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The molten sand that is a mixture of calcia, magnesia, alumina and silicate, known as
CMAS, is characterized by its high viscosity, density and surface tension. The unique
properties of CMAS make it a challenging material to deal with in high-temperature
applications, requiring innovative solutions and materials to prevent its buildup and
damage to critical equipment. Here, we use multiphase many-body dissipative particle
dynamics simulations to study the wetting dynamics of highly viscous molten CMAS
droplets. The simulations are performed in three dimensions, with varying initial droplet
sizes and equilibrium contact angles. We propose a parametric ordinary differential
equation (ODE) that captures the spreading radius behaviour of the CMAS droplets.
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The ODE parameters are then identified based on the physics-informed neural network
(PINN) framework. Subsequently, the closed-form dependency of parameter values found
by the PINN on the initial radii and contact angles are given using symbolic regression.
Finally, we employ Bayesian PINNs (B-PINNs) to assess and quantify the uncertainty
associated with the discovered parameters. In brief, this study provides insight into
spreading dynamics of CMAS droplets by fusing simple parametric ODE modelling and
state-of-the-art machine-learning techniques.

Key words: drops, computational methods, machine learning

1. Introduction

Recent advancements in machine learning have opened the way for extracting governing
equations directly from experimental (or other) data (Brunton, Proctor & Kutz 2016; Ren
& Duan 2020; Delahunt & Kutz 2022). One particularly exciting use of machine learning
is the extraction of partial differential equations (PDEs) that describe the evolution and
emergence of patterns or features (Lee et al. 2020; Thiem et al. 2020; Meidani & Farimani
2021; Kiyani et al. 2022).

Spreading of liquids on solid surfaces is a classic problem (de Gennes 1985; Bonn et al.
2009). Although the theoretical foundations were laid by Young and Laplace already in
the early 1800s (de Laplace 1805; Young 1805), there are still many open questions, and it
remains a highly active research field especially in the context of microfluidics (Nishimoto
& Bhushan 2013) as well as in the design of propulsion materials (Jain et al. 2021). As
discussed in detail in the review of Popescu et al. (2012), there are two fundamentally
different cases: non-equilibrium spreading of the droplet, and the case of thermodynamic
equilibrium when spreading has ceased and the system has reached its equilibrium state. In
thermodynamic equilibrium, the Laplace equation relates the respective surface tensions
of the three interfaces via (de Gennes 1985; Popescu et al. 2012)

cos θeq = γSG − γSL

γLG
, (1.1)

where θeq is the equilibrium contact angle, and γSG, γSL and γLG are the surface tensions
between solid–gas, solid–liquid and liquid–gas phases, respectively (see figure 1). Two
limiting situations can be identified, namely, partial wetting and complete wetting. In the
latter, the whole surface becomes covered by the fluid and θeq = 0◦, that is, γSG − γLG −
γSL = 0. When the equilibrium situation corresponds to partial wetting, θeq /= 0◦, it is
possible to identify the cases of high-wetting (0◦ < θeq < 90◦), low-wetting (90◦ ≤ θeq <

180◦) and non-wetting (θeq = 180◦).
When a droplet spreads, it is out of equilibrium, and properties such as viscosity and the

associated processes need to be addressed (de Gennes 1985; Bonn et al. 2009; Popescu
et al. 2012). In experiments, the most common choice is to use high-viscosity liquids
in order to eliminate inertial effects. An early classic experiment by Dussan (1979) gave
a beautiful demonstration of some of the phenomena. She added tiny drops of marker
dye on the surface of a spreading liquid, and observed a caterpillar-type rolling motion
of the marker on the surface, giving rise to dissipation via viscous friction. Effects of
viscosity and dissipation remain to be fully understood, and they have a major role in
wetting phenomena (Cormier et al. 2012; McGraw et al. 2016; Edwards et al. 2020).
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Figure 1. A schematic showing the equilibrium contact angle (i.e. θ ≡ θeq), the surface tensions (γ ), the
threshold between low- and high-wetting regimes (θeq = 90◦), and a situation of a non-wetting droplet
(θeq = 180◦). The last image demonstrates the occurrence of a precursor that is observed in some cases. In
that case, the (macroscopic) contact angle is defined using the macroscopic part of the droplet, the cap in the
rightmost image. The height of the precursor is in the molecular length scales (Hardy 1919; Nieminen et al.
1992; Popescu et al. 2012).

A theoretical framework for comprehending and describing the behaviour of droplets
during impact and spreading has been proposed by Gordillo, Riboux & Quintero (2019).
They put forth a theoretical framework to elucidate the dynamics of spreading of
Newtonian fluids. In this model, the spreading droplet is conceptualized as having a
thick rim followed by a thin liquid film connected to the bulk of the drop. By employing
principles of mass and momentum conservation along the rim, the liquid film and the
droplet, a set of interconnected differential equations was formulated. The solution to
these equations, considering appropriate boundary conditions, offers a thorough depiction
of how the diameter of a Newtonian drops changes over time when impacting a smooth
surface. Gorin et al. (2022) introduced a universal functional form to develop a model
equation for estimating the time evolution of radial position, enabling predictions of
transient spreading behaviour for both Newtonian and non-Newtonian fluids.

