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ON g-CARLESON MEASURES FOR SPACES
OF M -HARMONIC FUNCTIONS

CARME CASCANTE AND JOAQUIN M. ORTEGA

ABSTRACT. In this paper we study the g-Carleson measures for a space h?, of M -
harmonic potentials in the unit ball of C", when q < p. We obtain some computable
sufficient conditions, and study the relations among them.

1. Introduction. If H(D)istheHardy spaceontheunit disc, Carleson[Ca] showed
that the positive measures on D so that

@1 du(@ < Clf [y

were characterized by the now so-called Carleson condition: there exists C > 0 such that
for any interval | intheunit circle, if T(I) isthe non-tangential tent over I, M(T(I)) < CJl|.

Ingeneral, if Qisaregion, u isafinite positive Borel measureon Q and X isaBanach
space of continuous functionson Q, and 1 < g < +oo, we say that y is a g-Carleson
measure for X if there exists C > 0 so that for any function f in X

L F@1 du(d < %

When X is the space h, of Poisson transforms of Riesz potentials R, of L3-functions
in the unit circle, Stegenga[St] characterized the g-Carleson measuresfor hd. He proved
that they coincide with the positive measures on D for which there exists C > 0 such
that for any open set A in the unit circle u(T(A)) < CCaq(A). Here C,q denotes an
appropriate Riesz capacity. The above results can be thoroughly extended to R

When X is the space of Riesz potentials R, of LP-functions in R", and p < q,
Adams[Ad] showed that the g-Carleson measuresfor this space coincide with the space
of finite positive measures . on R" so that y.( (B(w. r))) < Cr™P3 for any w in R",
r > 0. Here B(w, r) denotesthe ball centered at w of radiusr.

For the same spaces, the case q < pis more difficult. Maz' yaand Netrusov [Ma] and
[MaNe] characterized the positive g-Carleson measures in R" for Riesz potentials R,
of LP-functionsin R". They proved that they coincide with the space of finite positive

measures satisfying
q
/u(R“)( ta )ﬁg e
Jo x () t ’
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where x(t) is the infimum of the Riesz capacity Cy,(A), for A any open set in R" so
that t < u(A). See also [Ve] for other approach to this problem, and [Lul] for arelated
problem.

Let B" be the unit ball in C", and S" the unit sphere. The normalized Lebesgue
measure on B" will be denoted by dV and the normalized L ebesgue measure on S"
will be denoted by do. For each ¢ € S, r > 0 we will consider the non-isotropic ball
B(¢.r) ={we S ;|1—(w| <r}. ForeachO < a < n, itisintroduced in [AhCo] a
non-isotropic Bessel kernel given by

Ka(z.¢) = zeB" ¢eS.

1
11—z
If 1 <p < +oo, andif f € LP(de), the non-isotropic convolution is given by

Ko# 1@ = [ Ko@) dof0).  z€B"

For0 <o <n,1<p<+oo,and A C S, the non-isotropic Riesz capacity C,p(A) is
defined by C,p(A) = inf ||f||B, where the infimum is taken with respect to the positive
functionsf € LP(do) sothat K, «f > 1onA.

We will study the g-Carleson measures for the space h®, of Poisson-Szego transforms
of convolutions of LP functions with K, that is, the space of finite positive measures
such that ||P[Ky * f]]|La@n) < ClIf[|Lr@s)- The Hardy-Sobolev space HE, o > 0 is the
space of holomorphic functions f in B" satisfying that if f = > fi is its homogeneous
expansion, then R*f = 3, (k + 1) isin HP(B"). The norm of afunction f in HY, will be
denoted by ||f||p, := ||R*f||He.

If g > p the methods in [Ad] give that 1 is a g-Carleson measure for hf, if and only
if (T(B(w, ) ) < Cr™ P where T(B(w.r)) isanon-isotropic tent over B(w.r) that
we will later define. If g < p a characterization analogous to the ones obtained by [St]
and [MaNe] can be obtained for hf,. Such characterization involves the non-isotropic
Riesz capacity of an arbitrary open set and then it is difficult to compute. In [CaOr1] we
obtained some computabl e sufficient conditions for a positive measure to be p-Carleson
for h?.

Thepurpose of thiswork isto obtainintheremaining casesq < p accurate computable
sufficient conditions for ameasure . to be g-Carleson for h,.

We have organized the paper in the following way. In Section 2 we give another
characterization of the 1-Carleson measures for hf, which does not involve capacity, and
we show that for q > 1 the corresponding condition is always sufficient. We al so observe
that every g-Carleson measurefor hP, is also a g-Carleson measure for HY,, but in general
they do not coincide. In Section 3 we obtain some non trivial necessary conditionswhich
will suggest the computable sufficient conditions. These conditionsare of geometric type
and in terms of an L#3-modulus of conti nuity of the measure . Finally we give some
exampleswhich show the independency of the different sufficient conditions, aswell as
their accuracy.
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As afinal remark on notation, we adopt the usual convention of writing by the same
letter various absolute constants which values may differ in each occurrence. We will
write A < B if there exists an absolute constant C > 0 so that A < CB.

