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Flow within submerged canopies influences the transport of nutrients, sediment,
pollutants, plant seeds and the settlement of larvae. To improve our understanding of mass
transport within canopies, a simple model is proposed to predict the total time-varying
velocity within submerged rigid canopies (representing coral reefs) and flexible canopies
(representing seagrasses and saltmarshes). The model divides the momentum equations
into a canopy layer and free-stream layer. The difference in the time derivative of the
velocity between the two layers is balanced by the sum of the shear stress and canopy
drag, both of which depend on the in-canopy total velocity. The present model extended the
shear stress model developed for steady current to combined current and wave conditions
without additional calibrating coefficients. The model agreed well with the in-canopy
velocity measured in the present and several previous studies. Importantly, the proposed
model significantly improved the accuracy of canopy time-mean velocity prediction, which
reduced the root mean square error by more than 50 %, compared with previous models.
The model revealed that the addition of waves can significantly decrease the in-canopy
time-mean velocity.

Key words: wave-structure interactions, coastal engineering, flow-structure interactions

1. Introduction

Submerged canopies are present in many aquatic ecosystems, including coral reefs,
seagrass meadows as well as salt marshes and dwarf mangroves (during high tide and
storm surge). These ecosystems serve multiple ecological and environmental functions.
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Figure 1. Illustration of velocity modification due to canopy resistance. Here, Uc is the imposed current and
Uw is the wave orbital velocity defined upstream of the canopy. Subscripts 1 and 2 denote velocity in the canopy
layer and in the free-stream layer above the canopy, respectively, h and hp are the water depth and canopy height,
respectively, X is the velocity adjustment length and δ is the penetration length describing the length scale of
turbulent momentum exchange between the two layers.

For example, these canopies provide shelter, nursery habitat and food sources for fish
(Costanza et al. 1997; Waycott, Longstaff & Mellors 2005; Whitfield 2017). They improve
water quality by filtering nutrients (De Los Santos et al. 2020) and capturing suspended
sediments (Palmer et al. 2004). The canopy resistance reduces current and waves, which
reduces bed erosion and enhances coastal stability (Gedan et al. 2011).

The resistance of the canopy can significantly alter the flow structure and hydrodynamic
properties within and above a submerged canopy (Villanueva et al. 2017). As illustrated
in figure 1, when flow enters a submerged canopy with canopy height hp, two distinct
flow regions are formed, the in-canopy and above-canopy layer. Note that, for a flexible
canopy, the effective canopy height is smaller than the fully erect plant height when plants
move in response to hydrodynamic forces. Within the canopy layer, the horizontal velocity
gradually decelerates from the leading edge due to canopy drag. This results in a deflection
of flow into the above canopy layer, which causes an increase in the above-canopy velocity.
Velocities within and above the canopy are referenced by subscripts 1 and 2, respectively.
After an adjustment length X, the time-mean current reaches a new equilibrium, called the
fully developed flow structure. The adjustment length X is inversely proportional to the
canopy drag, CDa, with CD the drag coefficient and a the canopy density defined as the
frontal area per canopy volume. Based on equation (10) in Chen, Jiang & Nepf (2013) and
equation (5.1) in Lei & Nepf (2021), X/hp ≈ 1 to 20 for canopy density (defined as the
plant frontal area per bed area) ahp = 0.1 to 10, which is a typical range for submerged
canopies, and the shallow submergence 2 < h/hp < 5, where h is the water depth.

The canopy velocity structure determines the transport of sediment, pollutants, pollen,
plant seeds and fish larvae through submerged ecosystems (Falter, Atkinson & Merrifield
2004; Lowe, Koseff & Monismith 2005b; Reidenbach et al. 2006; Malul, Holzman &
Shavit 2020; Huai et al. 2021; Stride et al. 2023). Further, for some hydrodynamic
conditions, the physical mass transfer was found to control the nutrient uptake rate by
submerged ecosystems (Falter et al. 2004; Larned, Nikora & Biggs 2004; Morris et al.
2008). For example, the ammonium uptake in Cymodocea nodosa meadow was twice
that observed for a Zostera noltii meadow, which was attributed to a doubling of the
in-canopy velocity (Morris et al. 2008). Hydrodynamic models that can accurately predict
the in-canopy and above canopy velocity provide a useful tool to understand and quantify
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A simple prediction of canopy velocity

the mass transfer and nutrient uptake in submerged ecosystems (Lowe et al. 2005b; Stride
et al. 2023).

Previous studies have described the velocity field associated with submerged canopies
for a uni-directional current in both the fully developed (Luhar & Nepf 2013) and the
adjustment regions (Chen et al. 2013; Lei & Nepf 2021). For a deeply submerged canopy,
defined as a water depth to canopy height ratio h/hp > 10, the flow within the canopy
is driven by the turbulent stress at the top of the canopy (Nepf 2012). For shallow
submergence (1 < h/hp < 5), canopy flow is driven by both the turbulent stress and
potential gradients (Nepf 2012). Many canopies exist within the submergence range 1 <

h/hp < 5. For example, seagrasses usually colonize water depths 1 < h < 10 m (Duarte
1991), with canopy height hp = 0.1 to 1 m (based on the blade length summarized in
table 3 in Luhar et al. 2010 and table 1 in Hansen & Reidenbach 2012), corresponding to
1 < h/hp < 100. For many intertidal salt marshes, hp = 0.4 to 0.9 m, with water depths
in the range from h = 0.8 to 2 m, varying from an emergent to submerged state over a tide
cycle with 1 < h/hp < 5 when submerged (e.g. Ysebaert et al. 2011; Garzon et al. 2019;
Zhang et al. 2020).