Calcium-magnesium-aluminosilicate (CMAS) is a molten mixture of several oxides,
including calcia (CaO), magnesia (MgO), alumina (Al2O3) and silicate (SiO2). It has
a high melting point, typically around 1240 ◦C (Poerschke & Levi 2015) (although it
can be significantly higher; see e.g. Wiesner, Vempati & Bansal (2016) and references
therein), which allows it to exist in the molten state even at high temperatures encountered
in modern aviation gas turbine engines (Clarke, Oechsner & Padture 2012; Ndamka,
Wellman & Nicholls 2016). With high viscosity, high density and high surface tension,
CMAS tends to form non-volatile droplets with θeq /= 0 rather than completely wetting the
surfaces (Grant et al. 2007; Vidal-Setif et al. 2012; Nieto et al. 2021). When it solidifies,
it forms a glass-like material that can adhere to surfaces and resist erosion. The buildup
of CMAS on turbine engine components can lead to clogging of the cooling passages and
degradation of the protective coatings, resulting in engine performance issues and even
damage or failure (Clarke et al. 2012; Ndamka et al. 2016; Song et al. 2016; Wiesner et al.
2016).

We simplified the CMAS wetting process by studying a fully molten CMAS droplet at
a constant temperature, omitting considerations of surface chemical reactions, viscosity
variations and phase changes. Existing analytical models that predict the spreading
dynamics of highly viscous drops often rely on assumptions such as Stokes flow and
completely wetting surfaces with zero contact angles. Our contribution lies in proposing
a simple and general model for predicting the spreading dynamics for a broad range of
systems, including partially wetting systems with non-zero contact angles.

The spreading of a droplet over a solid surface is commonly characterized using a
power law r ∼ tα , which expresses the radius of the wetted area as a function of time.
The relationship is called Tanner’s law for macroscopic completely wetting liquids at
late times, with α = 1/10 (Tanner 1979; Bonn et al. 2009). Power laws have also been
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demonstrated at microscopic scales (Nieminen et al. 1992). However, several conditions,
such as surface properties, droplet shape and partial wetting, result in deviations from
Tanner’s law (McHale et al. 2004; Cormier et al. 2012; Winkels et al. 2012).

A common method, as the above suggests, for analysing the spreading dynamics is to
investigate the existence of the power-law behaviour. To determine the presence of such
power-law regimes in data, one can simply employ

α(t) = d ln(r)
d ln(t)

. (1.2)

While this has worked remarkably well for complete wetting by viscous fluids, the situation
for partial wetting is different (Winkels et al. 2012). In our study, we investigate the
spreading behaviour of CMAS droplets using multiphase many-body dissipative particle
dynamics (mDPD) simulations. We generalize (1.2) such that it includes dependence
on the initial droplet radius R0 and θeq in order to describe partial wetting, that is,
α ≡ α(t, R0, θeq).

Our objective is to gain a comprehensive understanding of the behaviour of CMAS
droplet spreading dynamics by integrating knowledge about the fundamental physics of
the system into the neural network architecture. To achieve this, we employ the framework
of physics-informed neural networks (PINNs) (Raissi, Perdikaris & Karniadakis 2019), an
emerging machine-learning technique that incorporates the physics of a system into deep
learning. The PINNs address the challenge of accurate predictions in complex systems
with varying initial and boundary conditions. By directly incorporating physics-based
constraints into the loss function, PINNs enable the network to learn and satisfy the
governing equations of the system.

The ability of PINNs to discover equations makes them promising for applications
in scientific discovery, engineering design and data-driven modelling of complex
physical systems (Karniadakis et al. 2021). Their integration of physics-based constraints
into the learning process enhances their capacity to generalize and capture the
underlying physics accurately. Here, we also employ symbolic regression to generate a
mathematical expression for each unknown parameter. Furthermore, we employ Bayesian
physics-informed neural networks (B-PINNs) (Yang, Meng & Karniadakis 2021) to
quantify the uncertainty of the predictions.

The rest of this paper is structured as follows. In § 2, we provide an overview of mDPD
simulation parameters and system set-up. Simulation outcomes and the data preparation
process are presented in § 3. Section 4 gives a brief introduction to the PINNs architecture,
followed by a presentation of the results of PINNs and parameter discovery. The symbolic
regression results and the mathematical formulas for the parameters are presented in § 5.
Section 6 covers the discussion on B-PINNs as well as the quantification of uncertainty in
predicting the parameters. Finally, we conclude with a summary of our work in § 7.

2. Multiphase many-body dissipative particle dynamics simulations

Three-dimensional simulations were performed using the mDPD method (Li et al. 2013;
Xia et al. 2017; Rao et al. 2021), which is an extension of the traditional dissipative particle
dynamics (DPD) model (Español & Warren 1995; Groot 2004); DPD is a mesoscale
simulation technique for studies of complex fluids, particularly multiphase systems, such
as emulsions, suspensions and polymer blends (Ghoufi & Malfreyt 2012; Lei et al. 2018;
Zhao et al. 2021). The relation between DPD and other coarse-grained methods and
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atomistic simulations has been studied and discussed by Murtola et al. (2009), Li et al.
(2016), Chan, Li & Wenzel (2023) and Español & Warren (2017).

In DPD and mDPD models, the position (ri) and velocity (vi) of a particle i with mass
mi are governed by Newton’s equations of motion in the form

dri

dt
= vi,

mi
dvi

dt
= F i =

∑
j /= i

F C
ij + F D

ij + F R
ij .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.1)

The total force on particle i, i.e. F i, consists of three pairwise components, i.e. the
conservative F C, dissipative F D, and random F R forces. The latter two are identical in
DPD and mDPD models, given by

F D
ij = −γ ωD(rij) (vij · eij) eij, (2.2)

F R
ij = ζ ωR(rij) (dt)−1/2ξij eij, (2.3)

where eij is a unit vector, ωD and ωR are weight functions for the dissipative and random
forces, and ξij is a pairwise conserved Gaussian random variable with zero mean and
second moment 〈ξij(t) ξkl(t′)〉 = (δikδjl + δilδjk) δ(t − t′), where δij is the Kronecker delta,
and δ(t − t′) is the Dirac delta function. Together, the dissipative and random forces
constitute a momentum-conserving Langevin-type thermostat. The weight functions and
the constants γ and ζ are related via fluctuation–dissipation relations first derived by
Español & Warren (1995),

ωD = (ωR)2, (2.4)

ζ =
√

2γ kBT, (2.5)

in which kB is the Boltzmann constant, and T is the temperature. This relation guarantees
the canonical distribution (Español & Warren 1995) for fluid systems in thermal
equilibrium. The functional form of the weight function is not specified, but the most
common choice (also used here) is

ωD(rij) =
{
(1 − rij/rd)

s for rij ≤ rd,

0 for rij > rd.
(2.6)

Here, s = 1.0 is used, and rd defines a cutoff distance for the dissipative and random
forces.