2. Conditions arising from duality. Let ; be a g-Carleson measure for h%, 1 <
g < p < +oo, andtake A C S an open set.
We define the admissible tent over A C S" given by

T =T/(R) =B" \ Yo,

where D() = D%(Q) = {z€ B"; [1—Z| < B(1— |Z))}, B > 1. Let f be any test
function for Cyp(A). Then K, xf > 1 on A, and consequently there exists b > 0 and
P[Kq * f] > b on the admissible tent T(A) over A. Since p is g-Carleson, this gives that
p(T(A)) < |If]|4, and taking infimum with respect to f, we get that 11(T(A)) < Cop(A)?.

This necessary condition turns out to be sufficient when p = q (see [St]), but failsto
be in general sufficient when g < p. The methods in Maz'ya and Maz' ya and Netrusov
(see[Ma] and [MaNe€]) for the isotropic case can be adapted to show that afinite positive
Borel measureon S" is a g-Carleson measure for h, if and only if

p 9
p(B" ( ta \Padt

where x(t) = inf Cop(A), and the infimum is taken with respect to the open setsA C S"
satisfying that t < 1u(T(A)).

The necessary condition we have just written is equivalent to ta < x(1).

In [AhCo] it is proved that for any f € HY, there exists g € L%(do) so that |f(2)| <
P[K« *0](2) for eachz € B" and ||f||p. < ||9]|p. Thisgivesthat any g-Carleson measure
for h, is also a g-Carleson measure for HY. If n — ap < 1, both classes of Carleson
measures coincide [CoVel].

Our first result showsthat asit happenswhen p = g, (see[CaOr1]), whenn—ap > 1
and g < p, the g-Carleson measures for h®, and HY, are different.

PROPOSITION 2.1. Assumel < p,n—ap > 1,1 < g < p. Then there exists a finite
positive Borel measure on B", 1, which is a g-Carleson measure for HY, but is not a
g-Carleson measurefor hP,.

PROOF OF PROPOSITION 2.1. Theorem 3.1 and Corollary 3.4 in [AhCo] for the case
1 < p < 2, and Theorem 5 in [CoVel], prove that there exists an invariant positive
measure v, supported in a compact set E C S" with Cy(E) = 0, so that for any
holomorphic function f in B",

L INFQP dot¢) < ClIR
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(Here Nf denotes the admissible maximal function). The arguments in [CaOr1], shows
then that it can be constructed a positive measure . on B" and a sequence of open sets
(Ex)x in S" such that

S IPIKa < 1@P du@ < [F]I3. f < HE.

and Cop(Ex) — O, infy u(T(Ek)) > 0. Hence i does not satisfy the necessary condition
p(TA) < Cop(A)?, and since LP(dy) C L9(d), we obtain the desired example. .

The previous condition (2.1) is, in generd, difficult to verify. When q = 1 we can
give asimple characterization of the 1-Carleson measures for hf, 1 < p < +o00, which
does not involve capacity, and which is, via duality, a non-isotropic version of Wolff’s
inequality [HEWo].

THEOREM 2.2. Let 1 < p < 400, n— ap > 0 and assume . is a finite positive Borel
measureon B". Then

S IPIKe # 11| du@ < [l

for eachf € LP(do), if and only if the non-isotropic potential

p(T(B0.6)) )\
2.2) WP )—/l Iu(%) %' o= %

belongsto L(dy).

PROOF OF THEOREM 2.2. Observe that in order to prove that p is a g-Carleson
measure for h?, we just need to deal with positive functions. It is proved in [CaOr1] that
for f € L}(do) and for eachz € B",

PIKa f1@ = [ 1 O 4000,

— Zglnfrx
Thuswe must characterizethe positive measureson B" satisfying that there existsC > 0
and for any f € LY(do),

23) fo o T g 4o i < il

Fubini’s theorem shows that the integral on the left side of (2.3) is equal to
Jor Ko 11O (€) do(¢). Consequently the necessary and sufficient condition for a pos-
itive measure . to satisfy condition (2.3) is that K,[x] € LP (do), Wlth t5 =1, that
is

du(?)
2.4) L (/B Tk a) do(Q) < +oo.
In the real case, the analogueto thisintegral is the energy of

d v
Egn) = [ (/R 7|X_“§|Xja) dy
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which, by Wolff’s inequality ([HEW0]), is equivalent to

JN G

We will give a sketch of the proof for the non-isotropic case. If 1 be a positive finite
Borel measure on B" satisfying that WP € LY(dp), there exists eg < 1 so that

d I B(C 5)
o5 ot pred)e

Now, thereexist M > 0, C > 1 so that for any finite positive Borel measure 1, on B",

/9{/()1<“<T§’#))))%} do (g)<|\/|/n/l M(%) @ 4.

(2.6)
The proof of the above estimate is analogous to the following non-isotropic version
of Wolff’s inequality, [HEWO0], which is due to Cohn and Verbistky, [CoVe2]:

THEOREM 2.3 ([CoVEZ2]). Let v be a finite positive Borel measureon S", 1 < p <
+00, 0 < s<+ooand « > 0. Then

Lty ) F g o p(HBiy e,

where C > 0is a constant independent of .

The estimate (2.5) together with (2.6) give the boundedness of the integral in (2.4),
and the sufficiency is proved.
For the necessity, Fubini’s theorem gives that

du@ )" do () @ P
/ (/" 11 u242|n (’) o) = /n/ S |1 — " (l’(/n 1 uzjn a) du(n).

