
analyses. The bottom 0.03m (which accounted for a
seasonally averaged 95% of the total chl a concentration
of the entire ice core; Galindo and others, 2014) of the three
to five site extracted cores were pooled into isothermal
containers, and 0.2 µm filtered sea water (FSW) was added
at a dilution of approximately three parts FSW to one part
ice melt, in order to minimize osmotic shock to the
microbial community during melt (Garrison and Buck,
1986). Samples were then left to melt in the dark over 12–
24 hours. Once melted, subsamples and a daily FSW blank
were filtered onto glass fibre F grade (GF/F) 25mm filters
and then stored in a –80°C freezer for analyses of algal
pigment composition and concentration using reverse-phase
high-performance liquid chromatography (HPLC). With the
exception of using a different instrument, the HPLC analysis
procedures applied followed those described by Alou-Font
and others (2013). Namely, an Agilent Technologies 1200
Series was used with an Agilent Quaternary pump (model
61311A) for gradient elution. Furthermore, pigments were
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detected using an Agilent diode-array absorbance detector
(model 61315D; 400–700nm) and an Agilent fluorescence
detector (model 61321A) to confirm the presence of
chlorophyll-related compounds. In this study, total chl a
(Tchl a) concentration was defined as the pigment concen-
tration sum of chl a, its epimers and allomers, chlorophyllide
a and methylchlorophyllide a, and was used as a proxy for
photosynthetic biomass.

Statistical analysis
Functional data analysis considers functional data arising
from discrete observations of smooth functions; in this sense,
the fundamental unit of observation for FDA is a curve. The
goals of FDA are similar to those of more traditional statistical
analyses, and include data representation and visualization,
as well as the study of important sources of patterns and
variation within the data. Functional versions of analysis of
variance, multiple regression analysis and principal com-
ponents analysis are readily available. A recurring theme in
FDA is the use of information in the derivatives of functions.
Several FDA methods have readily been implemented in
state-of-the-art software (e.g. MATLAB® and R (Ramsay and
Silverman, 2005; Ramsay, 2006; Ramsay and others, 2009;
R Core Team, 2013)).
In the study of environmental processes, functional data

are often produced as collections of discrete measurements.
The measurements within each collection usually possess a
high-resolution and a low-noise component and are some-
times interpolated with the aim of characterizing an under-
lying smooth function that best describes the data. In
general, the underlying function is defined over a con-
tinuous domain. For longitudinal data, such as temperature
or precipitation time series, the domain is time, and in the
case of spectral irradiance the domain is wavelength. If the
measurements are made without error, then the function can
be recovered via interpolation. However, observational
error and natural variability in environmental (i.e. snow,
ice and ice algal) properties are often present, so the
recovery of the underlying function is improved via
smoothing techniques.

Smoothing �ð�Þ
In our study, we considered discrete measurements of
incident and transmitted irradiance at several hundred
wavelengths to obtain optical depth measurements of the

form yl1, yl2, . . . , yln, where l is used to index snow depth
site and n is the number of wavelength measurements. For
each site, l, the measurement ylj equates to an optical depth
�lð�jÞ at the specific wavelength �j, for j ¼ 1, 2, . . . ,n. Each
optical depth curve, �lð�Þ, was reconstructed as a regression
spline (Ramsay and Silverman, 2005), and in our application
we considered B-splines of order 6 with knots placed every
2 nm. To reduce observational error, we used the roughness
penalty approach to construct the regression splines for each
optical depth curve. This method imposed additional
smoothness by restricting the size of the third-order deriva-
tives of the curves. Smoothing was controlled through a
smoothing parameter, which was chosen to minimize the
generalized cross-validation criterion (Craven and Wahba,
1978). In our application, the third derivative of �lð�Þ was
penalized using a smoothing parameter of 10� 0:75.

Functional regression model for �ð�Þ
The Arctic ice cover was treated as a vertical arrangement of
three distinct layers: a top layer of seasonally varying
composition, a middle layer of sea ice with thickness Zi (m)
and a bottom layer of algal biomass. For this bottom layer,
Cchl was the areal concentration of Tchl a (mgm� 2).
The top layer consisted of snow of depth Zs (m) from