Although the above equations are the same for both DPD and mDPD, they differ in their
conservative forces. Here, we use the form introduced by Warren (2001, 2003):

FC
ij = A ωC(rij) eij + B(ρi + ρj)ωB eij. (2.7)

The functional form of both weight functions ωC and ωB is the same as ωD in (2.6), but
with different cutoff distances rc and rb. The first term in (2.7) is the standard expression
for the conservative force in DPD, and the second is the multi-body term. The constants
A and B are chosen such that A < 0 for attractive interactions, and B > 0 for repulsive
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Figure 2. The equilibrium contact angles θeq for the different attraction parameters between the liquid and
solid particles (Als; see (2.7)). It is worth noting that the data for this figure have been extracted from Koneru
et al. (2022).

interactions; note that in conventional DPD, A > 0 and B = 0. The key component is the
weighted local density

ρi =
∑
j /= i

ωρ(rij). (2.8)

There are several ways to choose the weight function (Zhao et al. 2021), and here, the
normalized Lucy kernel (Lucy 1977) in three dimensions is used:

ωρ(rij) = 105
16πr3

cρ

(
1 + 3rij

rcρ

) (
1 − rij

rcρ

)3

, (2.9)

with a cutoff distance rcρ beyond which the weight function ωρ becomes zero.

2.1. Simulation parameters and system set-up
To simulate molten CMAS, the parameter mapping of Koneru et al. (2022) was used
together with the open-source code LAMMPS (Thompson et al. 2022). In brief, the
properties of molten CMAS at approximately 1260 ◦C, based on the experimental data
from Naraparaju et al. (2019), Bansal & Choi (2014) and Wiesner et al. (2016), were
used. In physical units, density was 2690 kg m−3, surface tension 0.46 N m−1, and
viscosity 3.6 Pa s. Using the density and surface tension to estimate the capillary length
(κ = (σ/(ρg))1/2) gives 4.18 mm. The droplets in the simulations (details below) had
linear sizes shorter than the capillary length, hence gravity was omitted. In terms of
physical units, time was 6.297 × 10−6 s, length was 17.017 × 10−6 m, and mass was
1.964 × 10−8 kg.

Using the above values, droplets of initial radii d = 8, 9, 10, 11, 12 in mDPD units,
corresponding to R0 = 0.136, 0.153, 0.17, 0.187, 0.204 mm, respectively, were used in the
simulations; all of them are smaller than the capillary length. The time step was 0.002
(mDPD units) corresponding to 12.59 ns. In addition, kBT = 1, rc = 1.0, rb = rcρ = 0.75,
rd = 1.45, γ = 20 and B = 25. The attraction parameter A in (2.7) has to be set for the
interactions between the liquid particles (All), and the liquid and solid particles (Als). The
former was set to All = −40, and Als was chosen based on simulations that provided the
desired θeq, thus allowing for controlled variation of θeq (see figure 2).
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Figure 3. (a) Illustration of the spreading behaviour of a CMAS droplet on a hydrophilic surface at different
times. The droplet with initial size R0 spreads on the surface with radius r(t) and contact angle θ(t).
(b) A series of snapshots from a simulation of a droplet with initial size R0 = 0.136 mm and equilibrium
contact angle θeq = 93.4◦.

The initial configuration of the droplet and the solid wall was generated from a random
distribution of equilibrated particles with number density ρ = 6.74. This amounts to
approximately 60 660 particles in the wall, and depending on the initial radius, anywhere
between 14 456 and 48 786 particles in the droplet. Periodic boundary conditions are
imposed along the lateral directions, and a fixed, non-periodic boundary condition is
imposed along the wall-normal direction. Since mDPD is a particle-based method, the
spreading radius and the dynamic contact angle are approximated using surface-fitting
techniques. First, the outermost surface of the droplet is identified based on the local
number density, i.e. particles with ρ ∈ [0.45, 0.6]. The liquid particles closest to the
wall are fitted to a circle of radius r, i.e. the spreading radius. On the other hand, a
sphere with the centroid of the droplet as the centre is fitted to the surface particles
to compute the contact angle. The contact angle is defined as the angle between the
tangent at the triple point (liquid–solid–gas interface) and the horizontal wall. The wall
in these simulations is made up of randomly distributed particles to eliminate density and
temperature fluctuations at the surface. Following Li et al. (2018), the root mean square
height (Rq) of the surface scales linearly with 1/

√
Nw, where Nw = (2πr3

cw/3)ρw is the
number of neighbouring particles. In this work, Rq comes out to be around 0.0708 mDPD
units, or 1.2 μm.

