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Abstract
A distributed UAV (unmanned aerial vehicle) flocking control method based on vision geometry is proposed, in
which only monocular RGB (red, green, blue) images are used to estimate the relative positions and velocities
between drones. It does not rely on special visual markers and external infrastructure, nor does it require inter-
UAV communication or prior knowledge of UAV size. This method combines the advantages of deep learning and
classical geometry. It adopts a deep optical flow network to estimate dense matching points between two consecutive
images, uses segmentation technology to classify these matching points into background and specific UAV, and
then maps the classified matching points to Euclidean space based on the depth map information. In 3D matching
points, also known as 3D feature point pairs, each of their classifications is used to estimate the rotation matrix,
translation vector, velocity of the corresponding UAV, as well as the relative position between drones, based on
RANSAC and least squares method. On this basis, a flocking control model is constructed. Experimental results in
the Microsoft Airsim simulation environment show that in all evaluation metrics, our method achieves almost the
same performance as the UAV flocking algorithm based on ground truth cluster state.

Nomenclature
N number of features
Pi

(.) coordinate of feature i in some coordinate system
�(.) orthogonal coordinate system
R(.) rotation matrix between two coordinate system
T(.) translation vector between two coordinate system
H transformation matrix from time t to t + 1 of UAV i, equals to

[
R(.) T(.)

0 1

]
K camera intrinsic matrix
Qi position vector of UAV i(m)
Qi

x x component of position vector of UAV i(m)
Qi

y y component of position vector of UAV i(m)
Qi

Z z component of position vector of UAV i(m)
Vi velocity vector of UAV i(m/s)
Vi

x x component of velocity vector of UAV i(m/s)
Vi

y y component of velocity vector of UAV i(m/s)
Vi

xy horizontal airspeed of UAV i(m/s)
Ve

xy desired horizontal airspeed(m/s)
ef vi desired flocking velocity vector of UAV i(m/s)
efvi

x x component of desired flocking velocity vector of UAV i(m/s)
efvi

y y component of desired flocking velocity vector of UAV i(m/s)
δi desired flocking yaw angle of UAV i(rad)
ui control input vector of UAV i
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ui
x x component of control input vector of UAV i

ui
y y component of control input vector of UAV i

ui
f flocking geometry control component of UAV i

ui
av horizontal airspeed alignment control component of UAV i

ui
c collision avoidance control component of UAV i

ui
vf flocking velocity control component of UAV i

Cf strength coefficient of the flocking geometry control component
Cav strength coefficient of the horizontal airspeed alignment control component
Cc strength coefficient of the collision avoidance control component
Cvf strength coefficient of the flocking velocity control component
Wi

j influence weight of UAV j to UAV i for flocking geometry control
Wi

i influence weight of UAV i to UAV i for flocking velocity control
dij horizontal distance between UAV i and j(m)
Dc maximum horizontal observation distance(m)
Dl1 minimum distance between UAVs to avoid collision(m)
Dd desired horizontal distance between UAVs(m)
obji

1 flocking velocity deviation performance metric of UAV i
obji

2 flocking shape deviation performance metric of UAV i

1.0 Introduction
UAV flocking has attracted more and more attention because it can solve the problems in many applica-
tion fields. For example, it can be used to cooperatively transport objects whose weight is not known in
advance [1]. What’s more, real-time tracking of flood boundary with UAV can speed up the rescue pro-
cess of survivors and reduce secondary disasters [2]. In addition, UAV flocking can provide temporary
network coverage for disaster areas and better serve rescue through captured images, audio and other
data [3].

In order to make the UAV flocking fly safely and stably, the relative positioning problem must be
solved. A practical approach to solve the relative positioning problem is to use external measurements,
such as the Global Positioning System (GPS) [4], the Visual Reference Positioning System [5] and
the Fixed Ultra-WideBand (UWB) Communication Module Positioning System [6], to estimate the
positions of all participants in the preset reference coordinate system. However, these systems may
not always be available, such as GPS for forest and urban environments, or require advance deploy-
ment of infrastructure (e.g. multi-camera motion capture system and ultra-wideband communication
device), which greatly limits the applicability and ubiquity of systems that rely on this technology.
A popular approach to overcoming these limitations is to use vision- or distance-based on-board sensor
approaches. Distance-based approaches involve measuring the distance between UAVs and thus recover-
ing the relative positions between them via laser [7] or ultra-wideband [8] on-board sensors. Compared
with distance sensors, vision sensors provide richer information and consume less energy because of
passive sensing, so it is interesting to study vision-based UAV flocking.

