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The Holmboe wave instability is one of the classic examples of a stratified shear
instability, usually explained as the result of a resonance between a gravity wave and
a vorticity wave. Historically, it has been studied by linear stability analyses at infinite
Reynolds number, Re, and by direct numerical simulations at relatively low Re in the
regions known to be unstable from the inviscid linear stability results. In this paper,
we perform linear stability analyses of the classical ‘Hazel model’ of a stratified shear
layer (where the background velocity and density distributions are assumed to take the
functional form of hyperbolic tangents with different characteristic vertical scales) over
a range of different parameters at finite Re, finding new unstable regions of parameter
space. In particular, we find instability when the Richardson number is everywhere
greater than 1/4, where the flow would be stable at infinite Re by the Miles–Howard
theorem. We find unstable modes with no critical layer, and show that, despite the
necessity of viscosity for the new instability, the growth rate relative to diffusion of the
background profile is maximised at large Re. We use these results to shed new light
on the wave-resonance and over-reflection interpretations of stratified shear instability.
We argue for a definition of Holmboe instability as being characterised by propagating
vortices above or below the shear layer, as opposed to any reference to sharp density
interfaces.

Key words: stratified flows

1. Introduction
Stably stratified shear flows are ubiquitous in the oceans and atmosphere. Their

instabilities are believed to be relevant to a variety of geophysical processes, and
understanding them is important, for example, in the irreversible mixing of fluid of
different densities in the abyssal ocean to close ocean energy budgets. The classical
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example of a shear instability is the Kelvin–Helmholtz instability (KHI) of a uniform
sheet of vorticity. Generally, this instability is damped when a stable stratification
is introduced, and the linear instability is no longer found when the minimum
Richardson number, quantifying the strength of stratification to shear effects, exceeds
one quarter (Drazin 1958; Howard 1961; Miles 1961). However, if a sharp density
interface is considered, a qualitatively different, propagating instability is instead
found (Holmboe 1962; Hazel 1972). This so-called Holmboe wave instability (HWI),
or just ‘Holmboe instability’, is believed to be due to an interaction between internal
gravity waves on the density interface and vorticity waves on either side of the shear
layer. It is hypothesised to be important for ocean mixing (Salehipour, Caulfield &
Peltier 2016), as sharp interfaces are naturally occurring at high Prandtl numbers.

One important result is the Miles–Howard theorem (Howard 1961; Miles 1961),
which states that, in the inviscid case, a stratified shear profile is linearly stable so
long as the local or gradient Richardson number Rig (defined precisely below in § 2)
is everywhere greater than one quarter. For flows in which HWI is usually studied,
including the piecewise linear profile of Holmboe (1962) and the one-sided profile of
Baines & Mitsudera (1994), as well as the smooth profile studied by Hazel (1972),
Rig is vanishingly small away from the shear layer, so the theorem does not apply,
despite arbitrarily large bulk Richardson numbers (also defined more precisely in § 2).
On the other hand, when the bulk Richardson number Rib is small, the internal waves
are not strong, and so KHI is preferred over HWI.

Though the Miles–Howard theorem is only proven for inviscid flows, a Richardson
number of one quarter is often employed as a criterion for stability in oceanography
and related fields. It is argued from this that a density interface must be narrow
compared with the shear layer for HWI to be present (Thorpe 2005), quantified
by the ratio R of shear layer thickness to buoyancy interface thickness being high.
However, Miller & Lindzen (1988) showed that it is possible to have shear instabilities
when Rig> 1/4 everywhere if viscosity is introduced. This leads to the possibility that
HWI exists even when R is of order one, when Rig > 1/4, at finite Reynolds number.
Such an instability was demonstrated, for a single specific choice of parameters,
by the authors previously in Parker, Caulfield & Kerswell (2019). This could have
profound implications for our understanding of geophysical processes, since HWI is
known to have very different mixing properties to KHI (Salehipour et al. 2016).

In addition to a succinct proof of the Miles–Howard theorem, Howard (1961) also
proves an important result, now called the Howard semicircle theorem. This states
that for an inviscid, parallel, stratified shear flow, the complex phase speed of any
unstable mode must be located in a semicircle centred about the median velocity on
the real axis, with radius of half the velocity difference. Though difficult to interpret
directly, this has the immediate corollary that the phase speed of any instability
must lie between the maximum and minimum velocities of the flow. For a smooth
velocity profile, this means that there certainly exists a critical layer, at which the
phase velocity equals the flow velocity, and the Taylor–Goldstein equation (see § 2)
becomes singular. The behaviour of instabilities at the critical layer is a well-studied
field (Maslowe 1986; Troitskaya 1991; Churilov & Shukhman 1996), and leads to the
over-reflection hypothesis discussed below. However, the semicircle theorem is again
only proven for inviscid flows, and we shall see that it does not generalise when
viscosity is taken into account.