As the CMAS droplet spreads on the substrate, it loses its initial spherical shape and
begins to wet the surface as depicted in figure 3, forming a liquid film between the
droplet and the substrate. Understanding how droplets behave on surfaces is important for
a wide range of applications, including in industrial processes, microfluidics, propulsion
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Figure 4. The impact of θeq and R0 on the droplet radii as a function of time for various (a) initial drop
sizes with equilibrium contact angle θeq = 54.6◦ corresponding to Als = 30.0, and (b) equilibrium contact
angles (corresponding to Als = −25.0, −25.8, −27.0, −28.0, −29.0, −30.0, −31.4, −32.2) and initial drop
size R0 = 0.136 mm.

materials, and the design of self-cleaning surfaces (Pitois & François 1999; Chen et al.
2016; Hassan et al. 2019; Jain et al. 2021; Nieto et al. 2021).

3. Simulation results

The size of a droplet changes over time. By tracking the changes, we can gain insight
into the physical processes involved in spreading. The time evolution of the droplet radius
(r(t)) is shown in figure 4. The log-log plots show the effect of the initial drop size R0
and equilibrium contact angles θeq on the radius r(t). Figure 4(a) displays r(t) for initial
drop sizes R0 = 0.136, 0.153, 0.17, 0.183, 0.204 mm and equilibrium contact angle θeq =
54.6◦. Similarly, figure 4(b) shows the spreading radius for different equilibrium contact
angles (θeq = 93.4◦, 85.6◦, 77.9◦, 70.1◦, 62.4◦, 54.6◦, 45.3◦ and 39.1◦) with initial drop
size R0 = 0.136 mm.

Eddi, Winkels & Snoeijer (2013) used high-speed imaging with time resolution covering
six decades to study the spreading of water–glycerine mixtures on glass surfaces. By
varying the amount of glycerine, they were able to vary the viscosity over the range
0.0115–1.120 Pa s. They observed two regimes, the first one for early times with α changing
continuously as a function of time from α ≈ 0.8 to α ≈ 0.5. This was followed by a sudden
change to the second regime in which α settled to 0.1 < α < 0.2. As pointed out by Eddi
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Figure 5. The value of α, calculated using (1.2), varies for different initial radii and fixed equilibrium contact
angles (a) θeq = 85.6◦ and (b) θeq = 62.4◦. The figure illustrates that α is influenced by both the initial drop
size R0 and the equilibrium contact angle θeq.

et al. (2013), the second regime agrees with Tanner’s law (Tanner 1979). All of their
systems displayed complete wetting.

Based on r(t) of the CMAS drops and α shown in figure 4, it can be observed that r(t)
(and based on the power law, α) depends on both the initial drop size and the equilibrium
contact angle. The values of α for some simulation datasets are plotted over time in
figure 5. The plot shows the behaviour of α for different initial drop sizes and equilibrium
contact angles θeq = 62.4◦ and 85.6◦.

Inspired by the experimental results of Eddi et al. (2013), the simulations of Koneru
et al. (2022) and the current simulations, we propose a simple sigmoid type dependence
for α:

d ln(r)
d ln(t)

= α(t, R0, θeq) := η
[ 1

1 + exp(β(τ − ln(t)))
− 1

]
. (3.1)

The two constant values of α discussed in the above references are the two extrema
of the sigmoid curve, given that the transition between the two regimes occurs at
ln(ttransition) = τ .

The parameters of (3.1) are discovered by PINNs, and their dependence on R0 and θeq is
then expressed using symbolic regression. The general steps in the discovery of the droplet
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Figure 6. The process of utilizing PINNs to extract three unknown parameters of the ODE (3.1), using
three-dimensional mDPD simulation data. First, a neural network is trained using simulation data, where
the input is time t and the output is spreading radii r̃(t). This neural network comprises four layers with
three neurons, and is trained for 12 000 epochs. Subsequently, the predicted r̃(t) is used to satisfy (3.1) in
the physics-informed part. The loss function for this process consists of two parts: data matching and residual.
By optimizing the loss function, the values of η(R0, θeq), β(R0, θeq) and τ(R0, θeq) are determined for each set
of R0 and θeq. After predicting the unknown parameters using PINNs, two additional neural networks, denoted
as NNβ and NNτ , are trained using these parameters to generate values for the unknown parameters at points
where data are not available. The outputs of these networks, together with the outputs of the PINNs, are then
fed through a symbolic regression model to discover a mathematical expression for the discovered parameter.

spreading equation and the extraction of the unknown parameters η(R0, θeq), β(R0, θeq)
and τ(R0, θeq) are shown in figure 6 and can be summarized as follows.

(i) Data collection: for this study, data are collected by conducting three-dimensional
simulations using the mDPD method in LAMMPS with varying initial drop sizes R0
and equilibrium contact angles θeq.

(ii) PINNs: the input of the network is time t, and the output of the network is the
spreading radii r̃(t). The physics-informed part of the PINNs is encapsulated in
designing the loss function. In this study, the ‘goodness’ of the fit is measured by (a)
deviation from trained data together with (b) deviation of network predictions and
those from ordinary differential equation (ODE) (3.1) solutions. This optimization
process reveals the the unknown parameters η(R0, θeq), β(R0, θeq) and τ(R0, θeq).

(iii) Data interpolation: after PINNs are trained, we used their predictions together with
two additional multilayer perceptron neural networks to fill the sparse parameter
space. This step helps our next goal, which is relating the ODE parameters to R0 and
θeq without performing three-dimensional simulations.
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(iv) Symbolic regression: discovering a mathematical expression for each unknown
parameter η(R0, θeq), β(R0, θeq) and τ(R0, θeq) of (3.1).

(v) In order to quantify the uncertainty associated with our predictions, we utilize
B-PINNs and leverage the insights gained from the PINNs prediction and symbolic
regression, with a specific emphasis on the known value of η. By employing
B-PINNs, we can effectively ascertain the values of two specific parameters, β and
τ , which in turn enable us to quantify the uncertainty in our predictions.

