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Turbulence anisotropy effects on corner-flow
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The secondary motion caused by turbulence anisotropy is one of the crucial factors
for determining the size of corner-flow separation in a side-wall interference flow field.
Therefore, through a wall-resolved large-eddy simulation (LES) of a side-wall interference
flow field, this study investigates the effects of the secondary motion on the corner-flow
separation and explores the turbulence modelling that can reproduce the secondary flow
motion. The momentum transport analysis using the LES results shows that the secondary
vortex has twofold effects on delaying the corner-flow separation: the convective transport
of the streamwise momentum towards the corner, and the enhanced production of
turbulence by increasing the shear. Also, the vorticity transport analysis reconfirms that
the secondary motion is caused primarily by turbulence anisotropy in the outer layer of the
turbulent boundary layer. Furthermore, a quadratic constitutive relation (QCR) is proposed
based on the analysis of the relationship between the Reynolds stress and velocity gradient.
The proposed QCR consists of two quadratic terms and three constant parameters.
The a priori analysis using the LES data shows that the proposed QCR represents the
anisotropy of the Reynolds stress overall better than the existing QCR. Reynolds-averaged
Navier–Stokes simulation using the proposed QCR with the Spalart–Allmaras turbulence
model shows improvements in the prediction of the corner-flow separation compared to
the results obtained by the existing QCR with the same turbulence model.

Key words: turbulence modelling, turbulent boundary layers

1. Introduction

Accurate prediction of the separation pattern at a stall condition is crucial in ensuring the
safety of aircraft because the separation causes loss of local lift, which potentially induces
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harmful pitch-up motion. One of the typical separation patterns on aircraft is corner-flow
separation at the wing–body junction. Near the junction, the boundary layers over the
wing and fuselage interact, causing a low-velocity region prone to separation. Therefore,
substantial efforts have been made to understand and predict wing–body juncture flows,
as summarized by Gand et al. (2010). More recently, the NASA Juncture Flow experiment
(Rumsey, Neuhart & Kegerise 2016; Rumsey et al. 2022) was conducted to obtain
validation data for computational simulations. They employed a simplified wing–body
geometry, and measured velocity and Reynolds stress profiles in the corner region by laser
Doppler velocimetry. Subsequent studies (Abe, Mizobuchi & Matsuo 2020; Abdol-Hamid
et al. 2020; Eisfeld et al. 2022; Ghate et al. 2020; Iyer & Malik 2020; Lozano-Duran, Bose
& Moin 2020; Rumsey et al. 2020) have utilized the data from this experiment to validate
and improve simulation methodologies and turbulence models.

One of the crucial features of wing-body juncture flows is the interaction between the
boundary layers over the wing and body. The side-wall interaction causes the second type
of Prandtl’s secondary flow (Bradshaw 1987), i.e. a flow motion caused by the anisotropy
of the Reynolds normal stress. The secondary flow motion appears as a pair of longitudinal
(i.e. streamwise) vortices at the corner. A typical example of this type of flow is the flow
in a square duct, which has been investigated by many researchers (e.g. Pinelli et al. 2010;
Vinuesa et al. 2014; Zhang et al. 2015; Pirozzoli et al. 2018). Most recently, Pirozzoli
et al. (2018) conducted direct numerical simulations (DNS) of square duct flows at several
Reynolds numbers up to the friction Reynolds number Reτ = 1.0 × 103, and discussed
the transport of velocity and vorticity. They showed that the secondary motion transports
streamwise momentum towards the duct corner. Hence the secondary motion essentially
delays the corner-flow separation. However, the effects of the secondary vortices on the
corner-flow separation have rarely been discussed quantitatively in previous studies. The
challenges to this kind of discussion are that square duct flows do not involve corner-flow
separation, whereas realistic wing–body juncture flows are too complex for quantitative
analysis of the momentum transport by the secondary motion.