The canopy resistance is often described by the dimensionless canopy density, ahp (the
plant frontal area per bed area). For many coastal canopies, e.g. salt marshes, seagrasses
and mangroves summarized in Nepf (2012), ahp > 0.1, indicating that the canopy drag
is large compared with the bed drag and generates a shear layer with an inflection point
near the top of the canopy. The in-canopy time-mean velocity Uc1 is decreased and the
above-canopy time-mean velocity Uc2 is increased compared with the depth-averaged Uc
(Chen et al. 2013; Lei & Nepf 2021). Specifically, the ratio of Uc1 to Uc, defined as
time-mean velocity reduction αc, is significantly smaller than 1, i.e. αc = Uc1/Uc � 1
(figure 1). Theoretical models have been developed to predict the in-canopy and above
canopy current velocity (Chen et al. 2013; Lei & Nepf 2021). For example, Chen et al.
(2013) predicted the current velocity within an array of rigid cylinders based on the
continuity and momentum equations within and above the canopy (1.1), herein noted as
the CJN model after the authors’ names

αc = Uc1

Uc
= 1

1 − hp

h
λp +

√
CDahp

2C(1 − λp)

(
h − hp

h

)3
, (1.1)

in which λp = Vp/hp is the solid volume fraction within the canopy, Vp is the submerged
plant volume per bed area and C characterizes the turbulent momentum exchange between
the canopy and over-flow layers. Previous studies have suggested (Konings, Katul &
Thompson 2012)

C = Kc

(
δ

h

)1/3

, (1.2)

in which Kc = 0.07 ± 0.02 (SD, standard deviation) is an empirical constant (Chen
et al. 2013), δ is the penetration length that quantifies the vertical extent of the shear
layer within the canopy. Chen et al. (2013) assumed δ = 0.23/(CDa) for h/hp ≥ 2 and
δ = 0.23(h/hp − 1)/(CDa) for h/hp < 2. Recently, Lei & Nepf (2021) extended the CJN
model to flexible canopies and to describe the evolution of velocity from the leading edge
for both wide (two-dimensional) submerged canopies and submerged canopies of finite
width (three-dimensional), referred to as the L&N model. The L&N model improved the
parameterization of turbulent momentum exchange between the two layers by considering
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the physical limits of the penetration length δ, which is constrained by the canopy height
(hp) and the depth of water above the canopy (h − hp)

δ = min
(

0.3 ± 0.1
CDa

, h − hp, hp

)
. (1.3)

Considering the relative magnitudes of the inertial and drag forces in a range of natural
canopies, the reduction of the wave orbital velocity within the canopy is significantly
less than the reduction of a uni-directional current (Lowe, Koseff & Monismith 2005a).
As a result, waves are often more important than current for generating in-canopy fluid
motion that enhances the nutrient uptake and mass transfer, e.g. within coral reefs (Hearn,
Atkinson & Falter 2001; Falter et al. 2004, Falter, Atkinson & Coimbra 2005; Reidenbach
et al. 2006) and seagrasses (Thomas & Cornelisen 2003). The reduction of the in-canopy
wave orbital velocity has been described by a two-layer model (Lowe et al. 2005a), called
the LKM model

∂(Uw1 − Uw2)

∂t
= |Uw2|Uw2

LS
− |Uw1|Uw1

LD
− CMλp

1 − λp

∂Uw1

∂t
, (1.4)

in which LS = 2hp/Cf is the shear length scale, LD = 2hp(1 − λP)/(CDahp) is the drag
length scale, Cf is the friction coefficient for the canopy interface and CM is the inertial
force coefficient. Although Lowe et al. (2005a) considered waves with a background
current in their experiments, (1.4) was derived for the wave component only. The reduction
in the wave orbital velocity within the canopy is described by α∗

w = Uw1/Uw2, i.e. the ratio
of the wave orbital velocity for the two layers at the same x position. When inertial forces
dominate, (1.4) reduces to

α∗
w = Uw1

Uw2
= (1 − λp)

1 + (CM − 1)λp
. (1.5)

When the wave period is infinitely long, (1.4) approaches the unidirectional limit, for
which a simplified solution for the time-mean velocity reduction is (Lowe et al. 2005a)

α∗
c = Uc1

Uc2
=

√
LD

LS
. (1.6)

Note that the LKM model defined the canopy velocity reduction relative to the velocity
above the canopy, and a superscript * was added to distinguish this from the definition used
in the CJN and L&N models, in which the canopy velocity reduction is defined relative
to the imposed velocity unaffected by the canopy (U), i.e. αc = Uc1/Uc. With these
definitions, α∗

c < αc, because flow diverted from the canopy to the overflow layer results in
Uc2 > Uc > Uc1. To make comparisons between different models and with measurements
from different studies, the reduction coefficients can be transformed considering the mass
conservation through the canopy (equation 18 in Chen et al. 2013, see also (2.10) in the
present study)

α∗
c = αc(h − hp)

h − αchp(1 − λp)
. (1.7)

For many natural canopies, the reduction in wave orbital velocity is in the range of
α∗

w = 0.68 to 0.99. The lowest values of α∗
w are associated with very dense canopies, e.g.

rigid canopies with D = 50 mm and a density of 100 stems m−2 (Lowe et al. 2005a) or
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A simple prediction of canopy velocity

D = 6.4 mm and a density of 3100 stems m−2 (van Rooijen et al. 2020). In comparison,
the current ratio falls in the range of α∗

c = 0.03 to 0.3, which is much smaller than the
wave ratio, indicating that the time-mean current experiences a much greater reduction
within a canopy compared with the wave velocity (Luhar et al. 2010). Further, submerged
canopies are often exposed to combined current and waves. In these combined conditions,
current and waves may affect one another, so that the in-canopy time-mean current and
wave orbital velocity should be predicted together. As introduced above, the LKM model
predicts current and wave orbital velocity reduction as two limits of behaviour with respect
to wave excursion, and it cannot describe the interaction between currents and waves. The
first effort to predict current and wave velocity together was made in Zeller et al. (2015).
Specifically, they developed a one-dimensional Reynolds-averaged Navier–Stokes model,
herein called the ZWK model

∂U1

∂t
+ [UW]hp

hp
= − 1

ρ

∂P
∂x

+
τxz|hp

hp
− 1

2
CDa|U1|U1

1 − λp
− CMλp

1 − λp

∂U1

∂t
, (1.8)

in which U1 and U2 are the total velocity in the canopy and free-stream layer, respectively,
W is the vertical velocity and P is pressure. The shear stress at the top of the canopy
is modelled as τxz|hp = C2

Sm|U2 − U1|(U2 − U1), with CSm the Smagorinsky coefficient
(Vreman, Geurts & Kuerten 1997). Assuming W follows linear wave theory, the vertical
advection at the interface of the two flow layers is modelled as

[UW]hp

hp
= −(h − hp)U1 + hpU2

h
1

ρ
√

gh
∂P
∂x

. (1.9)

Equation (1.8) predicts the total time-varying in-canopy velocity U1, which is the sum
of time-mean Uc1 and wave orbital Uw1, such that both α∗

c and α∗
w can be obtained. In the

current limit, (1.8) reduces to

α∗
c =

√
LD

L′
S√

LD

L′
S

+
√

1 − hp

h

, (1.10)

in which the shear length scale is defined by L′
S ≡ hp/C2

Sm. The difference between (1.10)
and (1.6) comes from the fact that (1.10) considers the pressure gradient for unidirectional
flow, which is neglected in the ZWK model (1.6).