Two different physical interpretations of stratified shear instabilities exist in the
literature. The first, suggested originally by Taylor (1931), developed by Garcia
(1956), Cairns (1979), Caulfield (1994) and Baines & Mitsudera (1994), and reviewed
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in detail by Carpenter et al. (2013), is the idea that a pair of waves can phase lock and
mutually amplify one another if configured correctly. This leads to the classification
of three canonical instabilities: KHI, the resonance of two vorticity waves; HWI, the
resonance of a vorticity and an internal wave; and the so-called ‘Taylor–Caulfield’
instability (Taylor 1931; Caulfield et al. 1995), the resonance of two internal waves.
In practice, the distinction between these is not clear cut (Carpenter, Balmforth &
Lawrence 2010; Eaves & Balmforth 2019). In this paper, we shall argue that any
instability with zero phase speed in flows with a single density interface should
be defined as KHI and any instability with a propagating localised vortex should be
defined as HWI. The reason for this proposed classification is based on the qualitative
nonlinear evolutions, as will become clear in § 4.

There is good evidence that an interaction of a gravity and a vorticity wave
is responsible for (at least inviscid) HWI. For instance, Alexakis (2005) discovered
additional bands of instability at higher Rib, which seem to be caused by the resonance
of a higher-order gravity wave harmonic with the vorticity wave. In the piecewise
linear model, directly considering the interaction of the two waves in isolation leads
to accurate prediction of the band of instability (Baines & Mitsudera 1994; Caulfield
1994). One major problem with this wave-resonance description is that it does not
account for the Miles–Howard theorem. It is not clear why, with a broader density
interface, the waves should no longer be able to resonate and cause instability. Further,
although KHI seems to be related to an interaction of two vorticity waves, the theory
has not yet been able to explain the damping of this instability as Richardson number
is increased.

A different perspective, developed by R.S. Lindzen and coauthors, and reviewed
in Lindzen (1988), is based on the idea that when the local Richardson number
is less than one quarter, the critical layer of a normal-mode wave incident on a
stratified shear layer will ‘over-reflect’, and in the correct configuration, this may lead
to exponential growth. This theory, although harder to understand intuitively than
the wave-resonance picture, is attractive as it explicitly includes the Miles–Howard
criterion. However, Smyth & Peltier (1989) showed that while wave over-reflection
could accurately predict KHI and HWI in isolation, near the transition between the
two, the theory was insufficient. In particular, there exist regions of parameter space
where KHI exists, so the critical layer is located where the velocity vanishes, and yet
Rig > 1/4 here so over-reflection is not expected.

In this paper, we perform linear stability analyses over a wide range of parameters
for the ‘Hazel model’ (Hazel 1972), including viscosity, which has usually been
omitted in the past (Hazel 1972; Smyth & Peltier 1989; Alexakis 2005, 2009). As
well as finding a clear continuation of the classic inviscid HWI at values of R for
which it is known to exist, we also find instability at much lower R, with growth
rates which vanish as Reynolds number is increased. We term this new instability the
viscous Holmboe instability (VHI), and demonstrate that it has many similarities to
the classic HWI. Our results suggest that while the wave interaction theory gives a
useful interpretation of the phenomenology, neither this nor the over-reflection theory
is useful as a necessary or sufficient criterion to predict instability. We shall see
that results from inviscid theory are not relevant here with viscosity present, even
in situations where the Reynolds number is sufficiently high that a ‘frozen flow’
approximation is valid, and the diffusion of the background velocity and density
distributions is not thought to be significant.

The remainder of the paper is organised as follows. In § 2, we present the
assumptions made and the equations solved. In § 3, linear stability analyses are
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presented over a wide range of different parameters, and the fastest growing
Holmboe modes are tracked and discussed as Reynolds number and R are varied.
Section 4 shows the nonlinear evolution of VHI at parameter values for which we
expect it to grow fastest, and we compare this against the evolution of the classic,
inherently inviscid HWI. In § 5, the results are discussed with particular emphasis on
interpretation through wave resonance and over-reflection.

2. Equations
In this paper, we consider only two-dimensional perturbations to the background

flow. This is a common assumption, by appealing to the results of Squire (1933) and
Yih (1955), who showed that any three-dimensional normal mode can be associated
with a two-dimensional one with smaller Richardson number and larger Reynolds
number. However, this is not necessarily sufficient to show that the fastest growing
mode is always a two-dimensional one (Smyth & Peltier 1990). We discuss this
further in § 5.

An infinitesimal normal-mode perturbation with vertical velocity w(x, z, t) =
ŵ(z)eik(x−ct) to an inviscid Boussinesq flow with velocity profile U(z) and buoyancy
profile B(z) must satisfy the well-known Taylor–Goldstein equation

(U − c)(∂2
z − k2)ŵ−Uzzŵ=−

Bz

U − c
ŵ. (2.1)

Here, k is the streamwise wavenumber of the perturbation, and c = cr + ici is the
complex phase speed, so that the growth rate of a disturbance is given by σ = kci.