In recent years, significant progress has been made in the research of vision-based UAV flocking.
Tang et al. [9] propose a vision-assisted UAV flocking method, which uses correlation filter-based vision
detection to track the UAV ahead in order to form a linear formation, and the navigation capability is
provided by the LiDAR-based simultaneous localisation and mapping (SLAM), but it fails to implement
more complex formations (such as lattice structures) and does not take full advantage of the rich infor-
mation provided by vision (such as vision-based SLAM). Moshtagh et al. [10] propose a theoretical
approach based on visual measurement of orientation, optical flow and collision time, which achieves
the directional alignment of individuals, but not the aggregation properties of flocking. Moreover, only
numerical simulation experiments were designed, and the algorithm about vision was not verified on pic-
tures. Based on Ref. (10), Moshtagh et al. [11] solve the problem of conflict avoidance among individuals
and add parallel flight, circular flight and real flocking test. However, the aggregation nature of the flock-
ing is still not achieved, and their visual perception depends on LED markers. Soria et al. [12] analyse
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the effects of field of view and orientation of vision sensors on flocking metrics such as order, union,
connectivity and safety, which help to determine vision sensor selection and installation scheme when
building UAV flocking system. Hu et al. [13] propose an end-to-end vision-based distributed flocking
controller design method, which feeds raw images into a convolutional neural network to obtain feature
vectors and propagates them hop-by-hop through the communication network to all UAVs, which selec-
tively receive and process these messages through a graphical neural network to determine the action to
be taken. And the whole controller including convolution and graph neural networks are trained together.
However, only the results of the effect of different team sizes and feature vector sizes on the flocking
stability are given in the paper, and further experiments are needed for other metrics. Schilling et al. [14]
propose an imitation learning-based UAV flocking control algorithm. It adopts an end-to-end design in
which the visual information of six directions of the UAV is fed into a convolutional neural network to
infer control actions, and the training data are obtained from conventional position- and velocity-based
flocking control algorithms. The proposed method is validated in both simulation and real environment,
but the interpretability of the method is poor. In addition, the experimental site is empty and the more
complex environments is not considered, and the grey image with very low resolution is used as the data
input, which makes the performance of flocking control poor. Bastien et al. [15] develop a mathematical
model of collective behaviour based on purely visual projection fields, which is sufficient to generate
organised collective behaviour without spatial representation and distance information. However, this
is only a mathematical model, and further research is needed to determine whether it can be finally
implemented. Schilling et al. [16] propose a vision detection and tracking algorithm that does not rely
on communication or visual markers. It detects nearby UAV by omnidirectional vision based on the
YOLOv3-tiny architecture, and estimates the relative positions between drone with known physical size
of UAV, which are subsequently fed to a flocking controller to achieve a safe flight of three real UAVs,
but the trajectory fluctuates greatly and the relative distance estimation is inaccurate.

Therefore, this paper proposes a visual geometry-based UAV flocking control method that does not
require inter-UAV communication, prior knowledge of UAV size or special visual markers, and has good
accuracy, interpretability and flocking performance.

To summarise, the contributions of the paper are: (1) we propose a novel distributed UAV flocking
method based on monocular visual geometry, which combines the advantages of deep learning and
classical geometry; (2) we propose a method that allows moving UAVs to estimate the relative velocity
and position of neighbouring drones using only RGB images captured by the on-board camera, and give
an easy-to-understand derivation procedure; (3) experimental results in the Microsoft Airsim simulation
environment show that our method achieves almost the same performance as UAV flocking algorithm
based on ground truth cluster state in all evaluation metrics.

The rest of this paper is organised as follows: Section 2 introduces the visual geometry-based
UAV flocking algorithm; Section 3 shows the simulation experimental method and results in detail;
Section 4 summarises our work, points out the limitations of this paper and provides an outlook for our
future work.