Scale analysis shows that the ZWK model is only effective for a limited range of flow
and canopy conditions. Specifically, the ZWK model (1.8) is applicable for Aw/LD � 10,
LD/L′

S � 1, Uc/Uw ∼ O(1), 2 < h/hp < 5 and Fr � 1 (Zeller et al. 2015). Here, Aw is
the wave orbital excursion and Fr = √

(U2
c + U2

w)/(gh) is the Froude number. However,
natural canopy and flow conditions can have a much wider range of parameters. First,
Uc/Uw can vary between the current limit and wave limit, so that Uc/Uw can range from
0 to infinity. Further, some natural canopies, such as salt marshes, vary from emergent
(during low tide) to submerged (during high tide or storm surge), such that a shallow
submergence, 1 < h/hp < 2, is a common natural condition (Ysebaert et al. 2011; Zhang
et al. 2020).

The present study developed a model for combined wave–current conditions to
overcome the limitations of previous models. The new model is applicable to a much wider

982 A3-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

61
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.61


X. Zhang, C. Zhao and H. Nepf

Model name Model prediction Empirical coefficients Reference

CJN model αc = f (a, λp, hp, h, Uc) CD, C Chen et al. (2013)
L&N model αc = f (a, λp, hp, h, Uc) CD, C Lei & Nepf (2021)
LKM model α∗

c = f (a, λp, hp) CD, CM , Cf Lowe et al. (2005a)
α∗

w = f (a, λp, hp, Uw2)

ZWK model α∗
c , α∗

w = f (a, λp, hp, h, U2) CD, CM , CSm Zeller et al. (2015)

Table 1. Models predicting in-canopy velocity for fully developed canopy flow.

range of current and wave combinations, covers the limits of pure current and pure wave
and can be applied to both rigid and flexible structures such as seagrasses and salt marshes.
Experiments were conducted to measure detailed velocity profiles upstream of and within a
submerged canopy formed of rigid cylinders under pure current, pure wave and combined
current and wave conditions. The new model was validated using measurements in the
present study as well as previous studies, including flexible seagrass and salt marsh plant
models. The new model performed as well or better than previous models described in the
literature (table 1).

2. Theoretical modelling

2.1. Force on individual plant
The impact of a canopy on the velocity field is described through the hydrodynamic drag
generated by individual plants. Therefore, it makes sense to begin with a description of
that drag. For greatest generality, we use a model that accounts for plant flexibility and
morphology in both waves and current. Specifically, the drag force on a plant with multiple
leaves (each is ll long, b wide and d thick) distributed on a central stem (with diameter D
and length ls), Fd, has been described for both waves alone and in combination with current
(Zhang & Nepf 2021b, 2022)

Fd = Fr,l{CsNlKl(CalLl)
−1/4}︸ ︷︷ ︸

force on leaves

+ Fr,s{Ks(CasLs)
−1/4}︸ ︷︷ ︸

force on stem

. (2.1)

In (2.1), the time-varying drag forces on an individual rigid leaf (Fr,l) and a rigid stem
(Fr,s) are modified by the bracketed terms that account for the reduction in drag due to
leaf and stem reconfiguration. Throughout the manuscript, the subscripts l and s represent
parameters associated with the leaves and stem, respectively, Nl is the number of leaves on
the plant, Cs is the sheltering coefficient that reflects the drag reduction due to sheltering
and interaction between leaves and stem and Kl and Ks are coefficients that reflect the
geometric difference between a leaf (flat) and a stem (cylindrical). Specifically, based on
measurements on an individual leaf, Kl = 1 (Lei & Nepf 2019b), and for a cylindrical stem
Ks = 1.2 (Zhang, Lin & Nepf 2021). The Cauchy number, Ca, is the ratio of hydrodynamic
drag to the restoring force due to structural stiffness, see (2.4). Here, L is the length ratio
between the structure length, l, and wave orbital excursion, Aw, see (2.5)

Fr,l = 1
2
ρCD,lbll|U1|U1 + ρCM,lbdll

∂U1

∂t
, (2.2)

Fr,s = 1
2
ρCD,sDls|U1|U1 + ρCM,s

πD2

4
ls

∂U1

∂t
, (2.3)
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A simple prediction of canopy velocity

Ca = ρAU2
max

EI/l2
, (2.4)

L = l
Aw

, (2.5)

Umax = max(|U1|). (2.6)

Here, Umax is the maximum in-canopy velocity. In (2.4), A is the frontal area, and A = Dls
for a cylindrical stem and A = bll for a flat leaf, E is the Young’s modulus, I is the second
momentum of area and I = πD4/64 for a cylindrical stem and I = bd3/12 for a flat leaf.

Finally, flexible plants bend in response to flow, called reconfiguration, which reduces
drag. The influence of plant flexibility on plant drag is captured by the scaling term
(Ca L)−1/4 (2.1), which applies to waves with L > 1 and Ca L > 1. For Ca L < 1, the drag
reduction is negligible and Fd = Fr,l{CsNlKl} + Fr,sKs (Luhar & Nepf 2016; Henderson
2019; Lei & Nepf 2019b; Zhang & Nepf 2021a). For pure current, the reconfiguration term
(Ca L)−1/4 in (2.1) is replaced by Ca−1/3 (Luhar & Nepf 2011).