4. Physics-informed neural networks

In this section, we delve into the process of uncovering the parameters of the proposed
ODE using the available simulation data.

In recent years, the concept of approximating the behaviours of complex nonlinear
dynamical systems with experimental or numerically simulated data has gained significant
traction, driven by the exponential growth in available data. The conventional approach
for model fitting involves nonlinear least squares, which relies on iterative optimization
algorithms (Srinivasan & Mason 1986). These algorithms can be computationally
expensive and sensitive to initial conditions, sparsity, and high dimensionality of the data.
To circumvent these issues, Brunton et al. (2016) proposed a framework named SINDy
(sparse identification of nonlinear dynamical system), which selects a class of algebraic
functions along with an arbitrary order of derivatives. By performing sparse regression,
which assumes that the contributions of many of these functions are negligible, SINDy can
accurately discover ODEs and PDEs. On the other hand, equation learner (EQL; Martius
& Lampert 2016) leverages the ability to use algebraic functions as neural network units,
which brings interpretability to the model fitting process. Both SINDy and EQL share
a reliance on predefined basis functions, constraining their ability to represent complex
functional forms beyond those that are predefined. Therefore, applying these methods in
the present study is not feasible. These coefficients not only are the coefficients of the basis
functions but also cannot be utilized to define a library of functions, primarily due to the
structure of the proposed ODE.

Physics-informed neural networks form another promising class of approaches that
leverages the flexibility and scalability of deep neural networks to discover governing
equations, incorporating physical laws (PDEs, ODEs, integro-differential equations
(IDEs), etc.) and data (initial conditions plus boundary conditions) into the loss function
(Raissi et al. 2019; Chen et al. 2020; Mao, Jagtap & Karniadakis 2020; Mishra & Molinaro
2020; Shukla et al. 2020; Karniadakis et al. 2021). In contrast, EQL and SINDy focus on
deriving equations from data without enforcing the governing laws, lacking a guarantee
of adherence to these principles. In addition, PINNs leverage automatic differentiation for
computing the exact derivatives of differential equations, while SINDy, considered as an
optimization method, relies on numerical differentiation for gradient approximations. The
PINNs represent a more adaptable approach, capable of adjusting to complex systems by
learning directly from data, even when a predefined mathematical model is completely or
partially absent.

The method employed to find unknown parameters in this study exhibits potential for
broader applications, such as different fluid properties, reduced-order PDEs, and scenarios
in which only a part of the equation is absent (grey box learning framework; Kiyani
et al. 2023). While, potentially, the parameters of the proposed ODE could be discovered
using other aforementioned approaches for the purpose of this paper, the scalability and
extensibility to PDEs or more complex ODEs, and insensitivity to initial conditions in the
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Figure 7. Comparison of the time evolution of the droplet radii: mDPD simulations (symbols), ODE
model (3.1) (solid lines) and PINN predictions (dashed lines) for θeq = {39.1◦, 62.4◦, 93.4◦} and R0 =
{0.136, 0.153, 0.187, 0.204} mm parameter sets.

fitting process compared to other methods, suggest that PINNs are the most suitable choice
for this task.

4.1. Discovering parameters of the ODE
As discussed in § 3, our study aims to identify the values of the parameters η(R0, θeq),
β(R0, θeq) and τ(R0, θeq) in the ODE (3.1). The general steps of the framework are shown
in figure 6(I). PINNs take time t as an input to predict r̃(t) at each time.

For each unique combination of a contact angle and initial drop size, the data were
divided randomly into training, validation and test sets at ratio 80 : 10 : 10. A neural
network with four layers of three neurons each was trained on the training data using
the JAX and FLAX Python libraries on the M1 Apple chip. The training process consisted
of 12 000 epochs, and took approximately 5 minutes to complete for each case.

The predicted values for the time evolution of the radii r̃(t) should satisfy the
data and the physics-informed step, i.e. meet the requirements of the ODE (3.1). The
two-component loss function, designed to meet the requirements, consists of Lossdata and
LossODE, given by

Lossdata = 1
Nk

i=Nk∑
i=1

|(ri(t) − r̃i(t))|2,

LossODE = 1
Nr

i=Nr∑
i=1

∣∣∣∣d ln(r̃)
d ln(t)

− η

(
1

1 + exp(−β(ln(t) − τ))
− 1

)∣∣∣∣
2

,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.1)

where r̃(t) and r(t) stand for the radii from the prediction and simulation, respectively.
Here, Nk is the number of training points, and Nr is the number of residual points.

Figures 7, 8 and 9 illustrate the results obtained by utilizing PINNs to discover the
parameters of the ODE (3.1), which describes the dynamics of the radii of the CMAS
drops.

Figure 7 shows comparisons of the simulation data (r(t)), the prediction (r̃(t)) and the
solution of the ODE (3.1). The figure demonstrates a remarkable degree of agreement
between simulations, PINNs and our ODE model. The first three panels in figure 8
show the convergence of η(R0, θeq), β(R0, θeq), and τ(R0, θeq) parameters during training.
One can conclude that, all three parameters stabilize roughly after 12 000 epochs. In the
rightmost panel of figure 8, the loss function (4.1) history is plotted against the training
epochs, stabilizing around 10−4. This indicates successful training of the PINNs model.
The results shown in figures 7 and 8 demonstrate the capability of our proposed framework
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Figure 8. (a,b,c) The evolution of parameters η(R0, θeq), β(R0, θeq) and τ(R0, θeq), respectively, over multiple
epochs. These plots demonstrate that the parameters gradually converge to a stable state after 12 000 epochs.
(d) The traces of the loss function for the PINNs framework. The learning curves demonstrate the decreasing
trend of the loss functions, indicating that they converge to a stable point for all initial drop sizes and θeq.
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Figure 9. The values of (a) η, (b) β and (c) τ obtained through PINNs. These values exhibit varying
behaviours depending on the initial radius R0 and equilibrium contact angle θeq. The horizontal axes display
the equilibrium contact angles θeq. The vertical axes of all plots represent the values of η, β and τ . Here, η

remains nearly constant within a small range of values between −0.325 and −0.200, and β and τ change within
ranges from 1.0 to 5.0, and 6.5 to 8.0, respectively.

to accurately predict the spreading radius of CMAS across the different initial radii and
equilibrium contact angles.