2.0 Method
The visual geometry-based UAV flocking algorithm proposed in this paper can be divided into the
following steps: 3D feature point pair extraction, transformation matrix estimation and UAV flocking
control (see Fig. 1). First, the 3D feature point pairs extraction module (see Fig. 1(a)) acquires two con-
secutive RGB colour images from the omnidirectional camera configuration, establishes a match by deep
optical flow network, segments the match into different categories such as static background, UAV 1,
UAV 2, . . . , etc., and then maps the classified match from image to Euclidean space based on the depth
map information. Second, the transformation matrix estimation module (see Fig. 1(b)) first estimates
the transformation matrix (including rotation matrix and translation vector) of the current UAV based
on the 3D feature point pairs of the static background, and then estimates the relative position, rotation
matrix and translation vector of the nearby UAV based on the rotation matrix and translation vector of

https://doi.org/10.1017/aer.2022.112 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.112


The Aeronautical Journal 1051

(a) (b) (c)

Figure 1. Processing steps of UAV flocking based on visual geometry in a single sampling interval: (a)
3D feature point pairs extraction, (b) transformation matrix estimation, (c) UAV flocking control.

the current UAV and the 3D feature point pairs of the nearby UAV. Finally, the estimated state of each
UAV is input into the UAV flocking control module (see Fig. 1(c)), and the computer simulation of bio-
logical collective behaviour in two-dimensional space is realised according to the three heuristic rules:
aggregation, alignment and separation [17]. To obtain richer visual features, we arrange the UAVs at
different altitudes and assume that their altitude remains constant throughout the flight.

2.1 3D feature point pairs extraction
2.1.1 Depth estimation
Structure-from-motion (SfM) is the problem of estimating camera motion and scene geometry from
monocular image sequences [18]. For decades, numerous researchers have studied this problem inten-
sively. There are two main approaches in existence: classical geometry method and deep learning
method. The classical geometry approach first matches features between two images and then infers
camera motion and scene geometry from these matches. Its advantage is that the method has very good
accuracy and interpretability when there is a set of accurate matching points and scale prior information.
However, the traditional feature matching method is not effective in obtaining accurate matching points,
and without prior knowledge of the scale or identifiable objects in the scene, two or more views can only
estimate relative camera motion and scene geometry, i.e. no absolute scale can be inferred. The deep
learning approach uses end-to-end deep neural networks to regress depth and pose from a single image
or image pair. It can extract the scale and scene prior knowledge from the training data. Therefore, this
paper combines the advantages of both methods. A deep neural network is used to estimate depth map
[19, 20] that provides absolute scale information, another deep neural network is used to obtain exact
matching points (see the next section for more details), and then camera motion and scene geometry are
computed using classical geometry methods.

2.1.2 Optical flow estimation
Feature matching and optical flow estimation are the main methods to obtain feature point pairs.
However, due to the following drawbacks of feature matching methods – (1) the number of feature
is limited so that the relative position estimation is inaccurate and unstable and (2) in some cases (no
texture, occlusion) – there are no or not enough feature point pairs to recover the transformation matrix
of the UAV. Therefore, in this paper, we directly utilise an unretrained state-of-the-art deep neural net-
work, RAFT [21], which is a deep learning-based optical flow estimation method. This method builds
a feature representation for each pixel, constructs a matching objective function based on the similarity
between the current and other pixel feature representations, and trains an update operator by deep learn-
ing, which iteratively updates the optical flow field based on the gradient-like information provided by
the objective function until the best match is found for each pixel.
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Figure 2. Pin-hole lens model.

2.1.3 Segmentation
The motion of a rigid body can be described by the rotation matrix and the translation vector, and it
is only necessary to know enough 3D feature point pairs of a particular rigid body in two images to
recover its transformation matrix. Therefore, we can use the existing image segmentation technology
similar to [22] to segment the image according to different rigid bodies, and recover its transformation
matrix according to the 3D feature point pairs corresponding to each rigid body.

2.1.4 Mapping of image to Euclidean space
In this subsection, we will derive the mathematical relationship between the coordinate of a point in
Euclidean space in the camera coordinate system and the coordinate of its projection point in the image
coordinate system. As shown in Fig. 2, a point Pi in Euclidean space passes through the pin-hole lens
model to get an image point P̄i in the physical imaging plane and a pixel point pi in the image plane.
The camera coordinate system is fixed on the lens, the origin is C, and the base is {XC, YC, ZC}. The
coordinate of Pi in the camera coordinate system is (Pi

x, Pi
y, Pi

z). The physical imaging coordinate system
is fixed on the physical imaging plane, the origin is O, the base is {XO, YO, ZO}, ZO and ZC are collinear,
and the coordinate of P̄i in the physical imaging coordinate system is (P̄i

x, P̄i
y, P̄i

z), P̄i
z = 0. Length of the

line OC is equal to the focal length f of the camera lens. According to the similarity relation of triangles
it is obtained:

−P̄i
x

Pi
x

= f

Pi
z

(1)

−P̄i
y

Pi
y

= f

Pi
z

(2)

The image coordinate system is fixed on the image plane, the origin is Ō, the base is {U, V}, and the pixel
point pi has the homogeneous coordinate (u, v, 1) in the image coordinate system. The transformation of
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Figure 3. Camera motion model.

the physical imaging coordinate system to the image coordinate system requires scaling and translation
operations, as follows:

u = −aP̄i
x + tu (3)

v = −bP̄i
y + tv (4)

Organising the above equations into matrix form, we get:

Pi
z

⎡
⎢⎣

u

v

1

⎤
⎥⎦ =

⎡
⎢⎣

af 0 tu

0 bf tv

0 0 1

⎤
⎥⎦

⎡
⎢⎣

Pi
x

Pi
y

Pi
z

⎤
⎥⎦ (5)

Abbreviated as:

Pi
zq

i = KPi (6)

K is the camera intrinsic matrix, which is assumed to be known in this paper. If the depth map is known,
then Pi

z is known, and the coordinates of a point in Euclidean space expressed in the camera coordinate
system can be calculated from the homogeneous coordinate of the point on the image.

2.2 Transformation matrix estimation
2.2.1 Camera motion model
In this subsection, we will derive the mathematical relationship between multiple pairs of static
background feature points in two consecutive images and the transformation matrix of the camera
coordinate system in this sampling interval. Consider a scenario depicted in Fig. 3 where a moving
camera views a static background. At time t, the camera coordinate system �C has origin C and basis
{XC, YC, ZC}. At time t + 1, the camera coordinate system �F has origin F and basis {XF, YF, ZF}.
Pi, i = 1, 2, 3, . . . , N denotes the N static background feature points that are captured by the camera at
both time t and t + 1. The coordinates of Pi expressed in �C and �F are Pi

C and Pi
F respectively, and

they are related as follows:

Pi
C = RFCPi

F + TFC (7)
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where, RFC is the rotation matrix describing the orientation of �F with respect to �C, and TFC is the
position of F with respect to C expressed in �C. Solving RFC and TFC according to Equation (7) requires
a complex joint optimisation of all the unknown variables, so we try to solve them separately. O is a
point in Euclidean space. The coordinate system �C

′ is obtained by shifting the origin C of �C to O,
which has origin C′ and base {XC

′ , YC
′ , ZC

′ }. The coordinate system �F
′ is obtained by shifting the origin

F of �F to O, which has origin F′ and base {XF
′ , YF

′ , ZF
′ }. Coordinates of the vector

−→
OPi expressed in

�C
′ and �F

′ are
−−→
OPi

C
′ and

−−→
OPi

F
′ respectively, and they have the following mathematical relation:

−−→
OPi

C
′ = RF

′
C

′
−−→
OPi

F
′ (8)

where, RF
′
C

′ denotes the rotation matrix describing the orientation of �F
′ with respect to �C

′. From the
geometric relationship between the vectors depicted in Fig. 3, the following equality can be obtained.

−−→
OPi

C
′ = −−→

CPi

C
′ − −−−→

CC′
C

′ (9)

−−→
OPi

F
′ = −−→

FPi

F
′ − −−→

FFF
′ ′ (10)

where,
−−→
CPi

C
′ and

−−−→
CC′

C
′ denote the coordinates of vector

−→
CPi and

−→
CC′ in �C

′ respectively.
−−→
FPi

F
′ and

−−→
FFF

′ ′ denote the coordinates of vector
−→
FPi and

−→
FF′ in �F

′ respectively. After substituting Equations (9)
and (10) into Equation (8), the following relationship can be developed:

−−→
CPi

C
′ − −−−→

CC′
C

′ = RF
′
C

′ (
−−→
FPi

F
′ − −−→

FFF
′ ′) (11)

As you know, if there is no rotation between the two coordinate systems, then a vector has the same
representation in these two coordinate systems. Since there is no rotation transformation between �C

and �C
′ , and the same between coordinate systems �F and �F

′ , the following equation is true.
−−→
CPi

C
′ = Pi

C (12)

−−→
FPi

F
′ = Pi

F (13)