Moreover, simulating corner-flow separation using turbulence models based on the
Reynolds-averaged Navier–Stokes (RANS) equations also poses challenges. In particular,
the turbulence model must reproduce accurately the anisotropy of Reynolds stress, which
cannot be realized by classical turbulence models based on the Boussinesq approximation.
Hence several types of turbulence models have been proposed to incorporate the effects of
anisotropy. One approach is the Reynolds stress transport models (e.g. Launder, Reece
& Rodi 1975; Speziale, Sarkar & Gatski 1991), which involve six partial differential
equations to account for the six independent components of Reynolds stress. To reduce
computational costs, several researchers (e.g. Gatski & Speziale 1993; Wallin & Johansson
2000) have also proposed algebraic stress models. In these models, the Reynolds stress
equations are reduced to algebraic equations. Another approach, which is simpler than
the models above, is the model based on the nonlinear expression of Reynolds stress (e.g.
Speziale 1987; Spalart 2000). One of the most prevalent models in this approach is the
quadratic constitutive relation (QCR) proposed by Spalart (2000) (often referred to as
QCR2000). This model provides each Reynolds stress component by a simple algebraic
equation consisting only of scalar eddy viscosity, strain, vorticity, and one constant
parameter. More recently, modifications to QCR2000 have also been proposed (Mani et al.
2013; Rumsey et al. 2020). Mani et al. (2013) introduced a modification to QCR2000 that
incorporates the effects of turbulence kinetic energy, which are not included in the original
Spalart–Allmaras (SA) turbulence model. Additionally, Rumsey et al. (2020) investigated
the validity of the QCR based on data from the NASA Juncture Flow experiment, and
presented a modified version of the model where the model parameters vary in space.
980 A21-2
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Several existing studies have reported that the QCR improves the prediction of the
corner-flow separation at the wing–body junction. Yamamoto, Tanaka & Murayama (2012)
found that the SA turbulence model with QCR2000 shows the pitch-up motion of the
DLR-F6 aircraft model at the high angle of attack. This trend is in good agreement
with the past wind tunnel experiment (Rivers & Dittberner 2011), while the baseline SA
model (without QCR2000) does not predict it. The remarkable difference between the
two simulation results is the side–body separation (i.e. the corner-flow separation at the
wing–body junction). Here, QCR2000 suppresses the side–body separation, resulting in
the correct pitch motion at high angles of attack. Yamamoto et al. (2012) explained that
the difference in the side–body separation occurs because the secondary motion convects
momentum to the corner region. Dandois (2014) also reported a similar improvement in
predicting the corner-flow separation of the DLR-F6 aircraft model. After these studies,
QCR2000 has been used widely in RANS simulations of aircraft at high angles of attack
(e.g. Rumsey 2018; Tamaki & Imamura 2018; Tinoco et al. 2018).

However, despite the prevalence of the model, the validity of the parameter
of QCR2000 (referred to as Ccr1 in the original paper) remains unclear. Spalart
(2000) showed qualitative improvement in predicting the secondary motion of a
square duct flow compared to the baseline turbulence model using the Boussinesq
approximation. The square duct flow and the wing–body junction flow differ in
many points, such as the existence of the corner-flow separation or the streamwise
development of the boundary layer. Furthermore, although modifications to QCR2000
(Mani et al. 2013; Rumsey et al. 2020) have been proposed, their validation has been
limited to comparisons to the measurements in wind tunnel experiments. Therefore,
comprehensive validation using a database from high Reynolds number DNS or large-eddy
simulation (LES) will be beneficial for a better understanding and improvement of the
QCR.

Considering the situations stated in the preceding paragraphs, we conduct a LES of a
simplified side-wall interference flow field imitating the wing–body junction of aircraft.
The purpose of this simulation is twofold. The first purpose is to explain the effects of the
secondary motion on the corner-flow separation based on the momentum budget analysis.
Unlike the former studies on square duct or wing–body junction flows, the geometry
simulated in this study involves corner-flow separation while retaining a simple geometry
suitable for the budget analysis. The second purpose is to provide databases for turbulence
modelling. (The obtained data are uploaded on the website https://www.klab.mech.tohoku.
ac.jp/database.) Using the obtained database, we investigate the validity of the constitutive
relations and propose a QCR that can reproduce the Reynolds stress distributions better.
Also, to eliminate undesirable low Reynolds number effects, we conduct the simulation
at a relatively high Reynolds number ReL ∼ 106, where ReL is the Reynolds number
based on the freestream velocity and the length from the leading edge. This Reynolds
number is comparable to that of large-scale wind tunnel testing. Pirozzoli et al. (2018) have
reported in their study on the square duct flow that the strength of the secondary motion
saturates at high Reynolds numbers. Since a LES at a high Reynolds number requires
massive computational resources, the database may be obtained first by the state-of-the-art
supercomputer.

The structure of this paper is as follows. In § 2, the computational setting and
methodologies of the LES are presented. Then § 3 describes the results from the LES
and analyses based on the momentum and vorticity budgets, which will explain the effects
and generation mechanism of the secondary motion. In § 4, we explore the modelling of
the constitutive relation using the LES data, and propose a modified QCR. The developed
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model is validated in RANS simulations in § 5, and finally, § 6 provides the concluding
remarks.

2. LES computational set-up

2.1. Geometry
We simulate the side-wall interference flow field shown in figure 1. The computational
domain has a square cross-section whose size increases and decreases in the streamwise
direction. The boundary layers on the bottom and side walls interfere, and the change in
the cross-section induces a pressure gradient in the streamwise direction. The shape of the
walls is designed so that a small separation bubble occurs at the corner of the diverging
and converging sections. Here, the bottom wall coordinate yw is defined as

yw =
{

y0 (0 � x/L < 1.0 and x/L > 2.0) ,

y0 − H sin4(π(x − x0)/W) (1.0 � x/L � 2.0) ,
(2.1)

where y0 = −0.16L, H = 0.03L, x0 = W = L (see figure 2a), and L is the length between
the leading edge and the starting position of the change in the wall geometry. These
parameters were determined through preliminary RANS analysis so that corner-flow
separation occurs while the boundary layer away from the side wall does not separate.
The wall starts from x = 0, and the laminar boundary layer is tripped at x/L = 0.1 by
introducing the unsteady body force presented by Schlatter & Örlü (2012). The parameters
for the tripping, such as the temporal and spatial cut-off scales, are the same as the baseline
case in Schlatter & Örlü (2012), where we employ the laminar displacement thickness
at the tripping location δ∗