Now the next lemmaand the previousformulagivetheend of the proof of thetheorem.

LEMMA 2.4. Thereexists C > 0 so that for any positive measure ¢, on B" and any
n € B",

du(z "t 1 M(T(B(?7o-5))) p/_ldg
b =g U ) ddoz?llu(T) T

So we are led to prove the lemma:
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PROOF OF LEMMA 2.4,
du(2 oo . 1
/Bn T -/O u({zeB ,7|1_2€|na>>\})d>\
+00 — dt
~ [T u{ze BN 1] <ty

Now, we can choose ¢ > 0 small enough so that if z T(B(Q. st)) we have that
T(B(G.et)) € {z€ B"; |1 — z]| < t}. Consequently

1 du@ Pt
S a(/nu Mzﬁz|” ;) @

_doQ) ( (BE. gt))) p-1

where C > 0isto bechosen. Since C|1— ‘170C_| < t, wehavethat T(B(C. eCl1— 770€_|)) C
T(B(G. et)), and the previous integral is bounded from below by

L e I” i (T(B(ﬁ,scll_noc_l)))(/;li:mg| tnf%)p/flda(o
1

— p-1
~ _/sn 11— 77<|n a1 — nodn_a H( (B« eC|l1— 770<|))) do(©)

_ p—1
>, WM(T(B(Q Cli—nod))))" dof).

Next, if C > Ois big enough, we havethat T(B(1o. |1 — noC_|)) C T(B(.Cl1— 7704_|)),
and consequently, the last integral is bounded by

—\\P1 da ()

(T (B(o. |1 —nog))) —p
b ) (@ pa + 1= ned]) **
. u(T(B(no-,ll—17oC_|))>p_l
L (@l + 1= nol])

do(Q)

It (T(B(770~, 11— ﬂoa))) "

-/2"(1*\'/\)Sllfrzoa<2"*1(1*|U\) {Calo

(2@ —1uh) **
M(T(B(nos 21— Inl))))p1

/2k(1*|71\)S|1*f1047'|<2k*1(1*|fll) (oo

(21— 1)) **

+
k>0, 2¢(1—|nf)<1

do(¢)

>
k>0, 2¢(1—[n))<1

do(¢)
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(T (B0 20 - |n|))))p/_l - l(M )’“%

-

> — - .
k>0, 2(1-nf)<1 (2@ —[n])) ™ tn—op t

When g > 1 and r,‘)%“ < n(which holdsif for example p > 2), the following theorem
gives that the corresponding condition to (2.2) is always sufficient.

THEOREM 2.5. Let 1 < q < p and assume that n — ap > 0 and ﬁ < n. If there
exists C > O such that if u is afinite positive Borel measure on B" satisfying that

p(TBO0 D))\ e
2.7) p(?) = /l—| y \T) ? € LraP D(d,ll/).

then 1 is a g-Carleson measure for hP,.

PROOF OF THEOREM 2.5. A similar argument to the one we have used in (2.2) shows
that we just need to check that the linear operator

@) = [, 7= g 4000

is bounded from LP(do) to L9(dy). Equivalently we will show that the adjoint operator
T* given by
@

THO= T

is bounded from LY (dp) to LP (do), Where + i =1, é + qi = 1. That is, we will check
that provided i satisfies (2.7),

f(2) o
b Tz

du(2),

e

(2.8) /

do(©) < C( [ F) du(w))
for some constant C > 0.

Now Holder’'s inequality followed by Fubini's theorem give that the integral that
appearsin the left hand side of (2.8) is bounded by

f d p-1
/n/n|1'(ﬂ|nad(>(/n%) do(0)

du@ \" »
= o b b ) WO duto)
Holder's inequality gives now (2.8) if the function

Do - du@ " <
Uk () = /Il wdm(/Bn T (,) do(¢) belongsto L7 (dp)

= Lrs® D (dp).
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Now the proof of Theorem 2.5 is deduced immediately from the previous estimate
and the following claim: if r,‘;—ol‘ < n, thereexistsM > 0, K > 0 and C > 0 so that for
any finite positive measure i, on B", and for any n € B,

« (1(T(BG0.CH))\"*
( ( ) ds
= .w\T) 5

The proof of that follows closely asimilar estimate for positive measureson R" due
to Maz'yaand Khavin, [MaKh]:

THEOREM 2.6 ((MAKH], THEOREM 2.6). Assumethat 1 < p < +oco, n— ap > 0and
ﬁ < n. Then for any positive measure i, in R™ and for any point x € R",

U= [ o) e <o (M) S

RN |y — Zlnfrx |X — y|n7(x - Jo 6”7(1[} 6

where the constant C dependsonly on n, «, and p. ]

3. Geometric and moduli of continuity type conditions. Before stating other
sufficient conditions, and in order to give a motivation for them, we will obtain some
non-trivial necessary conditions for a positive measure to be g-Carleson for h®,. The
methods to get such necessary conditions, specially Theorem 3.2, are based in [Lul],
where similar problems for the spaces of derivatives of harmonic functions in R" are
considered. For a sake of completeness we will briefly sketch the main ideas. We first
need some definitions.