Figures 9(a,b,c) show the values of η(R0, θeq), β(R0, θeq) and τ(R0, θeq), respectively,
obtained by PINNs for different initial radii R0 ranging from 0.136 to 0.204 mm, and
equilibrium contact angles θeq ranging from 39.1◦ to 93.4◦. The results show that
η changes within a small window between −0.325 and −0.200 for all R0 and θeq.
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Figure 10. Predictions of the parameters (a) τ and (b) β using the trained neural networks NNβ and NNτ . The
horizontal axes show R0 and θeq. The green and red circles correspond to the obtained values of τ and β using
the PINNs that were used to train NNβ and NNτ . Additionally, the orange and blue dots represent the predicted
values for grid interpolations from R0 = 0.136 mm to R0 = 0.204 mm, and θeq = 40◦ to θeq = 95◦.

However, the changes in β (between 1 and 5) and η (between 6.0 and 8.0) are significant,
indicating that these parameters depend strongly on R0 and θeq.

4.2. Generate more samples of feasible radii and contact angles
As discussed earlier, the parameters in our ODE model (3.1) are functions of the initial
radius and the equilibrium contact angle. Using PINNs, we were able to find the values for
those parameters. To find a closed-form relation between the parameters R0 and θeq, more
data than the rather small current set are needed. Performing three-dimensional mDPD
simulations is, however, computationally expensive. In this subsection, we train two
additional neural networks to capture the nonlinear relation between the ODE parameters
found by PINNs, and the variables R0 and θeq. Then we will use these trained networks to
fill our sparse parameter space to perform symbolic regression in the next section.

Specifically, we generate values for R0 in the interval [0.136, 0.204] mm and θeq in the
range [40◦, 95◦], as shown in figure 6(II).

Two fully connected networks NNβ and NNτ consist of eight dense layers with
256/256/256/128/64/32/16/8 neurons. These networks are trained using an Adam
optimizer with learning rate 10−2 for a total of 4000 epochs.

Discovered parameters from NNτ and NNβ are visualized in figures 10(a,b), respectively,
where the parameter values obtained from PINNs are denoted by green and red circles,
indicating the training data for NNβ and NNτ , respectively. Furthermore, the parameter
values generated by NNβ and NNτ are depicted as light orange and light blue dots. Visually,
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it is evident that these dots have filled the gaps between parameters that were absent in our
LAMMPS dataset.

5. Symbolic regression

In this section, we use symbolic regression to find the explicit relation between the ODE
parameters, and the initial radii and equilibrium contact angles. Symbolic regression is a
technique used in empirical modelling to discover mathematical expressions or symbolic
formulas that best fit a given dataset (Billard & Diday 2002). The process of symbolic
regression involves searching a space of mathematical expressions to find the equation
that best fits the data. The search is typically guided by a fitness function that measures the
goodness of fit between the equation and the data. The fitness function is optimized using
various techniques, such as genetic algorithms, gradient descent, or other optimization
algorithms. The equations discovered by symbolic regression are expressed in terms
of familiar (i.e. more common) mathematical functions and variables, which can be
understood and interpreted easily by humans.

In this study, we used the Python library gplearn for symbolic regression (Stephens
2016). As discussed in § 4.2, in order to have more accurate formulation for the ODE
parameters before using symbolic regression, we trained two networks, NNβ and NNτ ,
using the discovered values β(R0, θeq) and τ(R0, θeq), enabling us to predict the parameter
values for grid interpolations where no corresponding data points were available. The
predicted parameters from both PINNs and the NNβ and NNτ networks are fed through
the symbolic regression model to discover a mathematical formulation for each parameter.
For this purpose, θeq and R0 are fed as inputs, and η, β and τ are the outputs. We set the
population size to 5000, and evolve 20 generations until the error is close to 1 %. Since
the equation consists of basic operations such as addition, subtraction, multiplication and
division, we do not require any custom functions.

The following results of symbolic regression can be substituted in (3.1):

η = −0.255,

β = 0.283 + 0.27
(

θeq

d

)
,

τ = 6.13
(

d
θeq

+ 1
)

,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.1)

where d is the initial size of the droplet in mDPD units.
Figure 11 shows the history of α(t, R0, θeq) using the the ODE (3.1) with parameters

from (5.1). The conversion between d in mDPD units and R0 in physical unit is R0 =
d × 1.701 × 10−2 mm.

Figure 12(a) depicts the values of α for initial drop size R0 = 0.127 mm and contact
angles θeq = 93.4◦ and 87.2◦. Figure 12(b)compares the solution of (3.1), using the
discovered parameters (5.1), with the simulation data. The figure demonstrates the
agreement between the ODE solution and the actual simulation results for this particular,
unseen dataset. It is important to note that this particular drop size lies outside the training
interval for initial drop sizes, [0.136, 0.204] mm.
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Figure 11. The behaviour of α from the right-hand side of (3.1) with parameters from (5.1): (a) different
contact angles with fixed initial radius R0 = 0.136 mm; (b) varying initial radii with fixed contact angle
θeq = 77.9◦.
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Figure 12. (a) The behaviour of the parameter α using (3.1) for R0 = 0.127 mm, which falls outside the range
of the initial drop sizes used for training the networks. (b) The simulation data and the solution obtained from
solving the ODE (3.1) with parameters from symbolic regression (5.1).