0/L = 6.0 × 10−4. The side wall is set so that the geometry
is symmetric about y = z. Also, a periodic boundary condition is implemented so that
velocity vector (u, v, w) and pressure p at y/L = 0 match (u, −w, v) and p at z/L = 0,
respectively. The Reynolds number based on the freestream velocity u∞ and length L,
i.e. ReL ≡ u∞L/ν∞, is set to 1.0 × 106, where ν∞ is the freestream kinematic viscosity.
At x/L = 1.0, the Reynolds number ReL = 1.0 × 106 corresponds to Reθ ≡ u∞θ/ν∞ ≈
2.0 × 103 and Reτ ≡ uτ δ99/νw ≈ 6.9 × 102, where θ is the momentum thickness, δ99 is
the 99 % boundary layer thickness, uτ is the friction velocity, and νw is the kinematic
viscosity at the wall.

2.2. Computational grid
The computational grid is a structured curvilinear grid. As shown in figure 2, the grid
within the y–z plane is orthogonal, while the streamwise grid lines are not always
perpendicular to the y–z plane. In the turbulent flow region (x/L > 0.1), the grid spacing in
the streamwise direction is set to 3.0 × 10−4L to 4.0 × 10−4L. In x/L < 1.0, the spanwise
grid spacing, except for the near-wall region, is set to 2.0 × 10−4L. In the diverging and
converging sections (1.0 < x/L < 2.0), the near-wall grid resolution is retained, while
the outer grid in the y–z plane is stretched slightly as shown in figure 2(b). These grid
spacings are determined based on the viscous wall unit at (x/L, y/L) = (1.0, 0.0), i.e. a
zero-pressure gradient location sufficiently away from the side wall. At this location, the
streamwise and spanwise grid spacings in the wall viscous unit are approximately 16 and
8, respectively. Also, the wall-normal grid spacing at the wall is 1.5 × 10−5L, which is
determined so that the spacing in the wall viscous unit does not exceed 0.9. In the diverging
and converging sections, the grid spacing in the wall viscous unit becomes less than that
described above because the skin friction decreases.

980 A21-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

25
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.25


Turbulence anisotropy effects on corner-flow separation

x/L = 0

x/L = 2.2

Periodic

Inflow

Inflow

Diverging

section

Converging

section

z
y

x z

y x

y wall

z wall

Periodic

Figure 1. Geometry of the side wall interference flow field.
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Figure 2. The LES computational grid: (a) x–z plane at y/L = 0.0 (every 50 grid points are shown); (b) y–z
planes (every 20 grid points are shown).

2.3. Numerical methods
The present simulation is based on the spatially filtered compressible Navier–Stokes
equations. The fluid is an ideal gas with molecular viscosity following Sutherland’s law.
Here, we employ an implicit LES regime that has been well validated in our previous
works (e.g. Kawai, Shankar & Lele 2010; Asada & Kawai 2018; Tamaki & Kawai
2023). The space is discretized based on the finite-difference method, where the spatial
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derivatives are evaluated by the sixth-order compact difference scheme (Lele 1992). Also,
we introduce the tridiagonal compact filter (Lele 1992; Gaitonde & Visbal 2000) to
remove high-frequency numerical oscillations. Since the filter plays a similar role to a
subgrid-scale (SGS) turbulence model, the simulation does not employ any explicit SGS
turbulence model.

For the time integration, we employ a second-order implicit scheme (Obayashi, Fujii
& Gavali 1988; Izuka 2006) with five subiterations per time step. The magnitude
of the residual reduces by more than two orders during the subiterations. Here, the
time increment is set to �t u∞/L = 2.4 × 10−5, corresponding to a viscous-scale time
increment �t+ ∼ 0.1 and maximum Courant number approximately 8. According to the
previous studies (Choi & Moin 1994; Kawai et al. 2010), this time increment (�t+ ∼ 0.1)
is sufficiently small for simulating wall turbulence.

The present LES is conducted on the Fugaku supercomputer provided by the RIKEN
Center of Computational Science. The computational domain is divided into 60 ×
8 × 8 subdomains, where the message-passing interface is used for inter-subdomain
communications. Here, four subdomains are allocated per computational node (48 cores
A64FX CPU). Furthermore, the computation for each subdomain is parallelized by
OpenMP with 12 threads.