We will denote by E.(2), z € B" the balls for the pseudohyperbolic metric given by
E.(2 = {w € C"; |¢(w)| < e}, where ¢, is the automorphism of the unit ball in C"
taking 0 to z and satisfying that ¢, o ¢, = ldgn. We will say that a sequence (z)x C B"
is separated if there exists 0 < ¢ < 1 so that the balls E.(z) for the pseudohyperbolic
metric are digoint.

Following [Lul] we definethe tent spaces T3(v), 0 < r < 400, 0 <s< +o0. If visa
finite positive Borel measure on B", and if r < +o0, let

A0 = ([, 10N @)

If r = +00, let
Aoor/(f)(o =v —€sssup |f(Z)|
2eD(Q)

When dv(2) = ﬁ% we will skip the subscript ». The tent space T? is the space of
v-equivalence classes of functionsf on B" satisfying that

(i) A, (f) € L3(do), if r, s < +o0,

The space Tgo(u) is the space of functionsf so that
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In the particular casethat v = 3"\ b, with ()« a separated sequencein B", and 6, the
Dirac measure at z, wejust will write T(z), and T3, (z) respectively.
We then have the following non-isotropic version of Lemma 3 in [Lul]:

LEMMA 3.1. Let A be a non-negative integer. Let p > 0, and if p < 2, suppose that
n+\+1> %“ Define the linear operator ), given by

_ 5 @ fa)m
U3 ((Ck)k) @= zk: Ckﬁ-
Then ¢, is a bounded operator from T5(z) into HP. "

The proof usesa non-isotropic version of the atomic decomposition for the spaces T,
see [CoMeSt] for the isotropic case, dueto [YO].

We want to obtain a bounded operator from T5(z) into the Hardy-Sobolev space Hb.
We proceed as follows: in [CaOr2, Theorem 2.1] it is proved that the linear operator
®: HP — HP, defined by

M@ = [, — D do(g

s A—z)~

is continuous. Hence the composition ¢, = @ o 1, isacontinuous operator from T5(z)
into HY.. Cauchy’s formula gives then that the operator

1-— A+l
(3.1) ex((c)@ = ; Ck%

is bounded from T5(z) to Hf,. 3
The non-isotropic pseudodistancein B", will be denoted by d(z, w) and is given by

dz w) = [w@ - 3)| + |2 — WP

The corresponding balls in I§_” will be denoted by Q(z r). We recall that |1 — zu| ~
d(z w) + (1 —|2]), for z w € B".
We can now give the following

THEOREM 3.2. Let 1 be a finite positive Borel measureonB", andlet 1 < g < p <
+00, N — ap > 0. Assume that there exists C > 0 so that for any f € LP(do),

/B P[Ka * f1(2)[*du(2) < CJIf]l3.

Then:
(@) If g > 2thereexistsd > 0 so that

/9( sup (1 — |z|)O’Q—”ﬂ(T(B(zo, (1 — |z|)))) & do(¢) < +oo.

zeD()
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(Asinthe previoussection zy = Z‘)
(b) Ifg < 2, thereexistsé > 0 sothat

26— D))\ v =
/9“</D(<)( <(1 |Z|)n—a )) (1_|ZT)n+l> do(¢) < +oo.

PROOF OF THEOREM 3.2. Assume y is a g-Carleson measure for h. As we have
already commented, 1 is also ag-Carleson measure for HY,, and (3.1) givesthen that for

any separated sequence (z)x,
—la)m [ F o)’
(32) e #@=c([( % o) w0)"

Now, if 171 < o are small enough and ¢ < 1 there exists alattice (ay),; C B" so that
(I) |akj| =1-— Ek,j = 1....jk.

(i) Ux;j Eyo(ag) = B".

(iii) E; (ag) NE(awy) Z0if andonly if k=K andj =j'.
If (a)x; issuch lattice,

Jo

Applying Khinchine's inequality, (see [Lul, page 609], we deduce from the previous
estimate that

— lag ntA+1 |q
2-C %
(1 _ Zakj)l"l a+ +1

ki

du(2) < c( I (akg@ o |2)g da(o) g

g
5 (1 _ |akj |)2n+2)\+2
(3'3) /B" (;} |ij| |_‘]_ — Zakj|2n—2a+2)\+2 dp(Z) < CH(CkJ)k] ||Tp(ak;)
Assume first that q > 2, put &g = ‘ ; and teke § > 0 small enough so that for any

z € T(B(ag. 5(1— |ay)), Wehavethat|1 za,| ~ 1— |ay|. Then we deducefrom (3.3)
that

]
2
2 200 q
oul2(1 — fagh?" ) i@ < Cliteu iy
/Bn(%” 1 || T(B(é“,é(lﬂakj\))) I(cq 1||T§(ak,)
Since we are assuming that g > 2, we then obtain that
> la - )" (T (B(8. 61 — [ag])) ) < CllCadk s

Now, putting in the previous estimate |c4|? = by we obtain that

> bg(1~ fag (T (B (3,601 — ag)) ) < Gl 5,
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which also remains true for non-positive (by)y;, and we conclude that

((1 o (T(B(ag. 501 - |ak,-|>)))) € Ti(ag)"
K

But the non-isotropic version of [Lul, Proposition 3] gives that T“(akj)* =TL T3 ().
Equivalently we have that

o sup (@ laghucr (B3 o0 - jagD) ) 177 do(Q) < +oo.