6. Bayesian physics-informed neural network results

Bayesian physics-informed neural networks integrate the traditional PINN framework
with Bayesian neural networks (BNNs; Bykov et al. 2021) to enable quantification of
uncertainty in predictions (Yang et al. 2021). This framework combines the advantages of
BNNs (Bishop 1997) and PINNs to address both forward and inverse nonlinear problems.
By choosing a prior over the ODE and network parameters, and defining a likelihood
function, one can find posterior distributions using Bayes’ theorem. The B-PINNs offer
a robust approach for handling problems containing uncorrelated noise, and they provide
aleatoric and epistemic uncertainty quantification on the parameters of neural networks
and ODEs. The BNN component of the prior adopts Bayesian principles by assigning
probability distributions to the weights and biases of the neural network. To account for
noise in the data, we add noise to the likelihood function. By applying Bayes’ rule, we can
estimate the posterior distribution of the model and the ODE parameters. This estimation
process enables the propagation of uncertainty from the observed data to the predictions
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made by the model. We write (3.1) as

Nt(r; λ) = f (t), t ∈ R
+, (6.1a)

I(r, λ) = r0, t = 0, (6.1b)

where λ = [η, β, τ ]T is a vector of the parameters of the ODE (3.1), Nt is a general
differential operator, f (t) is the forcing term, and I is the initial condition. This problem is
an inverse problem; λ is inferred from the data with estimates on aleatoric and epistemic
uncertainties. The likelihoods of simulation data and ODE parameters are given as

P(D | θ , λ) = P(Dr | θ) P(Df | θ , λ) P(DI | θ , λ), where

P(Dr | θ , λ) =
Nr∏

i=1

1√
2πσ

(i)2
r

exp
[

− (r(t(i)r ; θ , λ) − r̄(i))2

2σ
(i)2
r

]
,

P(Df | θ , λ) =
Nf∏
i=1

1√
2πσ

(i)2

f

exp
[

−
( f (t(i)f ; θ , λ) − f̄ (i))2

2σ
(i)2

f

]
,

P(DI | θ , λ) =
NI∏
i=1

1√
2πσ

(i)2

I

exp
[

− (I(t(i)i ; θ , λ) − Ī(i))2

2σ
(i)2

I

]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.2)

where D = Dr ∪ Df ∪ DI , with Dr = {(ln t(i)r , ln r(i))}Nr
i=1, Df = {(t(i)f , f (i))}Nf

i=1, DI =
{(t(i)I , I(i))}NI

i=1 are scattered noisy measurements. The joint posterior of [θ , λ] is given
as

P(θ , λ | D) = P(D | θ , λ) P(θ , λ)

P(D)

≈ P(D | θ , λ) P(θ , λ)

= P(D | θ , λ) P(θ) P(λ). (6.3)

To sample the parameters from the the posterior probability distribution defined by (6.3),
we utilized the Hamiltonian Monte Carlo approach (Radivojević & Akhmatskaya 2020),
which is an efficient Markov Chain Monte Carlo (MCMC) method (Brooks 1998). For a
detailed description of the method, see e.g. Neal (2011, 2012) and Graves (2011). To sample
the posterior probability distribution, however, variational inference (Blei, Kucukelbir &
McAuliffe 2017) could also be used. In variational inference, the posterior density of the
unknown parameter vector is approximated by another parametrized density function,
which is restricted to a smaller family of distributions (Yang et al. 2021). To compute
the uncertainty in the ODE parameters by using B-PINN, a noise of 5 % was added to
the original dataset. The noise was sampled from a normal distribution with mean 0 and
standard deviation ±1.

Here, the neural network model architecture comprises of two hidden layers, each
containing 50 neurons. The network takes time t as the input, and generates a droplet
radius r(t) as the output. Additionally, we include a total of 2000 burn-in samples.

The computational expense of B-PINNs compared to traditional neural networks
arises primarily from the iterative nature of Bayesian inference and the need to sample
from the posterior distribution. The B-PINNs involve iterative Bayesian inference,
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Figure 13. The mean and uncertainty (mean ±2 standard deviations) of B-PINN predictions of the spreading
radii history are given as solid lines and shaded regions, respectively. The test simulation data are depicted by
solid circles, and training data are indicated by stars. This analysis is carried out for two different initial drop
sizes, namely R0 = 0.136 and 0.170 mm, for three equilibrium contact angles.

where the posterior distribution is updated iteratively based on observed data. This
iterative process requires multiple iterations to converge to a stable solution, leading to
increased computational cost compared to non-iterative methods. Moreover, B-PINNs
employ sampling-based algorithms such as MCMC or variational inference to estimate
the posterior distribution of the model parameters. These algorithms generate multiple
samples from the posterior distribution, which are used to approximate uncertainty and
infer calibrated parameters.

Sampling from the posterior distribution can be computationally expensive, particularly
for high-dimensional parameter spaces or complex physics models. Furthermore, B-PINNs
often require running multiple forward simulations of the physics-based model for
different parameter samples. Each simulation represents a potential configuration of the
model parameters. Since physics-based simulations can be computationally intensive,
conducting multiple simulations significantly increases the computational cost of training
B-PINNs. Achieving a high acceptance rate for posterior samples, especially for
high-dimensional data, demands running a large number of simulations. This further adds
to the computational complexity.