When kinematic viscosity ν∗ and diffusivity of the buoyancy distribution κ∗ are
taken into account, (2.1) becomes the more complicated pair of equations

(U − c)(∂2
z − k2)ŵ−Uzzŵ= ikb̂+

1
ik

1
Re
(∂2

z − k2)2ŵ,

(U − c)b̂+
1
ik

Bzŵ=
1
ik

1
PrRe

(∂2
z − k2)b̂, Re≡

U∗0d∗0
ν∗
; Pr≡

ν∗

κ∗
,

 (2.2)

where length scales and time scales have been non-dimensionalised using the half-
depth d∗0 of the shear layer, and half the velocity difference U∗0 across the shear layer,
leading to a conventional definition of the Reynolds number, Re, and Pr is the usual
Prandtl number.

Following Hazel (1972) and many subsequent authors, we consider the ‘Hazel’
model for the background velocity and buoyancy distributions

U(z)= tanh z, B(z)=
J
R

tanh Rz; R≡
d∗0
δ∗0
; J ≡

B∗0d∗0
U∗20

, (2.3a−d)

where δ∗0 is the (dimensional) half-depth of the background buoyancy layer with
half-difference B∗0 and J is the bulk Richardson number. This is an extension of
the Holmboe model (Holmboe 1960), which has R = 1 and is attractive because
the stability boundary can be found analytically (Miles 1961). It is close to the
self-similar error function profile expected for a diffusing stratified shear layer when
Pr= R2 (Smyth, Klaassen & Peltier 1988). It is important to note that these profiles
are not steady solutions of the viscous Boussinesq equations, but we make the ‘frozen
flow’ approximation (Smyth & Carpenter 2019) which is valid when σ � 1/Re. This
inequality is not always satisfied by the instabilities we find, as discussed in § 3.4.
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The gradient Richardson number Rig, defined as

Rig(z)≡
dB/dz
(dU/dz)2

= J
sech2 Rz
sech4 z

, (2.4)

for the Hazel model flow, which means (for this particular flow) that at the centreline,
Rig(0) = J. For R 6

√
2, J is the minimum of Rig, for

√
2 < R < 2, there are two

minima of Rig < J either side of local maximum z = 0, and for R > 2, Rig→ 0 as
z→∞ and z = 0 is a global maximum (Alexakis 2005). From the Miles–Howard
theorem, we then deduce that inviscid HWI at arbitrarily large J is only possible when
R> 2. In fact, Alexakis (2007) showed that HWI only exists at all for R> 2, despite
the possibility of instability at J > 1/4 when

√
2< R< 2.

The solution of (2.2) is performed using a MATLAB code from Smyth & Carpenter
(2019). The method is to construct a large matrix eigenvalue problem, using evenly
spaced finite differences. This is a mature code, and additionally the existence
of viscous Holmboe was confirmed in direct numerical simulation (DNS) of the
Boussinesq equations at finite Re and Pr = 1 (Parker et al. 2019). The boundary
conditions are that ∂ŵ/∂z = ∂ b̂/∂z = 0, i.e. frictionless, insulating boundaries, at
z=±Lz, although all of the instabilities we discuss here are centred around the shear
layer, and changing the boundary conditions would not qualitatively affect the results.
All linear stability results are found using 768 finite difference points in the vertical
direction, except for the Lz = 20 case which used 1024 points, and the figures are
generated from a 48× 48 grid of calculated growth rates.

3. Linear stability analyses
Figure 1 shows a typical example of the VHI. There is a clear distinction between

those unstable modes with zero phase speed, which we identify as KHI, and the
modes with non-zero phase speed, which we identify as VHI. Although the existence
of unstable modes at R = 1 with non-zero phase speed was unknown before Parker
et al. (2019), the diagram bears a striking resemblance to the classic stability diagrams
for inviscid HWI for a piecewise linear profile with a density discontinuity (Holmboe
1962, figure 7) and the Holmboe model with R> 2 (Hazel 1972, figure 8). Crucially,
above J = 0.25 on this diagram, the gradient Richardson number of the flow is
everywhere greater than one quarter, and so we expect stability as Re → ∞. In
the inviscid case, as J is increased the dominant KHI mode and a subdominant KHI
mode converge and bifurcate into the pair of HWI modes, with opposite phase speeds.
In the viscous case, the regions of the two instabilities overlap slightly and there is
no clean bifurcation from one to the other. The remainder of this section will explore
how the structure of stability diagrams like figure 1 change as various parameters are
varied.

Figure 2 shows typical eigenmodes of the spanwise vorticity. With R = 1, i.e. a
density interface as wide as the shear layer, no critical layer exists. With R = 3,
the eigenmode is virtually indistinguishable from the Re→∞ case, and a critical
layer is present and clearly manifests itself within the spatial structure of the mode.
Both of these modes have an equivalent mode associated with the complex conjugate
eigenvalue, which is identical except for a reflection in the centreline. In the R = 1
case, we also note that the growth rate is maximised at a much lower wavenumber.