−−−→
CC′

C
′ = −−→

CC′
C (14)

−−→
FF′

F
′ = −−→

FFF
′ (15)

where,
−−→
CC′

C and
−−→
FF′

F denote the coordinates of point O in the �F and �C respectively. Because trans-
lation does not affect rotation, so the rotation transformation between �C and �F is the same as that
between �C

′ and �F
′ . The equation is as follows:

RF
′
C

′ = RFC (16)

After substituting Equations (12)–(16) into Equation (11), the following relationship can be devel-
oped:

Pi
C − −−→

CC′
C = RFC(Pi

F − −−→
FF′

F) (17)

Take point O as the centre of all feature points, as shown in the following:

−→
CC′ = PC = 1

N

N∑
1

Pi
C (18)
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Figure 4. Object motion model.

−→
FF′ = PF = 1

N

N∑
1

Pi
F (19)

After substituting Equations (18) and (19) into Equation (17), the following relationship can be
developed:

Pi
C − PC = RFC(Pi

F − PF) (20)

The coordinates of Pi
C and Pi

F can be calculated according to the Equation (6), and according to
Equation (20) using the least squares method based on singular value decomposition [23] can be solved
to obtain RFC, and TFC can be obtained by substituting RFC into the Equation (7). The velocity Vi of UAV
i can be expressed as:

Vi = TFC

st
(21)

Where, st denotes the sampling time.

2.2.2 Object motion model
In this subsection, we will derive the mathematical relationship between multiple pairs of feature points
of moving objects in two consecutive images collected by a moving camera and their transformation
matrix in the sampling interval. Consider a scenario depicted in Fig. 4 where a moving camera views a
moving object. At time t, the camera coordinate system �C has origin C and basis {XC, YC, ZC}. At time
t + 1, the camera coordinate system �F has origin F and basis {XF, YF, ZF}. Pi, i = 1, 2, 3, . . . , N denotes
the N feature points on the moving object captured by the camera at the time t + 1. The coordinates of
Pi expressed in �C and �F are Pi

C and Pi
F respectively, and they are related as follows:

Pi
C = RFCPi

F + TFC (22)

Where, RFC is the rotation matrix describing the orientation of �F with respect to �C, and TFC is the
position of F with respect to C expressed in �C. The coordinates of Pi

F can be calculated according
to the Equation (6), RFC and TFC can be calculated according to the previous section, so Pi

C can be
calculated according to the Equation (22). Let P̄i denote the feature point corresponding to Pi on the
moving object captured by the camera at time t. Its coordinates P̄i

C in the �C can also be calculated
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according to the Equation (6). Now, the problem we need to solve is to find the transformation matrix
between the pose of the moving object at time t and t + 1 under the condition that Pi

C and P̄i
C is known.

Let C′ and C′ ′ denote a certain feature point O on a moving object captured by the camera at time t + 1
and t respectively. The coordinate system �C

′ is obtained by shifting the origin C of �C to C′, which
has origin C′ and base {XC

′ , YC
′ , ZC

′ }. The coordinate system �C
′ ′ is obtained by shifting the origin C

of �C to C′ ′, which has origin C′ ′ and base {XC
′ ′ , YC

′ ′ , ZC
′ ′ }. −−→

C′Pi

C
′ denotes coordinate of the vector

−−→
C′Pi

expressed in �C
′ ,

−−−→
C′ ′P̄i

C
′ ′ denotes coordinate of the vector

−−→
C′ ′P̄i expressed in �C

′ ′ , and they have the
following mathematical relation:

−−→
C′Pi

C
′ = RC

′ ′
C

′
−−−→
C′ ′P̄i

C
′ ′ (23)

where, RC
′ ′

C
′ denotes the rotation matrix between the pose of the moving object at time t and t + 1

with respect to the point O. From the geometric relationship between the vectors depicted in Fig. 4, the
following equality can be obtained.