Due to the computational expense associated with B-PINNs, we opt to use the method
selectively for a few cases only. Utilizing the insights gained from PINNs prediction
and symbolic regression, specifically the known value of η = −0.255, we can leverage
the power of B-PINNs to uncover and ascertain the values of the parameters β and τ .
Figure 13 showcases the comparison between the mean values of the radii r̃(t) predicted
by B-PINNs represented by solid lines, the corresponding standard deviations denoted by
highlighted regions, and the simulation data used for training presented as stars, while
the test data are indicated by coloured circles. The horizontal axes represent time, while
the vertical axes depict the spreading radii r̃(t). This comparative analysis is conducted
for two distinct initial drop sizes, namely R0 = 0.136 and 0.170 mm, considering various
equilibrium contact angles.
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Figure 14. Comparison between B-PINNs and PINNs discovered parameters for a range of equilibrium contact
angles and two initial radii. The mean values (solid lines) and the standard deviations (mean values ±2 standard
deviations, shaded region) of (a,c) β and (b,d) τ . The dashed lines represent the parameters discovered by
PINNs.

Figure 14 illustrates the mean values of the parameters β and τ obtained using B-PINNs
along with their corresponding standard deviations. The solid lines represent the average
values of the discovered parameters, while the highlighted regions indicate the standard
deviations. The parameters discovered by PINNs are represented by the dashed lines. In
figures 14(a,c), the vertical axes represent the values of β, while figures 14(b,d) display the
values of τ . The results are presented for two initial drop sizes, R0 = 0.136 and 0.17 mm.
From the plots, it can be observed that the parameter β exhibits a range of values between
1.0 and 3.0. On the other hand, the parameter τ fluctuates within the range 5.0 to 7.0. These
ranges provide insight into the variability and uncertainty associated with the estimated
values of β and τ obtained through the B-PINN methodology.

By comparing figures 9 and 14, it becomes evident that the discovered parameters β

and τ using PINNs of B-PINNs frameworks exhibit remarkable similarity. This striking
similarity reinforces the efficacy and capability of our models in identifying accurately
the parameters of the ODE (3.1). The close alignment between the discovered parameters
in both figures demonstrates the robustness and reliability of our models. It highlights
their ability to capture effectively the underlying dynamics and characteristics of the
spreading behaviourof CMAS, leading to accurate parameter estimation. This consistency
and agreement between the PINN and B-PINN results provide further validation of the
power and effectiveness of our modelling approaches in uncovering the true values of the
parameters β and τ in the ODE. Additionally, (3.1) with anticipated parameters obtained
using B-PINNs is solved using Odeint. The results are presented in figure 15, which
provides a comparison between the simulated spreading radii r(t) (circles) and the solution
of the ODE (solid lines). This comparison is conducted for initial drop sizes R0 = 0.136
and 0.17 mm, considering different contact angles.
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Figure 15. Comparison between the ODE solution with parameters found by B-PINNs (solid lines), and the
simulation radii (circles). Two initial drop sizes, R0 = 0.136 and 0.170 mm, and three equilibrium contact
angles are shown.

7. Conclusions

This study introduces a new approach to model the spreading dynamics of molten CMAS
droplets. In the liquid state, CMAS is characterized by high viscosity, density and surface
tension. The main objective is to achieve a comprehensive understanding of the spreading
dynamics by integrating the underlying physics into the neural network architecture.

The study emphasizes the potential of PINNs in analysing complex systems with
intricate dynamics. To study the dynamics of CMAS droplets, we performed simulations
using the mDPD method. By analysing the simulation data and observing the droplet
behaviour, we proposed a parametric equation (3.1), which consists of three unknown
parameters. This parametric equation aims to capture and describe the observed behaviour
of the CMAS droplets based on the simulation results. Using the data from the mDPD
simulations, the study employed the PINNs framework to determine the parameters of
the equation. Symbolic regression was then utilized to establish the relationship between
the identified parameter values, and the initial droplet radii and contact angles. As
a result, a simplified ODE model was developed, accurately capturing the spreading
dynamics. The model’s parameters were determined explicitly based on the droplet’s
geometry and surface properties. Furthermore, B-PINNs were employed to assess the
uncertainty associated with the model predictions, providing a comprehensive analysis
of the spreading behaviour of CMAS droplets.

In reality, the CMAS attack involves a complex interplay of reaction kinetics between
CMAS and the thermal barrier coating, surface morphology (roughness, porosity)
occurring under highly non-uniform thermal conditions. However, our findings extend
beyond the isothermal conditions used in this study and even the specific case of CMAS
droplets. The relationships uncovered and methods developed in this study have broader
applications in understanding the spreading dynamics of droplets in general. By leveraging
the insights gained from this research, one can investigate and understand the behaviour of
droplets in diverse contexts, furthering our understanding of droplet spreading phenomena.
Potentially, this knowledge can be used in developing strategies for effective droplet
management and optimizing processes involving droplets in a wide range of practical
applications.

The key aim of this work is to create a mathematical model for the partial wetting
induced by CMAS droplets with specific properties. It is clear that this model has the
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capacity for expansion to encompass diverse fluid properties. By exploring different fluids
with unique characteristics, we can employ the same methodology to uncover the ODE’s
correlation with fluid properties. For future work, we can extend the proposed equations to
incorporate fluid properties by considering different fluids with different properties, as the
same method can be used to find the dependency of the ODE to fluid properties. Also, it
is worth pursuing a systematic comparison of our results with Gordillo’s theory (Gordillo
et al. 2019; Gorin et al. 2022). Additionally, in the case of a contact angle θ changing
with time, a similar scaling law rationale can be applied, i.e. θ(t) ∼ tγ (see De Ruijter,
De Coninck & Oshanin 1999). One can extend the current study to a system of ODEs that
incorporates temporal variations in both radii and the advancing contact angle.
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