27 April to 6 June 2011. During this interval, shortwave
albedo remained approximately constant at 0.84 (Galindo
and others, 2014). After 6 June, melt progressed, followed
by a sharp decline in shortwave albedo, resulting in a
surface ice cover of drained white ice interspersed with melt
ponds (Campbell and others, 2014; Landy and others,
2014). The observed depths of the drained ice layer above
the water table (referred to as white ice; Maykut and
Grenfell, 1975) and melt ponds were small, having maxima
of 0.10 and 0.06m, respectively. The drop in albedo
associated with surface covers of these types had a
significant influence on optical depth. Measurements made
during the melt were few in number relative to the entire
dataset, but critical for capturing the full range of Cchl (i.e.
Cchl approached 0mgm� 2 during the melt progression;
Campbell and others, 2014). Because the top layer of the ice
cover was devoid of actual snow during this time, we set Zs
to zero for these observations (Fig. 1 shows site-averaged
time series plots of Cchl, Zs and Zi).
Functional regression was used to link spectral optical

depth to the scalar covariates, Cchl, Zs and Zi. This technique

Fig. 1. Site-averaged time series plots of (a) areal concentration of Tchl a, Cchl, (b) snow depth, Zs, and (c) thickness of sea ice, Zi. Zs was
equal to zero during the melt, when melt ponds and drained ice replaced snow as the top of the ice cover.
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is an extension of traditional regression to the case where
either the dependent or the independent variables are
functional. In our setting, the functional response was �ð�Þ
with � restricted to PAR, as mentioned above. The
functional linear regression model we used for �ð�Þ was of
the form

�ð�Þ ¼�0ð�Þ þ K�d, chlð�Þ � Cchl þ Kd, sð�Þ � Zs
þ Kd, ið�Þ � Zi þ �ð�Þ,

ð2Þ

where the dimensionless function, �ð�Þ, represents a mean
zero stochastic error process. The functional regression
coefficients are interpreted as attenuation coefficients.
Specifically, K�d, chlð�Þ is the Tchl a-specific diffuse attenu-
ation coefficient (m2 mg� 1), and Kd, sð�Þ and Kd, ið�Þ are the
spectral diffuse attenuation coefficients (m� 1) of snow and
ice, respectively. The intercept function, �0ð�Þ (dimension-
less), represents effects on optical depth not accounted for
by the covariates, including reflection and scattering due to
impurities in the ice. A functional regression coefficient with
a value of 0 at a given wavelength implies that its
corresponding covariate has no effect on �ð�Þ at that
wavelength. Smith and others (1988) used a non-functional
equation of the same form to model photon fluence rate
(µmol quanta m� 2 s� 1).
The regression coefficients, Kd, sð�Þ, Kd, ið�Þ and K�d, chlð�Þ,

and intercept term, �0ð�Þ, were expressed using order 6

B-spline bases with knots placed every 4 nm. Fitting was
accomplished by minimizing the regularized integrated
residual sum of squares (Ramsay and Silverman, 2005). A
smoothing parameter of 10� 2 was applied to the third
derivatives of the coefficient functions, chosen to minimize
the cross-validated integrated squared error (Ramsay and
others, 2009). All analyses were performed using the ‘R
environment for statistical computing’. Functional regres-
sion fitting and statistical analyses (confidence intervals for
regression coefficients, goodness-of-fit and significance
testing) were conducted with the help of the fda package
(Ramsay and others, 2012). The R code and coefficient
estimates used are available upon request from the authors.

RESULTS AND DISCUSSION
Attenuation coefficients
The confidence intervals of K�d, chlð�Þ, Kd, sð�Þ and Kd, ið�Þ
(Fig. 2b–d) did not include 0 at any wavelength, except for
K�d, chlð�Þ over the wavelength range 690–700nm. Hence,
there is evidence to suggest that Tchl a, snow depth and ice
thickness affect optical depth over almost all of the PAR
range. Contrastingly, the zero value was included in the
confidence interval of the intercept term, �0ð�Þ, at every
wavelength (Fig. 2a), indicating that the covariates ac-
counted for most of the variation in the optical depth

Fig. 2. Estimated coefficient functions (thick solid curves) and associated 95% confidence intervals (thin solid curves) of the functional
regression model (Eqn (2)): (a) functional intercept; (b) Tchl a-specific diffuse attenuation coefficient; (c) attenuation coefficient of snow; and
(d) attenuation coefficient of ice.
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measurements. For each layer of the ice matrix, PAR-
integrated attenuation coefficients were obtained by aver-
aging the functional coefficients over PAR wavelengths,
weighting by the irradiance above and below the layer in
question (following Ehn and Mundy, 2013). The observed
ranges of snow depth and ice thickness did not substantially
affect the values of these coefficients.
The shapes of K�d, chlð�Þ and Kd, sð�Þ were in agreement