which gives the discrete version of (a). The continuous version is easily deduced from
this one and the properties of the lattice (ay;)y;-
So we are led to the case q < 2. By property (iii) of the sequence (ay),; we deduce
that there exists N > 0 so that any z € B" lies in no more than N non-isotropic balls
i = Qay. 6(1 — |ay|), for some s > 0 small enough and depending on 71. Since for
any z € Qg we havethat |1 — za4| ~ (1 — |aq|), we deduce from (3.3) that if p isa
g-Carleson measure for hf, then

(2104 0= fagl)*"xe, @) 9@ < Il

Now the fact that the balls (Qy;)i; don’t overlap too much gives that

; |G |71 — Jag[)*1(Qq) < CH(CkI)kJHTP(%)
]
An argument like the one used in case (a) shows that

( |ag )™ nﬂ(ij)) 6-I-q(akj)

ThlsspaceT“ (a)” equalsto Tp X ((akj)) (seedso[Lul]). Thisgivesthe discreteversion
of (b), from which we deduce the continuous one, using the properties of the separated
sequence ()i - ]

REMARK. In[CaOr2] it is obtained another representation theorem for HY,. Namely,
if the sequence (ay)y Satisfies properties (i) to (iii), then any f in HY can be written as

1
— |ag )" ®)

f(Z) ZCJ (1 zak)n a 7

and

1l < (35 P)’.
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From this representation one can obtain, using again Khinchine'sinequality the follow-
ing, in general, weaker necessary condition, whichisnow validforal 1 < g < p < +oo.
If 11 is ag-Carleson measure for HY, then there exist 6. C > 0 so that

u(T(BE.6r) )\ 7
(34 SLer /Sn \M) do(¢) <C.

When 2 < g, we can also deduce another necessary condition.

PROPOSITION 3.3. Let2 < q < p, and assumethat 1 is a g-Carleson measurefor hp,.
Then ,
du(@ P

2y

PROOF OF PROPOSITION 3.3. Let 1 be a g-Carleson measure for . Let ¢ € S", and
consider B = B(z, r) be any non-isotropic ball so that ( € B, andr < 6, with § asin
Theorem 3.2, part (a). We choose 6 small enough so that the point z = z(1 — £) isin
D(¢). Hence

w(1®) o1
B = 2 @l n(T (B ot - 1))

for some absolute constant C > 0.
Now we apply Theorem 3.2 (a), and we obtain

(3.6) up ‘|‘ élT(B;) isin L% (do).
(eB n

The methods in in [CoMeSt, Theorem 3] can be used to show that for any positive
measurer, and 1 < p < +oo,

z/(T(B))
" les B

dv (@)
/D«;) @l

P
In particular applying the above for the measuredr(2) = (1 — |Z))*? du(2)

/ du(2)
DO (L — [z])™od

and sinceif ze T(B), 1 — |7| < |B],

o CE,F3)|B| T(B)

(-2 du@|

P
P—q

P P

d p—q 1 o p—q
A(fm %) do(() =~ [, (Sgg@ /T(B)(l—lzl) qolu(z)) do(Q)

p

=< Js (geB B % ) do(0)-
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The last estimate together with (3.6) finishesthe proof of the proposition. ]

Now we give a sufficient condition of geometric type. We need some definitions.
Supposem=n—ap > 0,andletl <7 < R 1f( € S", 3 > 0, let Q. (¢) be the approach
region defined by

Q) = Q%) ={zeB"; [1 -] < 51— |2)}.

and if f:B" — C, let Mf(() = sup,q () If(2)|. Observe that if 7 = 1, Q1(¢) = D(() the
admissible approach region, and M1 = N is the admissible maximal function.

Recall that in Proposition 3.3 we have obtained that any g-Carleson measure for
hf, 2 < q < p satisfies that the function Jp( % & L7 (do(()). In the reverse
direction we have the following theorem

THEOREM 3.4. Let 1 be a finite positive Borel measure on B" andtake 1 < q < p,
m=n— ap > 0. Assume that

du(2)

_p
/Q%(Q Ay € L3 (do).

Then 1 isa g-Carleson measurefor hY,.

PrROOF OF THEOREM 3.4. Letf € LP(do) and put u = P[K, x f], and m = n — ap.
Then, provided we take e > 0 small enough we have that

/ @ du(e) = /"/B(Zo “(1-[z)®) (C) = |)||)m 4@
lu@)|
= / "/{465”;\1*25%<[1(17|z\)} (O —|Z)m du(2),

where we have used that we can choose e > 0 small enough so that B(zo. (1 — 12)7)
{¢eS"; |1—z|" < B(1—|z)}. Now Fubini’stheorem givesthat the previousintegral
is bounded by

u@)| du(?)
o hogio @ — 2 #@ 9O < LMGuQ® [ 7 gy 900

If g < p, Holder's inequality with exponentsg and % givesthat thisis bounded by
.

()L, Mau@P do(©)) ( /s ( /ann o %) do(o)

The estimate follows immediately when p = g.
Finally, applying [Su, Theorem 3.8] (see also [CaOr2, Theorem 2.2]) we have that
[Maullp < C||f]|p, and we finish the proof of the theorem. "
Similar methodsto the onesjust used in Theorem 3.4 showsthat thefollowing slightly
more general condition is also sufficient:
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ProOPOSITION 3.5. Let 1 be a finite positive Borel measureon B", m=n— ap > 0,
1<rt< n% and 1 < g < p. Assumethere exists a finite positive Borel measurer on S"
so that y(B(zo. r)) ~ ™ for anyr > 0, z € suppu, Z = % and that it satisfies

12

@ | e
/Q 0Ty <Y (dv).