2.4. Statistical averaging
For statistical averaging, we conduct the simulation during a period Taveu∞/L = 144 (6 ×
106 time steps) after an initial period Tu∞/L = 33.6, where T is the time. Previous studies
on square duct flows (Pinelli et al. 2010; Vinuesa et al. 2014; Pirozzoli et al. 2018) reported
that the statistical convergence of the secondary flow motion takes far longer than the
convective time unit. In these studies, the statistical average is taken for TaveUb/h from
5.9 × 103 (Vinuesa et al. 2014) to 1.0 × 104 (Pirozzoli et al. 2018), where Ub is the bulk
velocity, and h is the half-height of the duct. Since the present simulation consists of
developing boundary layers, we use the nominal freestream velocity u∞ and the boundary
layer thickness x/L = 1.0 (δ99/L = 0.0164; see § 3.1) for the normalization. Essentially,
these values have the same meaning as Ub and h in the duct-flow cases. The averaging
period using these scales is calculated as Taveu∞/δ99 = 8.8 × 103, which has the same
order of magnitude as values in the studies described above.

Also, when showing cross-sectional distributions of variables, we take averaging
through the range ±0.01L in the x direction and by inverting around the y = z line.
Appendix A summarizes the statistical convergence and the effects of the spatial
averaging.

3. LES results

3.1. Overview
To validate the employed methodologies and computational grid, we first examine the
velocity and Reynolds stress profiles of the fully developed turbulent boundary layer at
x/L = 1.0, where the pressure gradient is almost negligible. Here, the obtained data are
averaged over z/L ∈ [−0.01, 0.0], which is sufficiently away from the side wall. At this
location, δ99/L = 0.0169 and θ/L = 0.00204 (i.e. Reθ = 2.04 × 103). Figure 3 compares
the obtained mean streamwise velocity and Reynolds stress profiles in the wall viscous
units to the DNS data at a similar Reynolds number (Reθ = 2.00 × 103) presented by
Schlatter & Örlü (2010). Here, the overline and prime denote averaged and fluctuating
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ū+

0

2.5

5.0

7.5

10.0

(S
tr

es
s 

co
m

p
o
n
en

ts
)/

u2 τ

u′u′

v′v′

w′w′

u′v′

Figure 3. Turbulence statistics at x/L = 1.0. Lines and symbols denote the present LES and DNS data by
Schlatter & Örlü (2010), respectively. (a) Streamwise velocity. (b) Reynolds stress.
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Figure 4. Mean streamwise velocity, pressure coefficient and skin friction coefficient distributions over the
periodic boundary plane (y/L = 0) obtained by the LES.

components, respectively. In the results, both streamwise velocity and Reynolds stress
components are in excellent agreement with the DNS data. These results show that the
spatial and temporal resolutions of the present LES are sufficiently high as wall-resolved
LES and closer to DNS. Note that the density fluctuation is less than 1 % of the freestream
value, suggesting that the flow is almost incompressible.

Figure 4 shows the distributions of ū, mean pressure coefficient Cp, and mean skin
friction coefficient Cf over the periodic boundary plane (y/L = 0.0). As shown here,
the flow decelerates by the expansion of the cross-section in 1.0 < x/L < 1.5, where
an adverse pressure gradient occurs. Since the pressure gradient is mild, Cf remains
positive, i.e. the mean flow separation does not occur at the locations away from the side
wall, though the flow involves the corner-flow separation as described in the following
paragraph. Furthermore, Cf in x/L < 1.0 shows reasonable agreement with the classical
power-law flat-plate correlation Cf = 0.027 Re−1/7

x (White 2006), where Rex ≡ u∞x/ν∞.
Next, we examine the entire flow field, including the effects of the side wall. Figure 5

shows the distributions of ū, turbulence kinetic energy (TKE) K̄ ≡ (u′u′ + v′v′ + w′w′)/2,
and mean streamwise vorticity ωx ≡ ∂w̄/∂y − ∂v̄/∂z at several streamwise sections.
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Figure 5. Overview of the statistically averaged flow field in the diverging and converging sections obtained
by the LES: (a) mean streamwise velocity ū/u∞; (b) TKE K̄/u2∞; (c) mean streamwise vorticity ω̄xL/u∞.

The streamwise velocity distributions indicate that flow separation occurs at the corner
near x/L = 1.4 and reattaches at x/L ≈ 1.6. In the diverging section (1.0 < x/L < 1.5),
the TKE distributions (see figure 5b) show a significant increase. Also, in figure 5(c), a
vortex pair is observed at the corner of each section. The size of the vortices increases as
the flow field diverges and is distributed away from the corner.

Figure 6 shows the mean velocity distributions near the corner at streamwise
cross-sections x/L = 1.0, 1.5 and 2.0. The contours of the streamwise velocity bulge into
the corner, which is especially remarkable at x/L = 1.5. As will be indicated in § 3.2,
this bulge occurs due to the momentum transport by the secondary motion and delays
the corner-flow separation. Furthermore, the cross-sectional velocity contours show the
secondary motion, i.e. a cross-plane flow occurs along the diagonal line toward the corner,
and an outward flow occurs along the wall. At x/L = 1.0, the secondary motion is similar
to the DNS square duct case Pirozzoli et al. (2018). The maximum cross-sectional velocity
in the x/L = 1.0 plane is 0.017u∞, which agrees with Pirozzoli et al. (2018), who reported
that the maximum cross-sectional velocity is approximately 2 % of the duct centreline
velocity. Also, figure 7 shows the distribution of v at x/L = 1.0 with axes in the wall
viscous units. Note that these wall viscous units are calculated using uτ at the centreline
(y = 0). Pirozzoli et al. (2018) reported that the maximum cross-sectional velocity occurs
at y+ ≈ 10 and 50 � z+ � 100, where they used the span-averaged uτ for calculating the
wall viscous units. Although there are slight differences in the definition of uτ , the velocity
distribution shown in figure 7 shows good agreement with their results. In the downstream
(x/L = 1.5), the cross-sectional velocity is higher and more widely distributed than for
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are shown with black dashed lines (also applied to the following figures). Note that the scale of the in-plane
velocity vectors varies with cross-section location. (a–c) Streamwise velocity ū/u∞. (d–f ) Cross-sectional
velocity v̄/u∞ with in-plane velocity vectors.
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Figure 7. Cross-sectional velocity v̄/u∞ near the corner at x/L = 1.0 with axes in wall viscous units.