with published results: K�d, chlð�Þ had peaks at �440 and
670nm (Perovich and others, 1993; Mundy and others,
2007) and Kd, sð�Þ had a characteristic J shape (Grenfell and
Maykut, 1977). Although the shape of K�d, chlð�Þ was in
agreement with the Tchl a-specific absorption spectrum, it
was higher by an offset of �0.05m2 mg� 1 relative to that of
Ehn and Mundy (2013). Thus, it is likely that the total
attenuation per unit of Tchl a includes a scattering effect
associated with algae embedded within the ice matrix (Ehn
and others, 2008a; Ehn and Mundy, 2013). The PAR-
integrated Tchl a-specific attenuation coefficient,
K�d, chlðPARÞ, was 0.06m2 mg� 1, substantially larger than
the 0.035m2 mg� 1 estimated by Smith and others (1988). It
is noteworthy that Smith and others (1988) observed an
increase in their K�d, chlðPARÞ estimate when an outlying
Tchl a measurement of 110mgm� 2 was removed from their
regression. This led them to suggest that K�d, chlðPARÞ might
decrease with increasing Tchl a. Such a relationship would
be consistent with the influence of an intercellular package
effect on K�d, chlðPARÞ, i.e. less Tchl a in the ice would
increase the absorption efficiency per Tchl a, due to less
intercellular self-shading. We note that our maximum range
of Tchl a (30.85mgm� 2) was approximately one-quarter
that used in the regression of Smith and others (1988), in
which the maximum Tchl a value was �120mgm� 2.
Therefore, such an intercellular package effect could help
to explain our higher K�d, chlðPARÞ estimate.
The magnitude of Kd, sð�Þ fell between the dry and

melting snow coefficients summarized by Perovich (1990),
and its PAR-integrated value was 11m� 1, which fell within
the range of values observed at a nearby location and a
similar time of year by Mundy and others (2005). Contrast-
ingly, the magnitude of Kd, ið�Þ was slightly larger than the
interior white ice and cold blue ice attenuation coefficients

given by Perovich (1990), with a PAR-integrated value of
3.6m� 1. This difference could be in part attributed to the
greater scattering associated with the surface granular and
drained white ice layers, and the bottom skeletal ice layers
of a first-year ice cover (Ehn and others, 2008b). Further-
more, Kd, ið�Þ deviated from an expected J shape (Grenfell
and Maykut, 1977), with a small secondary peak in the
wavelength range �440 nm, close to the main absorption
peak of Tchl a. Therefore, the model appeared to attribute a
small algal biomass influence on optical depth to sea ice.
This slight effect could be attributed to variability in Tchl a
concentration above the bottom 0.03m layer, i.e. above the
portion of ice where Tchl a measurements were derived.
We note that all of the coefficients had slight edge effects.

For instance, Kd, sð�Þ experienced a local minimum at
�690 nm (Fig. 2c). Much of this variation could be due to
statistical noise. Nevertheless, the level of consistency that
the regression coefficients exhibited with previously estab-
lished results is promising, given the inherent uncertainty in
their statistical estimation.

Summary statistics
The functional coefficient of variation, R2, and F-statistic
(Ramsay and Silverman, 2005) were used to assess model fit
(Fig. 3). A permutation F-test was used to test the hypothesis
that the covariates Cchl, Zs and Zi had no effect on optical
depth. The observed functional F-statistic was well above
the 1% critical value (Fig. 3a), leading to the conclusion that
the model provided sufficient evidence that areal Tchl a
concentration, snow depth and ice thickness had a statistic-
ally significant effect on optical depth over the PAR range. In
addition, the functional R2 statistic varied from �75% to
84.5% over the PAR range (Fig. 3b). Hence, at every value of
�, most of the variation in �ð�Þ was explained by the model.
It is significant to note that the R2 statistic had features in

common with both Kd, sð�Þ and K�d, chlð�Þ, including peaks
around 440 and 670nm, a minimum at �575nm and a
general trend of decrease from 450 to 550nm followed by a
sharp increase from 575 to 670nm (Fig. 2b and c). The
shape of the R2 curve therefore suggests that the ability of
the model to explain variation in the optical depth data is
directly related to the attenuation caused by the covariates
included in the model.