−−→
C′Pi

C
′ = −−→

CPi

C
′ − −−−→

CC′
C

′ (24)

−−−→
C′ ′P̄i

C
′ ′ =

−−→
CP̄i

C
′ ′ − −−−→

CC′ ′
C

′ ′ (25)

where,
−−→
CPi

C
′ and

−−−→
CC′

C
′ denote the coordinates of vector

−→
CPi and

−→
CC′ in �C

′ respectively.
−−→
CP̄i

C
′ ′ and

−−−→
CC′ ′

C
′ ′ denote the coordinates of vector

−→
CP̄i and

−−→
CC′ ′ in �C

′ ′ respectively. After substituting Equations
(24) and (25) into Equation (23), the following relationship can be developed:

−−→
CPi

C
′ − −−−→

CC′
C

′ = RC
′ ′

C
′(
−−→
CP̄i

C
′ ′ − −−−→

CC′ ′
C

′ ′ ) (26)

As you know, if there is no rotation between the two coordinate systems, then a vector has the same
representation in these two coordinate systems. Since there is no rotation transformation between �C,
�C

′ and �C
′ ′ , the following equation is true.

−−→
CPi

C
′ = Pi

C (27)

−−−→
CC′

C
′ = −−→

CC′
C (28)

−−→
CP̄i

C
′ ′ = P̄i

C (29)

−−−→
CC′ ′

C
′ ′ = −−−→

CC′ ′
C (30)

where,
−−→
CC′

C and
−−−→
CC′ ′

C denote the coordinates of vector
−→
CC′ and

−−→
CC′ ′ in �C respectively. After

substituting Equations (27)–(30) into Equation (26), the following relationship can be developed:

Pi
C − −−→

CC′
C = RC

′ ′
C

′ (P̄i
C − −−−→

CC′ ′
C) (31)

Take point O as the centre of all feature points, as shown in the following:

−−→
CC′

C = PC = 1

N

N∑
1

Pi
C (32)

−−−→
CC′ ′

C = P̄C = 1

N

N∑
1

P̄i
C (33)
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After substituting Equations (32) and (33) into Equation (31), the following relationship can be
developed:

Pi
C − PC = RC

′ ′
C

′(P̄i
C − P̄C) (34)

Knowing Pi
C and P̄i

C, Equation (34) can be solved for RC
′ ′

C
′ by using the least squares method based

on singular value decomposition [23]. The velocity Vj estimated by UAV i for nearby UAV j can be
expressed as:

TC
′ ′

C
′ = PC − P̄C (35)

Vj = TC
′ ′

C
′

st
(36)

where st denotes the sampling time. ( xmin+xmax

2
, ymin+ymax

2
, zmin+zmax

2
) is the relative position between UAV i

and UAV j. xmin, xmax, ymin, ymax, zmin, zmax are calculated as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xmin = min{Pi
x|i ∈ inliers},

xmax = max{Pi
x|i ∈ inliers},

ymin = min{Pi
y|i ∈ inliers},

ymax = max{Pi
y|i ∈ inliers},

zmin = min{Pi
z|i ∈ inliers},

zmax = max{Pi
z|i ∈ inliers},

(37)

where inliers represents the point set on UAV j observed by UAV i. See the next section for its calculation
method.

2.2.3 Transformation matrix estimation algorithm
Due to segmentation errors, matching errors and inaccurate depth estimation, there are numerous out-
liers in the set of 3D feature point pairs, which will lead to a large transformation matrix estimation
error. In this paper, the RANSAC [24] algorithm is used to remove the outliers (see Algorithm 1). In
each iteration, the rigid body transformation Ht+1

t corresponding to three pairs of randomly selected
non-collinear 3D feature points is calculated by least squares method based on singular value decompo-
sition (SVD), and the adaptive rejection threshold mechanism is used to select the best transformation
matrix to solve the problem of inaccurate rejection threshold settings that cause inability to calculate or
insufficient accuracy of the results. Finally, in order to further improve the accuracy of the results, the
final transformation matrix is calculated based on the set of inliers.

2.3 UAV flocking control
In this paper, the flocking control model [25] uses the relative position and velocity between UAVs as
inputs to calculate the control input ui = (ui

x, ui
y) of UAV i. ui consists of four components: ui

f is flocking
geometry control component, which is responsible for adjusting the horizontal distance between UAV i
and its neighbour so that it is close to the desired horizontal distance. ui

av is horizontal airspeed alignment
control component, which regulates the velocity of UAV i to be consistent with its neighbour. ui

c is
collision avoidance control component, which regulates the safe distance among UAVs. ui

vf is flocking
velocity control component, which regulates the velocity of UAV i to be consistent with the desired
flocking velocity. The formulaic representation of each control component is as follows:

ui
k = ui

f + ui
av + ui

c + ui
vf − Vi

k, k = x, y, (38)
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Algorithm 1. transformation matrix estimation algorithm