Then 1 isa g-Carleson measure for hY,. "
Observe that the previous theorem correspondsto 7 = X, v = do.

ReEMARK. If we consider the condition

du(2) o
/QT(C) (1_ |Z|)n7“q*(1*%)‘?n eLp q(do')q

the necessary condition of Proposition 3.3 correspondsto 7 = 1, whereas the sufficient
condition of Theorem 3.4 correspondstor = 1. Wedo not know whether theintermediate
conditionswith 1 < 7 < 7 aretill sufficient.

The remark after Theorem 3.2 saysthat if 11 is ag-Carleson measure for hf, then

B
(/31 u(T(BG.61))" do(o) = O(r™°9),

Our next result gives a result in the reverse direction. We abtain a sufficient condition
in terms of the growth of an L53-modulus of conti nuity of the measure ui. Recall that
TH(E) = B" \ Ugze D?(¢) denotesthe admissibletent over E.

THEOREM 3.6. Let i be a finite positive Borel measure on B", and let 1 < g < p,
n—ap >0, 3 > 1. Define

P—q

p

a0 =90 = [, n(T'(Be0)) ™ 00

and assume that for some kg < 1,

/ko( Q) )qlog}g < 400
0 rr

rn—O(q

Then . isa g-Carleson measurefor hP.

PROOF OF THEOREM 3.6.  Theproof ishased in thefollowing proposition, which gives
asufficient condition for i so that the weighted measure (1 — |2|)*® du(2) isag-Carleson
measure for the space hP of Poisson-Szego transforms of LP functionsin the unit sphere,
with an explicit control of the norm of the operator from HP into Lq((l —|z|)> du(z)).

PROPOSITION 3.7. Let u be a finite positive Borel measureon B", 1 < q < p, and
m=n— ap > 0. Supposethat thereexists0 < K < 1, 3 > 1 sothat
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(1) supp C {zeB";1— |z <K}.
(2) Thefunction g”(r) satisfiesthat for someky < 1,

B(rY
/kog(r)qg<+oo

Jo rn—oq r
Then thereexist M, P > 0 (not depending on K) so that for any M -harmonic function
f onB",

rl"l (J/Qr

16}
[ @l du < p( [ £L g

PROOF OF PROPOSITION3.7. Foranyk € Z*,let G ={z€ B"; 5r <1—|7 < x}.
We then have

(37 Jor@ = U@ du@ =~ 3 274 [ (D] dud).

2k<

Mean-value inequality together with Holder's inequality gives that for any z € Ci,
g0 < 1, q ( )
V(w
f(2)]? < fw)| —.
(= [, T G
Wefix eg < 1 which will be chosen later. There exists C > 0 so that if e = Ceg, then
D.,(2) = 6(=0B") C Q(z £(1— |2))). Thus, from (3.7) we obtain

dV(w)

LA D@ @ < 3 270 [ L ) M g e

2 (ze-1)
2

1-
Now, if £o is small enough, ¢ is also small, and we have that if w € Q(z (1 — |2))),
then 1 — |z ~ 1 — |w|. Hence, if z € G, we deduce that there exists C > 0 so that for
anyw € Q(ze(1— 7)), w e G ={w; &5t < 1—|w| < %}. Consequently, Fubini’s
theorem gives that the previous sum can be estimated by

k(n+1—aq) a
> 200 [ ey POF@I V)

51,;<K

(3.8) = 3 oKn+i—eq) / ( Q(z Al - |w|)))|f(w)|q dV(w).
L <K
Next there exists M > 0, so that if wo = 2, and 1 — |w| ~ %, then Q( LA — |w|)) -
T9(B(wo. %)). Indeed it is enough to show that if z € Q(w. A(1 — |w])) and z € D(Q),
¢ €S, then( € B(wo. %)
Hence we obtain that (3.8) is bounded by

Z ok(n+1—ag) /(";k |f(W)|qH (TH(B(LU Zi))) dV(w)

1
2—k<K
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<3 2k(n+1—ocq)/ INF (wo)| 92 (TB(B( gﬁ)))dV(w)

T<K

< Z<K2k<” Q) / |Nf(wo)|qu<T/’(B( %))) do(wo),

where in the last estimate we have integrated in polar coordinates. Holder's inequality
with exponents g and p;pq givesthat the previous sum is bounded by

P P—q

Zlkng 2k(nfrxq)||Nf Hg(/sn K (T”(B(wo, ;))) : da(wo)> ”

(zzk(n og(5e) JINeig = ([ SO 8 g

<K

which finishes the proof of the proposition. ]
We now go back to the proof of thetheoremwhich goesinasimilar way to Theorem 2.3
in [Ca0r1], with Proposition 2.2 there substituted by Proposition 3.7.
We need to show that there exists C > 0 so that for any f € L (do),

/B (/sn % dU(O) q du(2) < CJIf |4

Since (see theorem 2.3 in [CaOr1]),

_fQ 1 .
/ o 1—z| do (Oﬁfo(l—t) F(t2) dt.