2.2. Fully developed in- and above-canopy velocity
The fully developed in- and above-canopy velocities are defined for x > X. Beyond
this position, the time-mean velocity does not adjust further with increasing x, but the
wave orbital velocity might decrease due to plant-induced wave energy dissipation. For
simplicity, the evolution of the wave velocity with distance was not considered in the
present model, which focused on the vertical adjustment of horizontal velocity in response
to canopy drag. Consider a co-linear current Uc and wave Uw that enter the canopy at
x = 0. The total imposed velocity is defined as the depth-averaged velocity over z = 0 to
h (figure 1)

U = Uc + Uw cos(φ), (2.7)

in which φ is the wave phase. After an adjustment length of X, the flow structure is fully
developed, with a reduced in-canopy time-mean current Uc1 and wave orbital velocity
Uw1, compared with the velocity in the absence of a canopy (without energy dissipation),
which equals the imposed velocity Uc and Uw. The above-canopy time-mean current Uc2
is increased. The degree of velocity reduction in the canopy is represented by α∗

c and
α∗

w (figure 1). Assuming there is no phase difference in the vertical direction, the total
in-canopy (defined as the depth average over z = 0 to hp) and above-canopy (defined as
the depth average over z = hp to h) velocities are, respectively,

U1 = Uc1 + Uw1 cos(φ), (2.8)

U2 = Uc2 + Uw2 cos(φ). (2.9)

Conservation of mass requires that, at each phase of the wave, the sum of flux within
each layer equals the depth-averaged flux, expressed as

U(φ)h = U1(φ)hp(1 − λp) + U2(φ)(h − hp). (2.10)

Assume the bottom friction can be neglected relative to the canopy drag (i.e. ahp > 0.1),
and the free-surface stress is zero, then the vertically averaged momentum equation in the
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canopy layer (2.11) and the overflow layer (2.12) are, respectively,

∂U1(φ)

∂t
+ W1(φ)U1(φ)

hp
+ U1(φ)

∂U1(φ)

∂x
= − 1

ρ

∂P1(φ)

∂x
+

τxz|hp

hp
− 〈Fd(φ)〉, (2.11)

∂U2(φ)

∂t
+ W2(φ)U2(φ)

h − hp
+ U2(φ)

∂U2(φ)

∂x
= − 1

ρ

∂P2(φ)

∂x
−

τxz|hp

h − hp
. (2.12)

The bracket notation 〈〉 defines the average drag over the canopy. Integrating the
continuity equation over the canopy layer, W1(φ) = −hp(∂U1(φ)/∂x). Substituting for
W1 in (2.11), the convective terms cancel. Similarly, in the overflow layer, W2(φ) =
−(h − hp)(∂U2(φ)/∂x), and the convective terms cancel. The convective terms were also
neglected in previous layer-averaged models (Lowe et al. 2005a; Weitzman et al. 2015;
Jacobsen 2016). The pressure gradients are associated with the time-mean free-surface
slope, which is hydrostatic, and the surface wave dynamic pressure. For shallow-water
waves (kh � 1), the dynamic pressure is ρgaw cos(φ) (Lin 2008) and does not depend on
the vertical position, such that ∂P1(φ)/∂x = ∂P2(φ)/∂x. Based on field measurements,
e.g. data shown in Garzon et al. (2019), Zhang et al. (2020) and Zhang, Lin & Chen
(2022a), offshore and coastal regions are often dominated by shallow to near shallow
wave conditions with kh = 0.1 to 1. Considering shallow submergence, h/hp ≥ 2, the
estimated pressure gradient for the canopy and free-stream layers differed by 20 % at
maximum based on linear wave theory with finite water depth (Lin 2008). Therefore,
for simplicity, ∂P1(φ)/∂x = ∂P2(φ)/∂x was considered in the model derivation and the
model is theoretically valid for kh ≤ 1.

For Ns plants per bed area, the total canopy resistance per unit in-canopy fluid can
be calculated from the force on an individual plant, Fd(φ). Specifically, 〈Fd(φ)〉 =
(1/ρ)(Fd(φ)Ns/hp(1 − λp)). Using this and combining (2.11) and (2.12)

∂U2

∂t
− ∂U1

∂t
= 1

ρ

FdNs

hp(1 − λp)
− h

hp(h − hp)
τxz|hp . (2.13)

To simplify the notation, the phase φ will be dropped, but keep in mind that each term
varies with the wave phase. The plant drag Fd is a function of in-canopy velocity U1. The
shear stress, τxz|hp , is a function of the velocity difference U2 − U1. For combined current
and wave conditions, we assume that the shear stress model developed for a unidirectional
current is valid at each velocity phase, i.e.

τxz = C|U2 − U1|(U2 − U1), (2.14)

in which C characterizes the turbulent momentum exchange between the two layers (1.2).
Solving (2.10), U2 = RU + R1U1 with R = h/(h − hp), R1 = hp(1 − λp)/(h − hp) and
plugging U2 into (2.13), we obtained U1 as a function of U

R1
∂U
∂t

− (R2 + 1)
∂U1

∂t
= 1

ρ

FdNs

hp(1 − λp)
− R1

hp
C|R1U − (R2 + 1)U1|(R1U − (R2 + 1)U1). (2.15)

Since Fd is a function of U1 and plant properties (2.1), the only unknown variable,
U1, can be solved by (2.13) when U2 is known, or by (2.15) when U is known. The
predicted total velocity is then separated into a time-mean Uc1 and wave orbital velocity
Uw1, which were used to quantify the velocity reduction parameters. For pure current, the
time derivative is zero, and (2.15) reduces to (1.1), described by the CJN and L&N models
(Chen et al. 2013; Lei & Nepf 2021). With waves, (2.13) and (2.15) need to be solved
numerically. The associated MATLAB code is described in the supplementary material
available at https://doi.org/10.1017/jfm.2024.61.

982 A3-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

61
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.61
https://doi.org/10.1017/jfm.2024.61


A simple prediction of canopy velocity

Flow condition Cylinder (stem) Flat plate (leaf)

Pure current CD,s = 1 + 10Re2/3
c CD,l = 1.95 + 50

Re
Rec = U1D

υ

1 − λp

1 −√
2λp/π

Re = U1b
υ

Etminan, Lowe & Ghisalberti (2017) Ellington (1991)

Waves, with or CD,s =
{

16KC−0.52 KC ≤ 10
max(1.95, 10KC−1/3) KC > 10

CD,l =
⎧⎨
⎩

0.19KC + 0.2 KC ≤ 11
7.6KC−0.5 11 < KC ≤ 25
max(1, 2.9KC−0.2) KC > 25

without current Figure A1 in Zhang, Lin & Nepf (2022b) Figure A1 in Zhang et al. (2022b)

Table 2. Drag coefficient CD and inertia coefficient CM .