x/L = 1.0. At x/L = 2.0, the secondary motion remains in a broader area compared to
x/L = 1.0, which shows the history of the divergence of the flow field geometry.

Figure 8 shows the distributions of the Reynolds stress components at the streamwise
cross-sections. At x/L = 1.0 and 2.0, only the near-wall peak is observed. At x/L = 1.5,
the Reynolds normal stress components (u′u′ and v′v′) have a positive peak in the off-wall
region. Note that w′w′, which is not included in figure 8, has a symmetric distribution with
v′v′ with respect to the y = z line. Also, the primary shear stress (u′v′) has a negative peak
at the same location. Compared to these components, the secondary shear stress v′w′ has
a relatively small magnitude overall.
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Figure 8. Reynolds stress distributions over the streamwise cross-sections near the corner at (a,d,g, j) x/L =
1.0, (b,e,h,k) x/L = 1.5, and (c, f,i,l) x/L = 2.0. Plots are for (a–c) u′u′/u2∞, (d–f ) v′v′/u2∞, (g–i) u′v′/u2∞, and
( j–l) v′w′/u2∞.

3.2. Momentum transport
To clarify the influence of the secondary motion on the corner-flow separation, we
investigate the transport of the streamwise momentum (more precisely, the streamwise
velocity in a constant-density flow). The transport equation of the streamwise velocity is
written as

∂ ū
∂t

= C + P + R + V. (3.1)
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Here, C, P, R and V denote the convective, pressure gradient, Reynolds stress and viscous
diffusion terms defined as

C ≡ −
(

∂ ūū
∂x

+ ∂ ūv̄

∂y
+ ∂ ūw̄

∂z

)
,

P ≡ − 1
ρ

∂ p̄
∂x

,

R ≡ −
(

∂u′u′

∂x
+ ∂u′v′

∂y
+ ∂u′w′

∂z

)
,

V ≡ ν

(
∂2ū
∂x2 + ∂2ū

∂y2 + ∂2ū
∂z2

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)

respectively. Furthermore, to visualize the momentum transport within the plane, C, R and
V within the y–z plane are rewritten as

C = −∂ ūū
∂x

− ∂Cy

∂y
− ∂Cz

∂z
,

R = −∂u′u′

∂x
− ∂Ry

∂y
− ∂Rz

∂z
,

V = ν
∂2ū
∂x2 − ∂Vy

∂y
− ∂Vz

∂z
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)

where the in-plane fluxes are defined as

Cy ≡ ūv̄, Cz ≡ uw, Ry ≡ u′v′, Rz ≡ u′w′, Vy ≡ −ν
∂ ū
∂y

, Vz ≡ −ν
∂ ū
∂z

.

(3.4a–f )
Figure 9 shows each term of (3.1) and the vectors of the in-plane fluxes defined

by (3.4a–f ) at x/L = 1.0, 1.5 and 2.0. In this analysis, we have confirmed that the
residual (C + P + R + V) is essentially negligible in all the planes examined here; the
magnitude of the residual is smaller than the minimum contour level (0.2) across the
planes. Furthermore, the pressure gradient term (P) is smaller than the other components
in all the planes. At x/L = 1.0 and 2.0, C and R balance away from the walls, while
R and V balance in the near-wall region. The trends of each term are in qualitative
agreement with the DNS square duct case by Pirozzoli et al. (2018). Moreover, the
flux vectors (Cy, Cz) show the convective transport of the momentum towards the
corner, i.e. the effects of the secondary motion. Also, the flux vectors (Ry, Rz) show
that the Reynolds shear stress transports the momentum towards the wall, which is
commonly known as the role of turbulence in the boundary layer. At x/L = 1.5, the
magnitude of V in the near-wall region decreases compared to that at x/L = 1.0, and
only C and R remain. Here, C and R along the diagonal line become more prominent
compared to x/L = 1.0. Essentially, the enhanced convection induces the bulge of the
streamwise velocity contours shown in figures 6(a–c). Also, as shown in the flux vectors in
figures 9(g–i), the Reynolds shear stress transports the momentum from the diagonal
line to the regions around (( y − yw)/L, (z − zw)/L) ≈ (0.01, 0.04) and (0.04, 0.01).
This transport corresponds to the negative peak of the Reynolds shear stress shown