ui
f = Cf

∑
j∈{dij≤Dc}

Wi
j (Q

j
k − Qi

k)ln

(
dij

Dd

)
(39)

ui
av = Cav

∑
j∈{dij≤Dc}

Wi
j (V

j
k − Vi

k) (40)

ui
c = Cc

∑
j∈{dij≤Dl1}

(
1

dij
− 1

Dl1

)2 Qi
k − Qj

k

dij
(41)

ui
vf = Cvf W

i
i efvi

k (42)

where Qi = (Qi
x, Qi

y, Qi
z) is the position vector of the UAV i, Vi = (Vi

x, Vi
y) is the velocity vector of the UAV

i, Cf = 0.1, Cav = 0.1, Cc = 10, Cvf = 1 denote strength coefficient of the corresponding control compo-
nent, Wi

j denotes influence weight of UAV j to UAV i for flocking geometry control, Wi
i denotes influence

weight of UAV i to UAV i for flocking velocity control, dij =
√

(Xi − Xj)2 + (Yi − Yj)2 denotes the hori-
zontal distance between UAV i and j, Dc = 20m denotes the maximum horizontal observation distance,
Dl1 = 1.5m denotes the minimum distance between UAVs to avoid collision, Dd = 3.5m denotes the
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Table 1. Initial parameters of the UAVs

i Qi
x(m) Qi

y(m) Qi
z(m) Vi(m/s)

UAV 1 −0.5 0.9 −4.5 (1, 0)
2 0.5 −2.8 −4.0 (1, 0)
3 1.2 4.5 −5.0 (1, 0)
4 3.9 0.5 −3.5 (1, 0)
5 4.5 1.4 −3.0 (1, 0)

desired horizontal distance between UAVs, ef vi = (efvi
x, efvi

y) = (Ve
xycosδi, Ve

xysinδi) denotes the desired
flocking velocity vector of UAV i, δi denotes the desired flocking yaw angle of UAV i and Ve

xy = 1m/s is
desired horizontal airspeed.

3. Simulation results
We evaluate our approach through the round and linear flight experiment of 5 UAVs in the Microsoft
Airsim [26] simulation environment, and report the results on estimation error and flocking performance
separately. In a 110-s flight test, we take images (resolution 640 ∗ 480) every 0.5s and control drones
based on the estimated state to gradually form α − lattice geometry structures and maintain its stability.
Initial parameters of UAVs are shown in Table 1 and altitude of drone remains constant throughout the
flight. The swarm flies round for the first 66s and linear for the rest of the time, which is achieved by
setting the value of δi as shown in Equation (43).

δi =

⎧⎪⎪⎨
⎪⎪⎩

Ve
xy

10
t · · · · · · 2π , if t < 66s,

Ve
xy

10
66 · · · · · · 2π , else,

(43)

3.1 Estimation error
In this section, we report the accuracy of transformation matrix and relative distance estimated by visual
geometry method where the transformation matrix includes the rotation matrix described by yaw, pitch
and roll angles, as well as the X and Y axis of the translation vector. The ground truth UAV state is
collected from the simulation environment. As shown in Fig. 5, the estimation error decreases as the
distance between drones gets closer and tends to be stable as the flocking converges. Statistical results of
estimation error are shown in Table 2. According to data in the table, we can know that the displacement
and relative distance error is stable in the order of centimetres, and the Euler Angle error is stable within
1 degree.

3.2 Flocking performance
In order to evaluate the visual geometry-based UAV flocking performance, we introduce two metrics:
flocking velocity deviation obji

1 indicates the degree of difference between the actual velocity of UAV
i and the desired flocking velocity, and flocking shape deviation obji

2 describes the degree of formation
and stability of the α − lattice geometry structure. The equation is as follows:

obji
1 =

⎧⎪⎨
⎪⎩

− (Vi
x, Vi

y).(efvi
x, efvi

y)

2 ‖ef vi‖ , if t < 66s,

∑
k=x,y

∣∣efvi
k − Vi

k

∣∣, else,

(44)
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Estimation error of translation vector, rotation matrix and relative distance: (a) translation
error X axis, (b) translation error Y axis, (c) yaw angle error, (d) pitch angle error, (e) roll angle error
and (f) relative distance error.

obji
2 =

∑
j∈{dij≤Dc}

[∣∣Dd − dij
∣∣ +

∑
k=x,y

∣∣Vi
k − Vj

k

∣∣] (45)