-
with F = P[f], we just need to check that
1 q
(39) L(Fa-v—Fed) du@ < Clfs
with F = P[f].

We break the integral from 0 to 1 in (3.9) in two parts, from 0 to 6o and from §q to
1 (6o < 1to be chosen), and denote them by F; and F» respectively. The fact that the
L>-norm of F over each compact in B" is bounded by the LP-norm of f implies that the
contribution of F; to (3.9) isthe desired one, and that without loss of generality we may
assumethat supu C {z€ B"; 1 — |7 < o}, with eg << 1 fixed that will be chosen
later.

Letze B"sothat1— |z] < epandchoosel =ty >t; > - > 1, wherel =1(2) € Z*
isthefirst integer satisfying that 2'(1— |z]) > 1, andwhere 1 —ti|z] = 2¢(1—|Z]), k < I.
Now, if £ < % and 6o = (1 — 2)(1 — %)%, t; < 8o, and consequently,

(3.10)

I-1
Fa(2) < / 1- t|z|)°‘F(tz) (1- 2 1/M(l t|z|)”‘F(tz)% = kXZ:OFz_k(z).

t| I)“
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We define the measures i on B", 0 < k < | — 1 given by:
_ 1-n* )
o) = [ 1) = ).
_ t n
uk(h)-g(/tm h(tz)l—_t), 1<k<I heC(@".
Then, see[CaOr1], each p isafinite measureon the unit ball. Furthermore, || k|| = O(2)
andsupp C {z€B";1—-[2 <3

We now check that the measures i are in the conditions of Proposition 3.7 with
constantsK = 2. If tze T#(B((. 1)), t < 1, thenz € T#(B((.1)). Thus

poT(B60) = [, ) iy @) < (T(BC0))

and similarly, uk(TB(B(g, r))) < N(TB(B(C, r))), 1<k<l—1
Now Holder's inequality followed by Proposition 3.7 applied to each py, together
with (3.11) give that

Qi

P2l < 22 [IF2kllia@n < Z( o (L= [2)F@)° duk(2)>
k>0 k>0

1
M$ g(r) drya
< Z(/O ’ MT) [[NF|5.

k>0 \"

Thefact that é < 1together with Fubini’stheorem givethat the previous sumis bounded

by
1
9) \adr g R 900 idr
go/ (rn_aq) — £l 5_/0 (—rn_aq) ~ 13-
provided we take g small enough. .

Now that we have obtained two different sufficient conditionsin terms of moduli of
continuity and the geometric type one, we would like to comparethem. Wewill construct
measures that satisfy only one of the conditions, and deduce that none of the sufficient
conditions are, in general necessary. We will begin with an example of ameasurein the
conditions of Theorem 3.4 but does not satisfies the hypothesis of Theorem 3.6, and in
the other sense, we will construct a measure satisfying the conditions of Theorem 3.6
but not the conditions of Theorem 3.4.

ExAMPLE 1. Assumeq = 1andp = 2. There exists afinite positive Borel measure p
in B" such that
du(?)

—_— 2
/Q%(C) 1 — |z~ € L%(do),

but if

o0 = ( f,n(T(8G.0)) o00) '
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thenfor each0 < kg < 1,
ko g(r) ldr
/ — log=— =+o00
Jo rn-e rr
Let o, bethe Dirac measure at apoint (o € S". We will construct a measure dy(r¢) =
h(1 — r)dr 4, with h a positive function in (0. ), h(Cr) < h(r), for some C > 1, and
for r small enough, and 1, < 1. We first check how the two type of sufficient conditions
look like for these special measures.
We start with the geometric condition. If du(r¢) = h(1 — r)drog,

du@ _ 1 h(1 —t)
/Q%(o @—|z)er - /o XQ%@(KO)W dt.

with X0, © the characteristic function of the set Q.. Sincefor any t¢ € Qa1 () we have
that |[1— (G| ® < (1—t), and conversely if ¢ > Oissmall enoughand |1—(G| R < e(1—1)
we obtain that t¢o € Qa((), we conclude that the integral is different from zero only
when c|1 — §§0|nﬂw < 1-—t <1, for someconstant ¢ > 0. These facts together with the
doubling property of h give that the convergence of the integral

du@@ 7o
/91(/9%(@) %) do(Q)

is equivalent to the convergence of

h P
./S" (‘/Jfgg_o\ ) tn—(ta)p dt) do(Q).

The convergence of the aboveintegral is equivalent to the convergence of

/k h(t) \ 7

]-Z /L (%)r—r}, tnfrxp) dU(o.

2J+1<‘17<<0|§§1J’ ('

whichin turn is equivalent to the convergence of

p
k k P

I XH(/” @)”dx,

Jo x® th—ap

The change of variablesx® =y givesthat the last integral equalsto

(3.11) / “ y”*“pfl( yk t:‘f?p dt) & dy.