980 A21-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

25
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.25


Y. Tamaki and S. Kawai

0.06

0.04

0.02

0 0.02 0.04 0.06

0.06

0.04

0.02

0 0.02 0.04 0.06

0.06

0.04

0.02

0 0.02 0.04 0.06

0.8

0.4

0

–0.4

–0.8

0.8

0.4

0

–0.4

–0.8

0.8

0.4

0

–0.4

–0.8

0.8

0.4

0

–0.4

–0.8

0.06

0.04

0.02

0 0.02 0.04 0.06

0.06

0.04

0.02

0 0.02 0.04 0.06

0.06

0.04

0.02

0 0.02 0.04 0.06

0.06

0.04

0.02

0 0.02 0.04 0.06

0.06

0.04

0.02

0 0.02 0.04 0.06

0.06

0.04

0.02

0 0.02 0.04 0.06

0.06

0.04

0.02

0 0.02 0.04 0.06

0.06

0.04

0.02

0 0.02 0.04 0.06

0.06

0.04

0.02

0 0.02 0.04 0.06

( y – yw)/L ( y – yw)/L ( y – yw)/L

(z
 –

 z w
)/

L
(z

 –
 z w

)/
L

(z
 –

 z w
)/

L
(z

 –
 z w

)/
L

(a)

(d )

(g)

( j)

(b)

(e)

(h)

(k)

(c)

( f )

(i)

(l )

Figure 9. Streamwise momentum budget near the corner at (a,d,g, j) x/L = 1.0, (b,e,h,k) x/L = 1.5 and
(c, f,i,l) x/L = 2.0. Each term is normalized by u2∞/L. The in-plane fluxes (3.4a–f ) are overlaid as vectors
in (a–c), (g–i) and ( j–l). For visibility, the vector length in (a–c) is halved (i.e. the magnitude corresponding to
the unit vector length is twice as large as that in (g–i) and ( j–l)). Plots are for (a–c) C with vectors (Cy, Cz),
(d–f ) P, (g–i) R with vectors (Ry, Rz) and ( j–l) V with vectors (Vy, Vz).

in figures 8(g–i). In these regions, the secondary motion lifts the flow from the wall,
i.e. promotes flow separation. Conversely, the increased Reynolds shear stress suppresses
flow separation in these regions.

To clarify the cause of the increase of the Reynolds shear stress at x/L = 1.5, we
investigate the production of Reynolds shear stress. Figure 10 shows the production of
u′v′ near the corner at x/L = 1.3, 1.4 and 1.5. Note that only the component v′v′(∂ ū/∂y)
of the production is shown here since the other components are almost zero. Since u′v′ is
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Figure 10. Production of the Reynolds shear stress u′v′ and its component near the corner at (a,d,g, j) x/L =
1.3, (b,e,h,k) x/L = 1.4 and (c, f,i,l) x/L = 1.5. The white cross symbols denote the location of the minimum
Reynolds shear stress. Plots are for (a–c) −v′v′(∂ ū/∂y)/(u3∞/L), (d–f ) ∂ ū/∂y/(u∞/L), (g–i) v′v′/(u2∞) and
( j–l) ū/u∞ (reference).

overall negative, the production also has negative values. As shown in figures 10(a–c), the
production peak position coincides approximately with the peak location of the Reynolds
shear stress. Here, we further decompose the production term into v′v′ and ∂ ū/∂y, as
shown in figures 10(d–f ) and 10(g–i). These figures show that the cause of the large
production is the enhanced velocity gradient at the corner. As shown in figures 10( j–l),
the large velocity gradient occurs where the secondary motion distorts the streamwise
velocity contours. Therefore, these results suggest that the secondary motion enhances
the production of Reynolds shear stress by increasing the velocity gradient in the corner
region.
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In summary, the secondary motion has twofold effects of suppressing the corner-flow
separation. First, the secondary motion convects momentum directly towards the corner,
as shown in figures 9(a–c). Second, as an indirect effect, the secondary motion enhances
turbulence production by increasing the shear. This enhanced Reynolds stress also
transports momentum toward the wall, as shown in figures 9(g–i).

3.3. Vorticity transport
To investigate the generation mechanism of the secondary motion, we investigate the
budget of the vorticity transport. The transport equation of the streamwise vorticity is
written as

∂ωx

∂t
= Cω + Sω + Rω + Aω + Vω, (3.5)

where

Cω = −ū
∂ωx

∂x
− v̄

∂ωx

∂y
− w̄

∂ωx

∂z
,

Sω = ωx
∂ ū
∂x

+ ωy
∂ ū
∂y

+ ωz
∂ ū
∂z

,

Rω =
(

∂2

∂y2 − ∂2

∂z2

)
(−v′w′),

Aω = ∂2

∂y ∂z
(v′v′ − w′w′),

Vω = ν

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
ωx,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.6)

with ωy ≡ ∂u/∂z − ∂w/∂x and ωz ≡ ∂v/∂x − ∂u/∂y. Each term of (3.5) stands for the
effects of convection, shear-driven vortex production, diffusion by the secondary Reynolds
shear stress, transport by the turbulence anisotropy, and viscous diffusion, respectively.
Furthermore, similar to the momentum budget, the terms other than Sω may be rewritten
using in-plane fluxes as