Figure 6 depicts the simulation results of UAV flocking based on visual geometry where RDij denotes
the relative distance between UAV i and UAV j, Dl1 is the minimum distance to avoid collision between
UAVs. As shown in Fig. 6(a), five UAVs successfully flew a very smooth circle, gradually formed an
α − lattice geometry during the flight and kept this structure stable. As shown in Fig. 6(b), the difference
of horizontal airspeed among UAVs was less than 0.34 m/s, and the horizontal airspeed of the UAV
flocking quickly converges to the desired horizontal airspeed after fluctuating within the allowable range.
As shown in Fig. 6(c), the UAV flocking has a good velocity tracking effect and a slight yaw angle
difference. As shown in Fig. 6(d), relative distance between UAVs is converges rapidly and fluctuates
less. Moreover, flocking geometry and collision avoidance component in the control input achieve the
desired goal, which means that the drones are safe during the whole flight. As shown in Fig. 6(e) and
(f), the shape and velocity of the UAV flocking converge rapidly and stably.
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Table 2. Statistical results of estimation error

Time(s) TEa
x (m) TEb

y (m) Yawc(◦) Picthd(◦) Rolle(◦) RDf (m)
< 66 0.1518 0.2324 1.8459 1.7812 1.5739 0.1683
> 66 0.0099 0.0155 0.7560 0.6231 0.7804 0.0333
aMaximum of translation error X axis.
bMaximum of translation error Y axis.
cMaximum of yaw angle error.
dMaximum of pitch angle error.
eMaximum of roll angle error.
f Maximum of relative distance error.

(a) (b)

(c) (d)

(e) (f)

Figure 6. Simulation results of UAV flocking based on visual geometry: (a) trajectory curves, (b) hor-
izontal airspeed curves, (c) yaw angle curves, (d) relative distance curves, (e)

∑
obji

1 curves and (f)∑
obji

2 curves.
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Table 3. Statistical results of two methods

Algorithm CTOBJ1a(s) CEOBJ1b CTOBJ2c(s) CEOBJ2d

Ground truthe 67.0 0.0000 67.0 0.0206
Visual geometryf 67.0 0.0000 67.0 0.1273
aConvergence time of

∑
obji1 .

bConvergence error of
∑

obji1 .
cConvergence time of

∑
obji2 .

dConvergence error of
∑

obji2 .
eUAV flocking based on ground truth cluster state.
f UAV flocking based on visual geometry.

(a) (b)

(c) (d)

(e) (f)

Figure 7. Simulation results of UAV flocking based on ground truth cluster state: (a) trajectory curves,
(b) horizontal airspeed curves, (c) yaw angle curves, (d) relative distance curves, (e)

∑
obji

1 curves and
(f)

∑
obji

2 curves.
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To illustrate the effectiveness of the proposed method, we compare it with the ground truth cluster
state-based UAV flocking. As you can see from the data in the Table 3 or from the comparison between
Figs. 6 and 7, there are small differences between the two results in terms of trajectory curves, horizontal
airspeed curves, yaw angle curves, relative distance curves,

∑
obji

1 curves and
∑

obji
2 curves, indicating

that the UAV flocking based on visual geometry achieves good results in performance.

4.0 Conclusions
In this paper, we propose a visual geometry-based UAV flocking method, which does not depend on spe-
cific visual markers and external infrastructure, nor does it require inter-UAV communication or prior
knowledge of UAV size. The proposed approach is fully distributed, as each UAV relies only on the
on-board monocular camera to collect images to estimate the transformation matrix of all UAVs and
the relative distance between them, and use it for UAV flocking control. It combines the advantages
of deep learning and classical geometry, and has good accuracy, interpretability and flocking perfor-
mance. The deep optical flow network avoids the drawback that the feature-based matching method
may not get enough effective matches in the occlusion, no texture, small targets scene and the dense
matching obtained is more beneficial to the estimation of the centre of nearby UAV. In addition, depth
map estimation method based on deep learning can extract the scale and scene prior knowledge from
the training data. Experimental results in the Microsoft Airsim simulation environment show that our
method achieves almost the same performance as UAV flocking algorithm based on ground truth cluster
state in all evaluation metrics.

In the future, we will continue to deepen the research of vision-based UAV flocking technology and
eventually verify the feasibility of the algorithm on large-scale swarm.
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