Next, let us compute g(r) for these measures. A similar argument to the one we have
just used gives that the convergence of

() a0 = f, . ([ o)

0
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is equivalent to the convergence of

L[ e ds) ar

Thus the condition on g is equivalent to the fact that the function

P—q

@(r):(‘/or ([ h(s)ds)pl )
satisfies that

1
kK gr) 1dr
(3.12) | (rﬁqu) log == < +00

Since we are considering p = 2, and g = 1, and for any smooth function F so that
F(0) = 0, F(x) = J3 F'(t) dt, we can rewrite theintegral in (3.11) as

Lyt 00 ) oy fryroes [ MO 6 MO gy
=y 1d/ o O 2 g O
o [0 o

n—ap
(3.13) / / h(r) dr :'(?p

where we have used Fubini’s theorem in the second and the forth equivalence.
A similar argument shows that the function § can be rewritten in this case as

(3.14) §(r) = (/0 ' /g (r — 7)"h(s)h(r) deT)%.

Now we can construct our example. Take h(r) = rz—(log 1) A, > 0 small enough
and A\ > 0 to be chosen later, where m = n — ap. Since [} h(T)dr ~ rZ(log )=, we
havethat (3.13) is equivalent to

h d
//h()d n(?p /o r(|ogr%)2,\-

which is finite provided we take A > 3.
A similar argument shows that

n+m

1 d¢)2> r=
(log $)? ~ (log ) (log )

o) = [ [ =t

F|na”y, for ea.Ch k < 1,
k k
/ am | 1dr dr

100 —— = [ ———— = t00,
n -1
rn—e Sy 0 r(log )

provided A < 2. Thusif we choose % < A < 2we obtain the desired example.
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ExAMPLE2. Assumen=2,q=1,p=2,ando l . Thenthere existsafinitepositive
Borel measure 1, on B2 so that 1. satisfies the suffi C|ent condition in Theorem 3.6:
ko g(r 1 d
/ 9( )| log =&
JO  r3 2 r
for some kg < 1, but it does not satisfy the sufficient condition of Theorem 3.4, that is
du@ >
L%(do).
/Qz(o P & Lo(do)
We define the measure ;. on B2 by

n(g) = /1 [ ra-nged’.oydodr.

whereg € C(B?), and f(r) = (log 2)*~P, with p; > 3.

We will first show that p satisfies the condition on the moduli of continuity. We
recall that we can substitute the admissible tents by non-isotropic Carleson “boxes’
VK(B(.1) ={z€B?; 1|z <r,|1—2(| < kr},withzo = 7.

Suppose that (ré”.0) € VK(B(.1)), ¢ = (G- &) € S% Wehavethat 1 — 7 < r and if
we write ¢, = |¢1|€%, then |9 — 61| <rand 1 — |G| < r. Consequently for any ¢ € S,
¢=(G.&)with1— |G| <,

u(V"(B(@, r))) <[ ' ‘/‘HﬂScr d6f’(x) dx < rf(r) = r(log %)

— < +o0

1I-p

Now

'/1_\<1|SCF M(VK(B(Q’ r)))z dU(O =< ~/1—\<1|Scr I‘2<|Og %)2—2[)1 do.(o

r?(log %)2_2"1 /02W /1_350r sdsdf ~ r® (Iog %)272;31.

IA

and

o) = (/52 u(Vk(B@v f)))z d"(o) < (o0) "
/ko g(r) -< / < )Z—Pl drq
\ :

which is convergent prowded pl > 3.

So we are led to show that ¢ does not satisfy the geometric condition. If € > 0 is
small enough, ¢ = (¢1.(2) € &, with (1 = |1, and (1 — |Ga| + [0 — 61])? < (1 — 1),
we easily deducethat (t€’. 0) € Q»(¢), and then

du@@ - [t XQZ(C)(teievo) /
/QZ(C) 1-17 /o /0 1_1 | d—-yadodt

f'(t) f'(t)
> 1 1 ~
—-/ /<1f|<1\>samfal\sai g ddo= / et @ O

N (log 1_+<l|)7p1
— Gl

Finally,
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Altogether they give that

du@ \? (log r=ig)~*
/sz (-/92(0 1— |z|) do() = /17|<1\<5 (1-1al? 4o

L oo™
T s (1-9)2

Finally we will seethat the geometric sufficient condition is, in a certain sense, sharp.

PROPOSITION3.8. Let m=n—oap > 0,1 < g < p < +oo. Assume ¢ be a non-
decreasing positive function defined in (0, k), k << 1, so that there exists C > 1 and
¥(Cr) < y(r), for r small enough, and

(i) limg_o+ 9(t) = 0.

(ii % =0(1), ast — O+.
n—op
(i) 15 5 & < +o0.
Then there exists a measure i on B" so that

sds = +oo.

du@ \7s
/ (/Qn@ w(lu Z|z|)) do(C) < +oo,

but 1 is not a g-Carleson measure for hY,.

PROOF OF PROPOSITION 3.8. Let du(r¢) = (% — 1)1p(r)3*11//(r) dré¢,, wheregp € S".
An argument like the one used in Example 2.1 shows that the convergence of

du@) |7
/ (/Qn(o w(lu Z|z|)) do(C)

is equivalent to the convergence of

Kinap-1( [¥ = ap-1 %
i (/t ()i zp(r)dr) dt</t” P (kg + ()7 1) dt
k P dit
+/o P t’
which isfinite by (iii). But 1 does not satisfy the necessary condition

u(T(A)) =< Cap(A)3.

Indeed, suppose it does satisfy this condition, and take B((o,r), r > 0. Since

u(T(B(go. f))) z w(r)%, we deduce that (r) < r"*P, which is contradictory with

(ii). .
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