Fig. 3. (a) Functional F-statistic (solid curve) for a predictive relationship between Tchl a concentration, snow depth, ice thickness and
spectral optical depth at each wavelength in the PAR range. The 1% critical value of the null distribution (dashed line) is displayed at the
bottom. (b) The functional coefficient of variation, R2, for the model as a function of wavelength.
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Prediction of optical depth and transmitted
irradiance
Using a measured incident irradiance spectrum from the
original dataset, the estimated regression coefficients from
our model and a variety of covariate values, we calculated
several transmitted irradiance spectra according to

Ed, botð�Þ ¼ Ed, topð�Þ � exp
h
�
�
�0ð�Þ þ K�d, chlð�Þ � Cchl

þ Kd, sð�Þ � Zs þ Kd, ið�Þ � Zi
�i
:

ð3Þ

We compared low (0.06m) and high (0.4m) snow depths,
Zs, to low (0.05mgm� 2) and high (30.0mgm� 2) Tchl a
concentrations, Cchl. These values approximately corres-
ponded to the observed nonzero range of each covariate
(Fig. 1). Zi was set to 1.47m, the mean value of ice thickness
for our dataset. A schematic representation of these calcula-
tions is presented in Figure 4. Not surprisingly, transmitted
irradiance spectra (Fig. 4c–f) were at least one order of
magnitude smaller than the incident spectrum (Fig. 4a).
Increasing snow depth caused an upward vertical shift in
optical depth, whereas increasing Tchl a concentration
caused a similar vertical shift, as well as a change in the
spectral shape (Fig. 4b). In particular, the optical depth
curves corresponding to high Tchl a concentrations
exhibited similar peaks to those of K�d, chlð�Þ, whereas those

corresponding to low Tchl a concentrations had shapes that
more closely resembled Kd, sð�Þ. The effects of snow and
Tchl a on �ð�Þ were reflected in the corresponding trans-
mitted irradiance curves (Fig. 4c–f). Increasing snow depth
caused the transmitted irradiance spectra to decrease in
magnitude, while approximately maintaining their shape and
peak structure (Fig. 4c–f). Increasing Tchl a concentration
caused smaller changes in magnitude, but also changed the
shapes of the spectra: low Tchl a spectra exhibited maxima in
the mid-400s to early 500s, while high Tchl a spectra were
low in the late 400s relative to their peaks in the late 500s
(Fig. 4c–f). These results are consistent with the dominance of
the attenuation properties of snow and Tchl a by scattering
and absorption, respectively (Mundy and others, 2007).

CONCLUSIONS
Our functional linear regression model provided statistically
significant evidence of the individual effects of ice algae
biomass, snow and ice on optical depth, in addition to
providing strong evidence of an overall predictive relation-
ship. Furthermore, the model explained 75–84.5% of the
variation in the values of the observed �ð�Þ curves, and was
used to predict transmitted irradiance. Although the inherent
optical properties of the covariates were not explicitly
accounted for in the model, their estimated effects on

Fig. 4. (a) Spectral irradiance incident on an Arctic ice cover. (b) A sample of optical depth curves corresponding to low snow depth and low
Tchl a (solid curve), high snow depth and low Tchl a (thin dashed curve), low snow depth and high Tchl a (dotted curve) and high snow
depth and high Tchl a (thick dashed curve). (c–f) Transmitted irradiance spectra corresponding to the optical depth curves in (b).
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optical depth were largely consistent with expected results
from previous work.
Unlike more comprehensive radiative transfer models

(e.g. Perovich, 1990; Hamre and others, 2004; Ehn and
others, 2008a,b), our model did not require any prior as-
sumptions of the Arctic ice cover’s optical properties. Using
only a relatively small dataset, consisting of measurements of
Tchl a concentration, snow depth, ice thickness and irradi-
ance, we successfully estimated spectral attenuation coeffi-
cients for each defined layer of the ice cover. Although our
model’s treatment of the ice cover is not as detailed as those
of the aforementioned radiative transfer models, its strong
performance and agreement with previous results indicate
that it provides a relatively simple way to independently
estimate the effects of covariates on spectral optical depth
and to verify the legitimacy of these effects. More generally, it
shows that FDA can be used to model relationships, estimate
quantities and validate previous results in the Arctic marine
ecosystem in a straightforward and versatile way. The use of
statistical methods also allows for rigorous scrutiny of results
through significance testing and error analysis.
Future work will involve refinements to the model

presented here, which was limited in its treatment of factors
such as reflectance by the simplicity of the dataset. We will
also attempt to use similar FDA techniques to predict chl a
concentrations using transmitted spectral irradiance meas-
urements. Using such techniques in conjunction with
irradiance measurements made by ROVs across wide
spatio-temporal regions (e.g. Nicolaus and Katlein, 2013)
would facilitate large-scale, non-destructive estimation of
algal biomass, a critically important contribution consider-
ing the destructiveness and difficulty associated with direct
algal measurements (Mundy and others, 2007). Further-
more, we will explore the possibility of analysing changes in
the Arctic ice cover’s optical properties over time by
applying our models to similar datasets taken from Resolute
Passage in different years and comparing the estimated
coefficients. These uses of functional data analysis provide
the potential for crucial new insights into the changing
Arctic ice cover and marine ecosystem.
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