Table 1 shows the full list of parameters for which stability diagrams were produced.
For each diagram, we find the maximum growth rate for VHI, i.e. the maximum of
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FIGURE 1. Stability diagram for the Hazel model flow profile as defined in (2.3) with
R= 1, Re= 500, Pr= 1, with boundaries at z=±Lz=±15. The contours show the growth
rate of two-dimensional normal-mode perturbations of wavenumber k, at bulk Richardson
number J. The colours show the phase speed. The lower region, up to J = 0.25, is KHI
with zero phase speed. The upper lobe is the VHI, with non-zero phase speed. The dashed
line shows the analytic stability boundary J = k(1 − k) for an unbounded domain in
the inviscid limit (Miles 1961). In this, and all the stability diagrams in this paper, a
waviness is apparent near stability boundaries. This is a common problem in such stability
diagrams (Hogg & Ivey 2003; Smyth & Winters 2003; Carpenter et al. 2010, 2013), and
is associated with interpolating near sharp changes of gradient in contour plots.
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FIGURE 2. Vorticity field for the most unstable VHI mode for R = 1 (J = 0.2128, k =
0.1042, a) and R= 3 (J= 0.8085, k= 0.5208, b). In the latter case, a critical layer exists
at z= 0.63437 and is marked with a dashed line.

σ such that the phase speed cr is non-zero, maximised over the discretised values of
k and J. Since the grids are relatively coarse, the values will not be the true maxima
as no optimisation algorithm has been employed, but they give a strong indication of
the trend.
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Re R Pr Lz σmax cmax
r Jmax kmax Figure

500 1 1 15 0.002031 1.114 0.21277 0.10417 1
500 1 1 10 0.0019489 1.1152 0.21277 0.0625 3a
500 1 1 20 0.0020869 1.1363 0.12766 0.041667 3b
500 1 0.7 15 0.0027958 1.1185 0.21277 0.10417 4a
500 1 7 15 0.00056834 1.2536 0.17021 0.020833 4b
500 0.5 0.25 15 0.0003781 1.557 0.12766 0.041667 5a
500 1.5 2.25 15 0.0032918 1.0156 0.29787 0.10417 5b
500 2 4 15 0.0033963 0.88215 0.38298 0.125 5c
500 3 9 15 0.031314 0.56129 0.80851 0.52083 5d
5.5 1 1 15 0.0014049 1.4289 0.29787 0.125 6
6 1 1 15 0.0025824 1.2608 0.21277 0.125 6
7 1 1 15 0.0039878 1.2708 0.25532 0.14583 6
10 1 1 15 0.0067811 1.2525 0.25532 0.14583 6
15 1 1 15 0.0092699 1.2498 0.34043 0.1875 6
20 1 1 15 0.01023 1.2336 0.34043 0.1875 6
25 1 1 15 0.010546 1.2515 0.34194 0.175 6
30 1 1 15 0.010542 1.2334 0.35806 0.1875 6
40 1 1 15 0.01 1.2446 0.34043 0.16667 6
100 1 1 15 0.0069558 1.1762 0.25532 0.125 6
200 1 1 15 0.0044792 1.1263 0.21277 0.10417 6
400 1 1 15 0.0025701 1.1279 0.17021 0.0625 6
1000 1 1 15 0.0011049 1.1183 0.17021 0.0625 6
2000 1 1 15 0.00057664 1.0722 0.13226 0.025 6
4000 1 1 15 0.0002994 1.0854 0.13226 0.0125 6
10 000 1 1 15 0.00012168 1.0827 0.13226 0.0125 6

TABLE 1. The various parameters used for the linear stability diagrams, as well as the
maximum growth rate σmax of VHI for each set of parameters, and the phase speed cmax

r ,
wavenumber kmax and bulk Richardson number Jmax at which they occur.

3.1. Effects of domain height

The instabilities we study, KHI and HWI, were originally derived as solutions to
the Taylor–Goldstein equation in an unbounded domain. There are several ways to
approximate a domain of infinite height numerically, but we choose the simplest,
which is to use a domain of sufficiently large, but finite, height. How large is
sufficient is an important question, as a very large domain is computationally
inefficient. Certainly as the height gets small compared with the wavelength of the
instabilities we expect the results to change dramatically, and Hazel (1972) noted how
the diagrams always differ from the analytic, unbounded results at low wavenumbers.
Figure 3 shows the same diagram as figure 1, but at a smaller (figure 3a) and a larger
(figure 3b) domain height. Although the results are slightly different, qualitatively they
are very similar, especially for Lz = 20, with Lz = 10 showing more instability at low
wavenumbers. The maximum growth rate of the VHI region is σ = 1.9489× 10−3 for
Lz = 10 and σ = 2.0869 × 10−3 for Lz = 20, compared with σ = 2.0310 × 10−3 for
Lz = 15, suggesting that Lz = 15 is sufficient to capture the behaviour in which we
are interested.
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FIGURE 3. As for figure 1, but with Lz = 10 (a) and Lz = 20 (b).
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FIGURE 4. As for figure 1, but with Pr= 0.7 (a) and Pr= 7 (b).