2.3. Model coefficients
The inertia coefficient was set to CM = 2 for all conditions. The drag coefficient, CD,
was estimated from formulations described in the literature for pure current and pure
wave conditions, as summarized in table 2. For pure waves, CD was determined by the
Keulegan–Carpenter number (KC) (Keulegan & Carpenter 1958), with KC = UmaxTw/D
for cylinders and KC = UmaxTw/b for a flat plate with b the plate width. The wave drag
model was also applied for the combined current and wave conditions. Although Keulegan
& Carpenter (1958) only considered pure wave conditions in their experiments, previous
studies have shown that the CD dependence on KC also fits combined current and wave
conditions, if KC is defined using the maximum horizontal velocity Umax = max(|U1|)
((2.6), for combined current and waves) instead of the wave orbital velocity (Umax = Uw
for pure waves). Specifically, the drag coefficient shown in table 2 correctly predicted the
drag force measured on individual plants under combined current and waves (Zhang &
Nepf 2022), and also predicted the measured wave dissipation by vegetation under the
influence of current (Zhang & Nepf 2021a). Drag coefficients were taken from figure
A1 in Zhang, Lin & Nepf (2022b), but with an adjustment for submergence needed to
account for the reduction in drag at the free end of a cylinder, i.e. at the top of a rigid
canopy (e.g. see figure 7 and equation 18 in Ghisalberti & Nepf 2004). Specifically, for
the array geometry considered, the canopy average drag coefficient was reduced by a
factor of 0.64 compared with that of an infinite cylinder (Ghisalberti & Nepf 2004). The
measured in-canopy velocity was used to predict CD, such that, for each case, different
models applied the same drag coefficient. When provided in the references, the reported
drag coefficients were used for validation, as in Lowe et al. (2005a) and Zeller et al. (2015).
A 20 % uncertainty in CD was assumed for all model predictions.

In addition to CD and CM , the LKM model requires a friction coefficient Cf to describe
the turbulent momentum exchange between layers. Poggi et al. (2004) fitted friction factors
for submerged arrays in the range of Cf = 0.005 to 0.13. Similarly, Luhar & Nepf (2013)
showed that Cf = 0.04 works well in predicting their canopy flow observations, and Lowe
et al. (2005a) found Cf = 0.017 to 0.032. Based on these studies, we assumed Cf = 0.03 ±
0.02 in the LKM model to predict the velocity reduction and its uncertainty. Finally, the
ZWK model requires a Smagorinsky coefficient CSm, which is suggested to fall between
0.1 and 0.2 (Vreman et al. 1997). Consequently, CSm = 0.15 ± 0.05 was applied in the
ZWK model in this study. Finally, for flexible canopies, hp was assumed to be the mean
deflected canopy height (see table S1 in the supplementary material).
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3. Laboratory measurements of canopy flow velocity

To validate the proposed model, flume experiments were conducted in a 22 m long and
45 cm wide flume in the State Key Laboratory of Coastal and Offshore Engineering
in Dalian University of Technology. For simplicity, the experiment used rigid cylinders
with 6 mm diameter and 20 cm height distributed in a staggered array. The test canopy
was 4 m long and filled the flume width. Three densities were considered, 284, 444 and
830 cylinders per bed area. The water depth was 40 cm, such that h/hp = 2. Eight pure
current, seven pure wave and sixteen combined current and wave conditions were used.
See all tested combinations of canopy and flow conditions in table S1 in the supplementary
material.

The leading edge of the canopy was designated as x = 0, with x positive in the
streamwise direction. Velocity profiles with 4 mm vertical resolution were measured
using a Nortek Vectrino profiler at x = −0.2, 0, 0.1, 0.3, 0.5, 0.7, 1, 1.5, 2, 3 m in the
flume centre. The measurements in the canopy were taken at the middle of two adjacent
cylinders both in the streamwise and channel width direction. At each position, the velocity
was sampled at 100 Hz for 1 min. For each measurement, the horizontal velocity u for
conditions with waves was separated into phase bins and despiked using the same method
as in Zhang & Nepf (2022). The phase-averaged velocity was defined as the mean velocity
in each phase bin, ǔ(φ, z). The depth-averaged velocity U was defined by the average of
ǔ(φ, z) at x = −1 m over z = 0 to 30 cm. Based on profiles measured along the canopy, we
determined that the flow was fully developed at x = 3 m. Using the profile at this position,
U1 was defined as the depth average of ǔ(φ, z) over the canopy height (z = 0 to 20 cm), and
U2 was defined as the depth average of ǔ(φ, z) above the canopy (z = 20 to 30 cm). Note
that U (also U1 and U2) vary with wave phase, and the mean over all phase defines the
time-mean velocity Uc and U − Uc is the unsteady wave component. The wave orbital

velocity is defined by the root mean square value, Uw =
√

(2/Tw)
∫ 2π

0 (U − Uc)
2 dφ.

From the baseline measurements without a canopy and measured at x = −0.2 and 1 (each
case includes 160 measurements from z = 0 to 30 cm), the time-mean velocity at different
z has an average uncertainty of 5 % (represented by the standard deviation). The associated
uncertainties in the current and wave reduction were within 0.1 for all conditions (see table
S1 in the supplementary material for details).

Data from several previous studies were used to extend the model validation to flexible
canopies and canopy flow with a wider range of parameters. The detailed canopy and
flow conditions of all sources of data are summarized in table S1 in the supplementary
material. The canopy and flow conditions covered a wide range, ahp = 0.13 to 1.36,
h/hp = 1.3 to 4.3, LD/LS = 0.04 to 0.34, Aw/LD = 0.04 to 0.37, Uc/Uw = 0.4 to 7 (for
combined current and wave conditions) and Fr = 0.02 to 0.21.