Cω = −ū
∂ωx

∂x
− ∂Cω,y

∂y
− ∂Cω,z

∂z
,

Rω = −∂Rω,y

∂y
− ∂Rω,z

∂z
,

Aω = −∂Aω,y

∂y
− ∂Aω,z

∂z
,

Vω = ν

(
∂2ωx

∂x2

)
− ∂Vω,y

∂y
− ∂Vω,z

∂z
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.7)
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where the in-plane fluxes are defined as

Cω,y ≡ ωx v̄, Cω,z ≡ ωx w̄,

Rω,y ≡ ∂v′w′

∂y
, Rω,z ≡ −∂v′w′

∂z
,

Aω,y ≡ −1
2

∂(v′v′ − w′w′)
∂z

, Aω,z ≡ −1
2

∂(v′v′ − w′w′)
∂y

,

Vω,y ≡ −ν
∂ωx

∂y
, Vω,z ≡ −ν

∂ωx

∂z
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.8)

Figure 11 shows the terms on the right-hand side of (3.5). Here, Sω and the residual
are essentially small at all sections and are therefore excluded from the figure. Note
that figure 11 focuses on the corner region because the terms do not have noticeable
distributions in the outer region. The term distributions at x/L = 1.0 are almost identical
to the previous study on the square duct flow (Pirozzoli et al. 2018). Furthermore, the
in-plane flux vectors, which have not been presented in the previous study, visibly show
the transport by the turbulence anisotropy (Aω) from the upper left to the lower right in the
region slightly off the wall. This transport seems to be the dominant cause of the negative
and positive vortex pair shown in figure 5(c). Even at x/L = 1.5 and 2.0, the anisotropy
term is dominant compared to the other terms. These results indicate that the anisotropy of
Reynolds normal stress (i.e. the difference between v′v′ and w′w′ in the current coordinate
system) plays a crucial role in generating the secondary motion.

4. Constitutive relation for Reynolds stress

In this section, we investigate the constitutive relation between the velocity gradient and
Reynolds stress tensors to develop a RANS-based turbulence model that reproduces the
Reynolds normal stress accurately. For the modelling, the Reynolds stress tensor is divided
into the deviatoric and TKE parts as

− u′
iu

′
j = Rij − 2

3 K̄δij, (4.1)

where i and j (= 1, 2, 3) are dimensional indexes, and δij is Kronecker’s delta.

4.1. Modelling the deviatoric part
Here, the velocity is assumed to be solenoidal since the flow considered in this study is at
a low Mach number. By introducing a scalar kinematic eddy viscosity νt, the deviatoric
part of the Reynolds stress is written as

Rij = 2νtŜij, (4.2)

where Ŝij is a second-rank tensor composed of the velocity gradient and other parameters.
For example, Ŝij = Sij ≡ 1/2(∂ ūi/∂xj + ∂ ūj/∂xi) for the standard eddy viscosity model
based on the Boussinesq approximation (i.e. the linear constitutive relation, LCR). Also,
Lumley (1970) introduced a general expression of the constitutive relation, which may be
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Figure 11. Streamwise vorticity budget near the corner at (a,d,g, j) x/L = 1.0, (b,e,h,k) x/L = 1.5 and (c, f,i,l)
x/L = 2.0. Each term is normalized by u2∞/L2. The in-plane fluxes (3.8) are overlaid as vectors; Sω and
residuals are omitted because they are almost zero all over the cross-sections. Plots are for (a–c) Cω with
vectors (Cω,y, Cω,z), (d–f ) Rωwith vectors (Rω,y, Rω,z), (g–i) Aω with vectors (Aω,y, Aω,z) and ( j–l) Vω with
vectors (Vω,y, Vω,z).

rewritten as

Ŝij = Sij + A(1)SmnSmnδij + A(2)SikSkj

+ A(3)(SikΩkj + SjkΩki) + A(4)ΩmnΩmnδij + A(5)ΩikΩkj, (4.3)

where k, m and n are dimensional indexes, A(l) (l = 1, 2, 3, 4, 5) are parameters with the
dimension of S−1

ij , and Ωij ≡ 1/2(∂ ūi/∂xj − ∂ ūj/∂xi). Equation (4.3) has five parameters
A(l). Therefore, choosing proper A(l) and νt reproduces the six independent components
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of the Reynolds stress tensor exactly. However, it is challenging to determine all six
parameters in (4.3), which do not necessarily have similar magnitudes of sensitivity. Gatski
& Speziale (1993) and Jongen & Gatski (1998) employ a simplified formulation, which
may be rewritten in the form

Ŝij = Sij + α(SikΩjk + SjkΩik) + β(SikSjk − 1
3 SmnSmnδij), (4.4)

where α and β are also parameters with a dimension of S−1
ij . Jongen & Gatski (1998)

showed that the expression defined by (4.4) is the best approximation when taking only two
of the quadratic terms. We adopt this expression to parametrize the constitutive relation
more easily than (4.3). Note that Sabnis et al. (2021) also adopted the same form of the
quadratic terms. As Modesti (2020) showed, increasing the number of terms may improve
the expression of the Reynolds stress components. However, increasing the number of
terms also increases the complexity of the formulation and difficulty of the parameter
study. Therefore, we include only two of the quadratic terms to retain the conciseness of
the model.