3.2. Effects of Prandtl number
Figure 4 shows the effect on the stability diagram of varying the Prandtl number. For
Pr= 0.7 (characteristic of thermally stratified air), we find a maximum growth rate of
σ = 2.7958× 10−3, and for Pr = 7 (a typical value for thermally stratified water) of
σ =5.6834×10−4, compared with σ =2.0310×10−3 for Pr=1. Therefore, decreasing
the diffusion of buoyancy seems to have a stabilising effect on VHI. In contrast, the
KHI at the bottom of the figure is virtually unchanged as Pr is varied by an order
of magnitude, which reinforces the idea that KHI is produced by the shear alone.
Jones (1977) found strong instability at very low Pr, but we believe this to be a
different effect.

Henceforth, we give results using Pr = R2, as proposed by Smyth et al. (1988).
Despite the fact that the instability seems to be destabilised when Pr is reduced, it
is also stabilised when R is decreased, as we shall see.

3.3. Effects of R
So far, the results we have presented have concentrated on R=1, the original Holmboe
model. However, in the inviscid limit, HWI exists only for R > 2 (Alexakis 2007).
Figure 5 shows the stability diagram at Re= 500 over a range of R, with Pr=R2. All
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FIGURE 5. As for figure 1, but with (a) R = 0.5, Pr = 0.25, (b) R = 1.5, Pr = 2.25,
(c) R= 2, Pr= 4, (d) R= 3, Pr= 9. Only the last of these would exhibit HWI at Re=∞.

diagrams show a region of instability with non-zero phase speed, which we identify
as VHI. In the case R = 3, the diagram is very similar to the classical diagram of
an inviscid fluid (Hazel 1972). The unstable region above the usual band, at low
wavenumbers, has cr > 1, so there is no critical layer. As R→ 2 from above, the
inviscid results suggest that the band should narrow to a line (Alexakis 2005), but
instead we see a significant region of instability. In the diagrams for R=1.5 and R=2,
a second band of instability is observed above the first, with reduced phase speed, and
we conjecture that this may be connected with the higher Holmboe modes. This has
not been investigated further, as the growth rate here is vanishingly small.

In all cases, although it is not clear from the truncated diagrams, the instability is
suppressed at large k by viscosity. This is in contrast to the inviscid limit, which has
instability at arbitrarily large k and J. It is only in this large k limit that the wave
interaction arguments can be made rigorous.

3.4. Effects of Reynolds number
The Miles–Howard theorem tells us that VHI at R= 1 must disappear for J> 1/4, in
the inviscid limit Re→∞. This leaves many possibilities: (i) the region of instability
could retreat below J=1/4; (ii) the region could shrink; or (iii) the growth rates could
vanish but the region remain a constant size. There may or may not be some finite
Re above which VHI does not exist. It is also important to ask at what value of Re
the growth of the instability is the fastest, or indeed the relative growth rate compared
with the diffusion of the background profile.
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FIGURE 6. (a) The growth rate σ (left axis) and relative growth rate σRe (right axis),
maximised over k and J, for VHI at R= 1, Pr= 1, as Re varies. (b) Growth rate against
J and Re, maximised over k, for R= 1 and Pr= 1. The band at the bottom of the figure is
KHI, destabilised as Re increases. The upper region with J & 1/4 is VHI, clearly stabilised
as Re increases.

The growth rate is maximised between Re= 25 and Re= 30, with value σ ≈ 0.0105.
The relative growth rate σRe, which is required to be large compared with unity for
a physically relevant instability, was found to increase with Re (at least until Re =
10 000), which is a curious result, since it means that despite the growth rate being
maximised at a very low value of Re, in practice we are more likely to observe the
instability at much higher Re.

The critical Reynolds number Rec for the viscous Holmboe instability at R=1, Pr=
1, below which there is no instability except KHI, was found to be Re = 4.615. At
criticality, the instability appears at J = 0.25 and k = 0.12. This is in contrast with
KHI, which at J= 0 was found to have Rec= 0 (Betchov & Szewczyk 1963). In that
case, viscosity has a purely stabilising effect. Figure 6 shows how the growth rate
varies with Re.

3.4.1. Asymptotic behaviour at high Re
The fact that some of the VHI do not have a critical layer (cmax

r > 1 in Table 1)
suggests a regular perturbation analysis may be sufficient to capture the effect of high
but finite Re. Defining a perturbation parameter ε := 1/Re� 1, we may rewrite (2.2)
as

L0(c)
(

ŵ
b̂

)
= εL1

(
ŵ
b̂

)
, (3.1)

where we have defined linear operators

L0(c) :=

(U − c)(∂2
z − k2)−Uzz −ik
1
ik

Bz (U − c)

 (3.2)

and

L1 :=
1
ik

(
(∂2

z − k2)2 0

0
1

Pr
(∂2

z − k2)

)
. (3.3)
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Adopting the expansions (
ŵ
b̂