4. Result

4.1. Time-mean in-canopy velocity under pure current
Measured time-mean velocities under pure current conditions were compared with several
models in the literature and with the new model. We consider the time-mean current
reduction αc (= Uc1/Uc) (figure 2a). Remember that the model proposed in the present
study, (2.15), reduces to the L&N model for pure current conditions. The LKM model (1.6)
and ZWK model (1.10) predicted α∗

c (= Uc1/Uc2) which was converted to αc using (1.7).
The L&N (green diamonds) and CJN (black triangles) models had the best agreement with
measurements for both the rigid (open symbols) and flexible canopies (filled symbols),
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Figure 2. Comparison of model predictions with laboratory measurements with (a) predicted αc plotted
against measured αc, (b) the error in prediction plotted against the canopy solid volume fraction. The open
symbols and the filled symbols represent measurements within the present and previous rigid (Lowe et al.
2005a; Chen et al. 2013) and flexible canopies (Lei & Nepf 2021; Zhang & Nepf 2021a), respectively. The
measurements have an uncertainty from 0.01 to 0.06 (see table S1 in the supplementary material). In (a),
the vertical line with black, green, blue and red colours indicate the mean uncertainties in the predictions
made by the CJN, L&N, LKM and ZWK models based on the uncertainty in the model empirical coefficients,
respectively. The reference line for predicted αc equalling measured αc is shown by the black line with the
dashed lines indicating an uncertainty of 0.1.

with the root mean square error (RMSE) = 0.05. The ZWK (red circles) and LKM (blue
squares) models tended to predict greater reductions to the in-canopy velocity, i.e. lower
values of αc, except for the most dense canopies, producing the smallest αc. Specifically,
for seven cases from Lowe et al. (2005a) and three cases from Chen et al. (2013), each
associated with λp = 0.09 to 0.2 (all other cases ranged within λp < 0.05), the LKM
model had a slightly better agreement with the measurements (figure 2b). Over all the
cases, RMSE for ZWK and LKM model were 0.09 and 0.14, respectively, which were
significantly larger than the L&N and CJN model. The value of αc can also be predicted
through the full ZWK model (1.8) with a long wave period and a constant U2 = Uc2. The
αc predictions by (1.8) were very close to the LKM model (not shown because it would
collapse with the LKM model), but do not collapse to their simple prediction (1.10), which
raises doubt in the LKM model (1.8) in capturing the limit of pure current conditions. This
will be further supported by the comparison with combined current and wave conditions
(figure 3 and the next section).

4.2. Time-mean in-canopy velocity under combined current and waves
Under combined wave and current conditions, the present model (2.13) is validated against
α∗

c = Uc1/Uc2 measured in previous (Lowe et al. 2005a; Zeller et al. 2015) and the
present rigid canopies and for canopies of flexible marsh plants (Zhang & Nepf 2021a).
Here, α∗

c , is used instead of αc, because Lowe et al. (2005a) and Zeller et al. (2015)
only reported α∗

c and the LKM and ZWK models predict α∗
c . Although our model was

derived with a shallow-water wave assumption (kh < 1, water depth/wavelength < 1/(2π)
in practice), waves in coastal regions and flumes are usually associated with shallow to
intermediate-water depths. Respecting this, the model was cautiously validated over a
range of shallow to intermediate wave conditions, with kh = 0.26 to 1.83.
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Figure 3. Comparison of model predictions and laboratory measurements with (a) predicted α∗
c plotted against

measured α∗
c in rigid (open symbols) and flexible canopies (filled symbols), (b) difference between predicted

and measured α∗
c versus canopy solid volume fraction λp. Vertical lines with green, blue and red colours

indicate the mean uncertainty in the prediction made, respectively, by the present model (2.13), LKM and
ZWK models. The solid black line shows perfect agreement, and the dashed lines indicate an error of 0.1. The
uncertainty in each measurement is listed in table S1 in the supplementary material.

As shown in figure 3(a), the present model (2.13) captured the variation of in-canopy
time-mean velocity under different canopy and flow conditions, with RMSE = 0.06. The
LKM model predicted similar reductions for a given canopy structure, even though the
measured α∗

c varied significantly with changing flow condition. The ZWK model did well
for dense canopies with a large reduction in velocity and small α∗

c , but the discrepancy
increased with increasing α∗

c , i.e. when canopy density decreased. The larger discrepancy
in the ZWK model with lower canopy density (λp) is also shown in figure 3(b). The
accuracies of the present model and the LKM model have no clear dependence on canopy
density. Considering all cases, RMSE = 0.09 and 0.15 for the LKM and ZWK models,
respectively, which were 1.5 and 2.5 times larger than the new model. It is worth noting
that the new model worked well for both the rigid canopies (open symbols) and flexible
canopies (filled symbols), and for a wide range of canopy density (λp = 0.0009 to 0.2).

4.3. Reduction of wave orbital velocity within the canopy
Figure 4(a) shows the comparison of measured and predicted reduction in wave orbital
velocity for 52 combined current and wave cases (the same cases in figure 3) and 16
pure wave conditions (13 cases from the present study and 3 from Zhang & Nepf 2021a).
For all conditions, the present model (2.13) predicted a similar wave orbital velocity to
the LKM model, but the ZWK model was slightly deviated; RMSE = 0.13 for all the
three models. Note that the LKM model predicted current and wave orbital velocities
separately, without considering their mutual influence. As a result, for the same canopy,
the LKM model predicted the same reduction in time-mean current under different flow
conditions (figures 2 and 3). In contrast, the present model and the ZWK model predicted
the time-varying total velocity. The ZWK model generally overestimated the measured
reduction in time-mean velocity (smaller αc, see figures 2 and 3), even considering the
suggested range of Smagorinsky coefficient (CSm = 0.1 to 0.2 based on Vreman et al.
1997). The present model predicted a similar wave orbital velocity to previous models.
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Figure 4. (a) Comparison of predicted and measured α∗
w. The LKM model and the present model predicted

similar wave orbital velocity reductions, so that the symbols overlaps. The uncertainty in measured α∗
w ranged

from 0.01 to 0.14. The uncertainty in predicted α∗
w is 0.001 (0.03) on average (maximum). (b,c) Show the error

in the predicted α∗
w by the present model against the dimensionless wavenumber kh and canopy solid volume

fraction λp, respectively. In (c), the symbols filled with red plus signs indicate cases with kh > 1 (kh = 1.05
to 1.83). (d) Compares the minimum α∗

w estimated by the present model and the linear wave theory with the
measured α∗

w. The reference line for predicted α∗
w equalling measured α∗

w is shown by the black line with the
dashed lines indicating an uncertainty of 0.1.

Considering the small difference between the models, the model performance will be
discussed using the present model prediction.

From figure 4(a), the model performance can be separated into two regimes, the
black oval indicates cases for which predicted α∗

w agreed with the measurements within
uncertainty, and the red oval indicates cases for which the predicted α∗

w ≈ 1, while the
measured α∗

w ranged from 0.66 to 0.9. The two distinct regimes of model performance
can be explained by the fact that, in the absence of a canopy, the model assumed a
depth-uniform velocity profile. This assumption works better for shallow-water waves
(kh < 1, see figure 4b). For intermediate waves, kh = 1.05 to 1.83 (noted by red plus signs
in figure 4c), the wave orbital velocity is greater near the surface and smaller near the bed,
even in the absence of a canopy, which caused the measured α∗

w to deviate from the model
assumptions, contributing to poor agreement between the measured and predicted values.
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Figure 5. Reduction in time-mean current within the canopy, αc over a range of wave velocities for canopy and
current conditions labelled as G2–C3 (Ns = 830 stems m−2), G3–C3 (Ns = 444 stems m−2), G4–C3 (Ns =
284 stems m−2) with D = 6 mm, hp = 0.2 m, h = 0.4 m, Uc = 16.3 cm s−1 and Z (Ns = 595 stems m−2,
D = 6.3 mm, hp = 0.155 m, h = 0.4 m, Uc = 17.4 cm s−1). See table S1 in the supplementary material for
detailed conditions. The symbols are measured values, and solid curves are predictions made by the present
model (2.15). Error bars indicate an uncertainty of 0.06 in the measured αc. The prediction has an average
uncertainty of 0.03.

The impact of this discrepancy was greatest when the canopy had a small impact on wave
velocity, i.e. for sparse canopies. Whereas for dense canopies (e.g. λp ≥ 0.05), associated
with a larger reduction in wave orbital reduction (figure 4c), the lack of a non-uniform
reference state was less important, and agreement between model and prediction improved.
Considering all conditions in figure 4, the ratio of wave orbital velocity averaged over
the canopy layer (z = 0 to hp) to that averaged over the free-stream layer (z = hp to h)
ranged from 0.56 to 0.99 based on linear wave theory. Consistent with this, the minimum
estimated α∗

w using the linear wave theory and the model prediction (2.13) agreed better
with the measured α∗

w (figure 4d), with the RMSE reduced to 0.1. In conclusion, figure 4
suggests that the present model does well predicting the wave orbital velocity for shallow
or near shallow waves kh < 1. However, for kh > 1, the non-uniform wave velocity in the
absence of a canopy should be considered and corrected. Further research might be needed
to improve the prediction of α∗

w for kh > 1. Note that the time-mean velocity predicted
by the present model (2.13) agreed with measurements for all validated flow conditions
(kh = 0.26 to 1.83).

4.4. Effect of waves on the in-canopy time-mean velocity
Measurements and the new model (2.15) were used to explore how waves affect the
reduction of in-canopy current, i.e. αc. For the same current and canopy conditions, the
measured αc decreased as the wave velocity (specifically Uw/Uc) increased (figure 5,
symbols). That is, adding waves increased the drag experienced by the current. Equation
(2.15), shown with solid curves in figure 5, captured this trend, and also suggested a limit
of αc. Specifically, the model predicted a minimum αc is reached at Uw/Uc = 2 to 4,
and further increases in wave velocity did not change αc further. Importantly, figure 5
illustrates that the present model worked equally well in the pure current limit (Uw = 0)
and for combined current and waves. It is worth noting that, although the model was
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Figure 6. Variation of αc with canopy density a = NsDs = 0.1 to 10 m−1 under pure current with increasing
Uc. Curves in black, blue and red colours associated with D = 2, 5 and 10 mm, respectively. Predictions were
made by the L&N model.

derived for a current with shallow-water waves (kh < 1), the predicted time-mean velocity
agreed with measurements over a wider range of wavenumber (kh = 0.26 to 1.83) and
the model performance was not affected by wavenumber. The decrease in αc associated
with increasing Uw can be explained through the plant drag. Specifically, for combined
current and waves, the mean drag on a single rigid plant scales as Fd ∼ U2

c + 0.5U2
w,

which becomes increasingly greater than Fd ∼ U2
c as the wave velocity increases (Lei

& Nepf 2019a; Tan & Yuan 2022). Greater mean canopy resistance resulted in greater
in-canopy time-mean velocity reduction (smaller αc).

5. Discussion

5.1. Influence of canopy and flow condition on the current reduction
First, the L&N model was used to explore the variation of time-mean reduction over sparse
to dense canopies composed of rigid cylinders (a = NsD = 0.1 to 10 m−1), which covered
the range of coastal vegetation canopies (Mullarney & Henderson 2018) under pure current
(Uc = 0.05 to 0.8 m s−1). For this test, the plant height hp = 1 m and water depth h = 2
m. The prediction suggested that, for a given canopy and submergence, the time-mean
reduction is the same within uncertainty (±0.03) for Uc = 0.05 to 0.8 m s−1 (figure 6).
The small uncertainty was caused by the dependence of αc on canopy velocity through
the drag coefficient CD. Considering all tested conditions, the drag coefficient equation
for rigid cylinders in a canopy (table 2) estimated CD ranged from 1.7 to 1.1, while
Uc increased from 0.05 to 0.8 m s−1, which resulted in the same αc within uncertainty
(±0.03). Considering the small uncertainty in αc with changing current magnitude, a
constant CD = 1.2 (which is the average value for the tests shown in figure 6) and fixed
setting current Uc = 0.2 m s−1 will be applied in the following discussion, so that the
dependence of αc on wave orbital velocity and canopy density can be highlighted. Note
that, considering a 20 % uncertainty, CD = 1.2 also represents the drag coefficient for
the tested current and wave conditions shown in figure 7, based on the drag coefficient
equation in table 2.
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Figure 7. Time-mean velocity reduction versus the canopy density, a = NsD with Ns = 50 to 1000 cylinders
per unit bed area and D = 2 to 10 mm, for (a) Uw = 0 m s−1, (b) Uw = 0.1 m s−1, (c) Uw = 0.2 m s−1 and
(d) Uw = 0.4 m s−1. Setting current velocity, wave period and water depth as constants, Uc = 0.2 m s−1,
Tw = 4 s, h = 2 m (corresponding to kh = 0.77). Each panel contains plant submergence from h/hp = 1.1 to
10, indicated by the numbers. Predictions were made by the proposed model (2.15).