)
=

(
ŵ0

b̂0

)
+ ε

(
ŵ1

b̂1

)
+O(ε2),

c= c0 + εc1 +O(ε2),

(keeping k fixed), then

L0(c)=L0(c0)+ εc1L′0 +O(ε2), (3.4)

where

L′0 :=
∂L0

∂c
=

(
−(∂2

z − k2) 0
0 −1

)
. (3.5)

Inserting these expansions into (3.1), we have

L0(c0)

(
ŵ0

b̂0

)
+ εL0(c0)

(
ŵ1

b̂1

)
+ εc1L′0

(
ŵ0

b̂0

)
= εL1

(
ŵ0

b̂0

)
+O(ε2). (3.6)

At leading order, the inviscid Taylor–Goldstein equation is recovered,

L0(c0)

(
ŵ0

b̂0

)
= 0, (3.7)

which by the Miles–Howard theorem has only wavelike solutions c0 ∈R when R= 1
and J> 1/4. In this case, the diagonal elements of L0(c) are real and the off-diagonal
elements are purely imaginary, so that for a solution we must have arg b̂0 = arg ŵ0 ±

π/2 in the absence of a critical layer. Without loss of generality, we may choose the
phase so that ŵ0 is real and b̂0 is purely imaginary.

With an inner product on the space of vectors〈(
w1
b1

)
,

(
w2
b2

)〉
:=

∫ Lz

Lz

(w∗1w2 + b∗1b2) dz, (3.8)

we may define the adjoint operator L†
0(c) to L0(c) via〈(

w1
b1

)
,L0(c)

(
w2
b2

)〉
=

〈
L†

0(c)
(

w1
b1

)
,

(
w2
b2

)〉
, (3.9)

which gives

L†
0(c) :=

(
(∂2

z − k2)(U − c)Uzz −
1
ik

Bz

ik (U − c)

)
. (3.10)

The existence of a non-trivial solution to (3.7) implies a non-trivial solution to

L†
0(c0)

(
ŵ†

0

b̂†
0

)
= 0, (3.11)

which is the adjoint eigenfunction. Again, we can choose ŵ†
0 to be real and b̂†

0 to be
imaginary.
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The O(ε) terms in (3.6) give

L0(c0)

(
ŵ1

b̂1

)
=L1

(
ŵ0

b̂0

)
− c1L′0

(
ŵ0

b̂0

)
, (3.12)

so taking the inner product with the adjoint eigenfunction, we have〈(
ŵ†

0

b̂†
0

)
,L0(c0)

(
ŵ1

b̂1

)〉
=

〈(
ŵ†

0

b̂†
0

)
,L1

(
ŵ0

b̂0

)〉
− c1

〈(
ŵ†

0

b̂†
0

)
,L′0

(
ŵ0

b̂0

)〉
. (3.13)

The left-hand side of this equation is zero by construction, and so

c1 =

〈(
ŵ†

0

b̂†
0

)
,L1

(
ŵ0

b̂0

)〉
〈(

ŵ†
0

b̂†
0

)
,L′0

(
ŵ0

b̂0

)〉 . (3.14)

Observe from (3.3) and (3.5) that L1 and L′0 are purely imaginary and real
respectively. By our choice of phase it is clear that the numerator is therefore
imaginary and the denominator real, so c1 is purely imaginary. It can be similarly
shown that c2 is real so the next contribution to the growth rate is at O(1/Re3). We
further observe that both L1 and c1L′0 are purely imaginary, so from (3.12) we deduce
that ŵ1 and b̂1 are purely imaginary and real respectively, the opposite situation to
ŵ0 and b̂0.

We compute c1, and thus the growth rate of the instability as Re becomes large
σ =−ikc1/Re+O(1/Re3), using (3.14) as follows. First, we make an initial guess of
c0 from the real part of c from a numerical linear stability analysis at Re = 10 000.
Secondly, we use this approximate c0 in the inverse iteration eigenvalue algorithm to
solve both (3.7) and (3.11). Finally, we directly evaluate (3.14) using a trapezoidal
quadrature rule for the inner products.

The results for two sample parameter values are shown in figure 7(a). Figure 7(b)
shows calculated zeroth- and first-order modes. We thus see that the viscous Holmboe
modes are a destabilisation of a stable, propagating mode in the inviscid limit.
Viscosity acts to break the exact π/2 phase difference between the vertical velocity
and the buoyancy modes. The fact that VHI varies smoothly between modes with and
without critical layers, in particular in figure 5(c), suggests this regular perturbation
analysis will extend to the case where a critical layer exists, and that the critical
layer is not important to the dynamics.

4. Nonlinear evolution
Smyth & Peltier (1990) showed that at low Reynolds numbers, the linear evolution

of HWI is insufficiently fast to overcome the diffusion of the background flow. This
leads to the possibility that VHI, for which the growth rates are always small, never
physically manifests when the background flow is allowed to diffuse. We consider the
nonlinear evolution, which allows us to see whether the viscous Holmboe instability
develops the classic counter-propagating vortices of HWI. We use the same DNS code
as Parker et al. (2019) to solve the full Boussinesq equations, which is pseudospectral
in the streamwise direction and utilises finite differences in the vertical. In the present
case, the background flow is allowed to diffuse.
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FIGURE 7. (a) Asymptotic (dashed) and numerical (solid) values of growth rate for VHI
at J= 1, k= 0.5 (lower) and J= 0.5, k= 0.25 (upper). (b) Modes for the J= 0.5, k= 0.25
case. The zeroth order modes have been scaled for clarity. In both panels, R= 1, Pr= 1
and Lz = 15, corresponding to figure 1.

Here we present the results of two direct numerical simulations (restricted to two
dimensions) with R= 1.5, a case for which no HWI is predicted in the inviscid limit.
We take Re= 4000, a compromise between maximising the relative growth rate (see
§ 3.4) and minimising the spatial resolution. We chose a domain width of Lx = 20,
which permits multiple unstable modes. Figure 8 shows the results of a calculation
with J= 0.1, for which we expect a Kelvin–Helmholtz instability to develop to finite
amplitude. A linear stability analysis predicts exponential growth rates of σ = 0.1244
and σ = 0.0981 for mode 1 and mode 2 disturbances (k = π/10 and k = π/5)
respectively, in both cases with zero phase speed. We use a relatively large initial
perturbation of random noise in low wavenumber Fourier and Hermite modes, which,
along with the comparable growth rates for the two unstable modes, leads to an
incoherent, but nevertheless recognisable, Kelvin–Helmholtz billow. At the large Re
studied, this rapidly breaks down into turbulence, and significant mixing is achieved,
although it is important to remember that this DNS is restricted to two dimensions,
and so the specific characteristics of the mixing are likely to be unphysical.

Figure 9 shows the same calculation with J=0.67, which maximises the growth rate
for VHI at this wavenumber. Again, both modes 1 and 2 are unstable, with growth
rates σ = 4.1121 × 10−4 and σ = 1.7012 × 10−4 respectively, and phase velocities
cr=±1.0211 and cr=±1.0056. Since the phase speeds are greater than 1, no critical
layer exists for these instabilities. In this case, the relative growth rate clearly does
not satisfy σRe� 1, so we require a large initial perturbation to trigger significant
instability. The strong asymmetry of this random perturbation means that a Holmboe
‘wave’ is apparent only on one side of the interface. Despite the lack of a critical layer,
a ‘cusped wave’ very reminiscent of classic HWI (Alexakis 2009; Salehipour et al.
2016) is apparent, and grows large enough for a clear vortex to be apparent. This
vortex is responsible for some mixing, which can be observed when comparing the
long time vorticity distribution above the interface, where the vortex exists, to below,
where no strong VHI was triggered. However, this mixing is relatively weak compared
with the diffusion of the background profile. It is difficult to define a speed precisely
for the nonlinear wave, but it appears to be close to 1. Both the background flow
velocity at the level of the vortices and the phase velocity of the linear instability
are also approximately equal to 1. Animations of both evolving flows are available as
supplementary materials.
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FIGURE 8. The total vorticity field of a two-dimensional nonlinear simulation of the
Boussinesq equations at Re = 4000, Pr = 2.25, Lx = 20, Lz = 10 and J = 0.1. The
initial state is a background field with R = 1.5, plus a perturbation of random noise in
the first sixth of the horizontal Fourier modes, and the first five Hermite polynomials
in the vertical. Two domain widths are shown horizontally: (a) t = 0, showing the
random initial conditions; (b) t = 20, showing the Kelvin–Helmholtz billow that has
begun to develop; (c) t = 40, showing that the billow has saturated and is starting to
break down; (d) t = 60, showing that the KHI has led to (two-dimensional) turbulence.
An animation of the evolving flow is available as supplementary movies 1 and 2
at https://doi.org/10.1017/jfm.2020.340.

5. Discussion and conclusions
In this paper, we have described a new, inherently viscous instability and have

demonstrated that it shares many of the characteristic features of the classic, inviscid
Holmboe wave instability, namely manifesting as a propagating vortex on either side
of the mixing layer and appearing to be caused by the interaction of internal gravity
waves on a shear interface. Since it exists in regions of parameter space where
no instability is predicted in the inviscid limit, we term it the viscous Holmboe
instability, or VHI. The instability we have described is distinct from the ‘viscous
Holmboe wave instability’ found by Eaves & Caulfield (2017) in plane Couette
flow, which required non-slip and non-penetration effects in the presence of a rigid
boundary, whereas we have shown that boundaries only weakly affect the instability,
and the VHI discussed here is truly an instability of a stratified shear layer. Despite
the similarities to inviscid HWI, it has significant differences from the classical case:
it exists when the density interface is not sharp compared with the shear layer; it can
have a phase speed greater than the maximum fluid velocity; and it is destabilised
by viscosity. When there is no critical layer, a simple perturbation analysis shows
that the VHI arises by viscosity disrupting the perfectly out-of-phase velocity and
buoyancy components of the neutrally stable inviscid limit. Our work has made the
‘frozen flow’ approximation that requires σ to be large compared with 1/Re for the
instability to grow quickly compared with the diffusion of the background profile,
but we did not find this to be the case. Indeed, our perturbation analysis shows that
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FIGURE 9. As for figure 8, but with J = 0.4355: (a) t = 0, showing the random initial
conditions; (b) t = 20, showing that a ‘cusped wave’ is apparent, characteristic of HWI
at finite amplitude; (c) t= 35, showing that a leftwards-propagating vortex is now visible
above the shear layer; (d) t= 110, showing that the vortex has weakened as the mixing
layer diffuses away. An animation of the evolving flow is available as supplementary
movies 3 and 4.