Under pure current, the time-mean velocity was reduced by a factor αc, which decreased
with increasing canopy density a, reaching αc = 0.1 for canopy density a = 10 m−1

(figure 7a). When waves were added, a reduction ratio of αc = 0.1 was reached at a
lower canopy density. Specifically, αc = 0.1 was reached at a = 3.0 ± 0.8 m−1, a =
2.0 ± 0.3 m−1 and a = 1.0 ± 0.2 m−1, as the waves increased over Uw/Uc = 0.5, 1 and 2,
respectively (indicated by the grey area in figure 7). That is, the canopy density required to
obtain αc = 0.1 was reduced by an order of magnitude when the wave orbital velocity was
double the magnitude of the current. The value a = 1 m−1 is present in many natural
canopies (e.g. those summarized in Nepf 2012; Zhang et al. 2022b), suggesting that,
when waves are present, canopy time-mean velocity can be significantly reduced compared
with pure current conditions. Next, consider the influence of the submergence ration. For
h/hp = 2 to 10, the degree of submergence had very little influence on canopy velocity, the
solid black curves in figure 7. However, for smaller submergence, i.e. for 1 < h/hp < 2,
αc changed rapidly with decreasing h/hp (dash curves in figure 7).
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5.2. Model performance and uncertainty
We proposed a two-layer model to predict the in-canopy time-mean and wave orbital
velocities. The momentum exchange between the layers was assumed to follow a shear
stress model developed for pure current (proportional to (U2 − U1)

2). Specifically, for
conditions with waves, the turbulent stress at each phase is assumed to be dominated by the
instantaneous shear, such that the shear stress model τxz = C|U2 − U1|(U2 − U1) can be
applied at each velocity phase. Consistent with this, the scale coefficient (C = Kc(δ/h)1/3)
validated for pure current works well for general flow conditions. The canopy drag is
estimated by a simple plant force model that can be applied for both flexible (e.g. salt
marshes and seagrasses) and rigid structures. The model ((2.13) and (2.15)) prediction
agreed with measured time-mean and wave orbital velocity reductions in both rigid (Lowe
et al. 2005a; Chen et al. 2013; Zeller et al. 2015) and flexible canopies (Lei & Nepf 2021;
Zhang & Nepf 2021a) within uncertainty. Considering a 20 % uncertainty in the drag
coefficient and the uncertainties in the momentum exchange coefficient C, the proposed
model has a maximum model uncertainty of ±0.1 for current reduction and ± 0.01 for
the wave orbital velocity reduction, respectively. The wave orbital velocity reduction
coefficient is not sensitive to the empirical coefficients. By considering mass conservation,
we have extended the canopy flow to the small submergence regime (1 < h/hp < 2) and
validated for a flexible salt marsh canopy with h/hp = 1.3. This is important because many
coastal canopies are within this submergence range; salt marshes are typical examples, as
they may vary from emergent to submerged over each tide cycle.

The present model has been shown to work well for both the pure current and pure
wave limits, as well as combined current and wave conditions. The model significantly
improved the accuracy in predicting canopy time-mean flow with the influence of waves
compared with exist models. The current model effectively captures the wave orbital
velocity reduction for shallow-water waves with kh < 1. For deeper-water waves (kh > 1),
we recommend the wave velocity profile without a canopy should also be considered.

5.3. Model extension to N layer canopies
Although the present model has been evaluated over a wide range of canopy and flow
conditions, we cautiously recall that natural canopies are more complex, with varying
structures and geometries and even multiple layers. For example, many mangroves (e.g.
Rhizophora mangroves) have three typical layers, including the near bed dense root layer,
the middle tree trunk layer and the upper crown layer. Further, the solid volume fraction of
aquatic vegetation can vary vertically, e.g. figure 2 in Ysebaert et al. (2011) and figure 1(e)
in Zhang et al. (2022a), such that a two-layer model might not reflect the vertical variation
of velocity. The present model can be easily extended to an N-box model, as done in Zeller
et al. (2015). Specifically, (2.13) can be extended to the following form:

∂Ui

∂t
− ∂Ui−1

∂t
= 1

ρ

Ns

hp(1 − λp)
Fd,i−1 − Δz,i + Δz,i−1

Δz,iΔz,i−1
τxz,i−1/2, (5.1)

in which i = 1 to N represents the flow layers from the bottom to the free surface and Δz,i
is the thickness of the ith layer. The corresponding momentum exchange coefficient C
becomes a function of the drag generated by the relevant layer and the penetration length
is confined by the layer thickness.
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6. Conclusion

The present study proposed a simple and robust prediction for fully developed canopy
flow. The model was shown to accurately capture the reduction of in-canopy time-mean
and wave orbital velocities under pure current, pure waves and combined current and
wave conditions (figures 2 to 5). Specifically, the maximum uncertainty was ± 0.1 and
±0.01 for αc and αw, respectively. Under pure current, the present model reduces to the
prediction proposed by Lei & Nepf (2021). In comparison with the LKM model and
the ZWK model, the present model had better agreement with laboratory measurements
without any additional calibration. The model was validated for a wide range of conditions
relevant to natural canopies: ahp = 0.13 to 1.36; h/hp = 1.3 to 4.3; LD/LS = 0.04 to 0.34;
Aw/LD = 0.04 to 0.37; Uc/Uw = 0.4 to 7 (for combined current and wave conditions) and
Fr = 0.02 to 0.21.

With a simple force prediction for flexible plants from Zhang & Nepf (2021b, 2022), the
present model ((2.13) and (2.15)) can be applied to both rigid canopies (e.g. coral reefs and
mangroves) and flexible canopies (e.g. salt marshes and seagrasses). Although we focused
on the fully developed regime, the model can be extended to describe the evolution at the
canopy leading edge, following Lei & Nepf (2021). The proposed model can be coupled
to large-scale, shallow-water numeric models (e.g. Maza, Lara & Losada 2013), to resolve
the vertical velocity variation associated with submerged canopies. Finally, the canopy
velocity prediction can be used within one-dimensional wave dissipation models (Lei &
Nepf 2019b; van Veelen, Karunarathna & Reeve 2021; Zhang & Nepf 2021a) to improve
the prediction of canopy drag.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.61.
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