σ ∼ 1/Re as Re→∞. Numerically, we find that σ is small compared with 1/Re
when Re . 102, despite the fact that σ is maximised for Re≈ 25 and only just rises
above 1/Re for Re & 103. This leads to the curious situation that although this is an
instability which requires viscosity to exist, the effect of the instability relative to the
diffusion of the background flow appears to be greater as Re is increased.

This work is a study of how viscosity affects the Holmboe wave instability as
certain parameters are varied. There are many possible extensions which have been
examined for (classic) HWI, including considering the effects of compressibility
(Witzke, Silvers & Favier 2015), surface tension (Pouliquen, Chomaz & Huerre 1994),
and relaxing the Boussinesq approximation (Umurhan & Heifetz 2007; Churilov 2019).
We briefly investigated the possibility that the higher Holmboe modes described by
Alexakis (2005, 2007, 2009) are also destabilised by viscosity at low R, and did
indeed find a further band of instability with very small growth rates. Our work has
been entirely restricted to two dimensions. Although this is a common assumption
when studying linear instabilities of shear flows, there is no physical basis for this, and
indeed we would fully expect to see the fastest growing mode being three-dimensional
in some regions of parameter space, based on the results of Smyth & Peltier (1990).
A third dimension would also significantly affect the nonlinear evolution of the
instability at high Re.

Despite the lack of a sharp density interface relative to the shear layer for the
parameters for which we have found instability, we would certainly still expect
internal gravity waves to be present on the interface. There is no reason we are
aware of, a priori, to think that these could not resonate with the vorticity waves
to cause instability. The wave-resonance descriptions of stratified shear instabilities
have been mainly qualitative, except in the cases of piecewise constant density and
vorticity profiles, which would be physically inconsistent at finite viscosity. Recent
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attempts to analyse the components of resonances (Carpenter et al. 2010; Eaves
& Balmforth 2019) and to understand better the dynamics of the resonant system
(Heifetz & Guha 2018, 2019) have relied on analysis which requires perturbations
to be inviscid, and these certainly would not apply in the low Re regimes we have
described. Though the theory of wave resonance has given useful insight in many
situations, it is clearly not the full picture. One major outstanding question is how the
Miles–Howard criterion may relate to the wave resonance picture. Baines & Mitsudera
(1994) give an argument from critical layer theory, although the authors themselves
admit that this gives neither a necessary nor sufficient criterion for stability.

Most of the unstable regions of the viscous Holmboe instability for R 6 2 have
|cr| > 1, so there is no critical layer. Therefore, Lindzen’s wave over-reflection
hypothesis for the mechanism of stratified shear instabilities, as well as other
interpretations based on the existence of a critical layer, such as the wave–particle
interaction described by Churilov (2019), cannot apply. This is in contrast with the
viscous instability described by Miller & Lindzen (1988), in which the viscosity was
thought to enable over-reflection at the critical layer. As discussed by Smyth & Peltier
(1989), it could be possible that the instability is associated with over-reflection of a
wave with a different phase speed, which therefore could itself have a critical layer,
but this makes an intuitive explanation much harder. Since the wave over-reflection
theory is not a predictive explanation of the instability in this case, it does not seem
useful here, although it has certainly proven important in many other circumstances.

Under carefully controlled parameters, we have been able to show significant
nonlinear growth of the viscous Holmboe instability at R= 1.5 and Re= 4000, from
initial noise, leading to secondary instabilities and transition to disorder. This primary
instability has no critical layer. Nevertheless, most of the regions of instability we
have studied, with R< 2, have much lower growth rates. We conclude that the viscous
Holmboe instability is unlikely to be particularly significant in physical processes. In
addition to this, for typical values of Prandtl number in the atmosphere (Pr ≈ 0.7)
we see very small growth rates and for typical values of Pr ≈ 7 in the oceans, we
see the full classical HWI, since in this case R is usually large.

Despite these caveats, we have demonstrated the definite existence of an instability
which bears a striking resemblance to HWI, but violates many of the supposed
prerequisite conditions. We therefore suggest that any instability in a stratified shear
layer be considered Holmboe instability if it manifests as propagating vortices on
either side of the shear layer, regardless of the relative width of the density interface,
the presence of critical layers or the minimum value of the gradient Richardson
number.
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