For convenience, we redefine the above expression using the formulation like QCR2000
(Spalart 2000) as

Ŝij = Sij − Cq1

‖ux‖(SikΩjk + SjkΩik) − Cq2

‖ux‖
(

SikSjk − 1
3

SmnSmnδij

)
, (4.5)

where ‖ux‖ is the magnitude of the velocity gradient, i.e. ‖ux‖ ≡
√

(∂ ūm/∂xn)2. Also,
Cq1 and Cq2 are the parameters to control the anisotropy, which are not necessarily
constant in space. For example, the constant parameter pairs (Cq1, Cq2) = (0.0, 0.0) and
(Cq1, Cq2) = (0.6, 0.0) give LCR and QCR2000, respectively. We seek optimal values of
these parameters through a priori testing using the LES results.

To evaluate the validity of the constitutive relation, we employ the tensorial inner
product introduced by Schmitt (2007). The tensorial inner product is defined as

σRŜ ≡ RijŜij√
RijRij

√
ŜijŜij

, (4.6)

which represents the cosine of the angle between Ŝij and Rij. If σRŜ = 1, then the product
of Ŝij and νt perfectly represents Rij by properly choosing a positive scalar for νt. Note
that we leave the model of νt and focus on the validity of the constitutive relation. The
evaluation of νt depends closely on the employed baseline turbulence model (e.g. Spalart
& Allmaras (1992) or k-ε models), which should be validated in a different context.

First, we seek the optimum values of Cq1 and Cq2 using the LES result at x/L = 1.0
(i.e. upstream of the diverging section). Here, we pick three locations A, B and C, shown
in figure 12(a). These locations represent the secondary vortex centre, off-wall location
away from the side wall, and near-wall inner-layer location (y+ ≈ 15), respectively. Figures
12(b–d) show σRŜ for Cq1 and Cq2 varying in [0, 10], and figures 12(e–g) are close-up
views of figures 12(b–d). At locations A and B, σRŜ increases as Cq1 increases from zero,
and takes its maximum at Cq1 ≈ 1. The dependency on Cq2 is weak compared to that
on Cq1. With Cq1 = 1, 0.15 � Cq2 � 1.3 gives σRŜ > 0.99. At location C, the optimum
values for Cq1 and Cq2 are much higher than those at the other two locations, suggesting
the strong turbulence anisotropy in the near-wall region.
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Figure 12. Tensorial inner product σRŜ (4.6) at probe locations in the x/L = 1.0 plane as a variable of
parameters Cq1 and Cq2. In (b–d) and (e–g), results at probe locations A, B and C are shown from left to
right. (a) Probe locations (in-plane velocity vectors overlaid) with (b–d) σRŜ, (e–g) σRŜ (close-up).

Based on the results in figure 12, we choose the parameters (Cq1, Cq2) = (1.0, 0.5). To
investigate the generality of these values, we calculate σRŜ over the planes x/L = 1.0, 1.5
and 2.0. Figure 13 shows the distributions of σRŜ over these three planes. Here, we compare
the candidate value pair (Cq1, Cq2) = (1.0, 0.5) to QCR2000 (Cq1, Cq2) = (0.6, 0.0) and
LCR (Cq1, Cq2) = (0.0, 0.0). As shown in this figure, the parameter pair (Cq1, Cq2) =
(1.0, 0.5) gives overall higher values of σRŜ compared to QCR2000 and LCR.

Furthermore, we check the quantitative validity of the parameters. For this purpose,
we need to determine νt. νt may be determined uniquely by assuming a two-dimensional
(2-D) simple shear flow, i.e. a flow where the velocity gradient tensor consists of only the
∂ ū/∂y component. This assumption is almost valid in the region sufficiently away from
the side wall. When the velocity gradient tensor consists of only the ∂ ū/∂y component,
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Figure 13. Tensorial inner product σRŜ distributions near the corner at (a,d,g) x/L = 1.0, (b,e,h) x/L = 1.5
and (c, f,i) x/L = 2.0, with different parameter values in (4.5): (a–c) proposed, (Cq1, Cq2) = (1.0, 0.5); (d–f )
QCR2000 (Spalart 2000), (Cq1, Cq2) = (0.6, 0.0); (g–i) LCR, (Cq1, Cq2) = (0.0, 0.0).

the components of the traceless stress tensor (4.2) become

Rxx = νt

(
−Cq1 − 1

6
Cq2

)
dū
dy

, Ryy = νt

(
Cq1 − 1

6
Cq2

)
dū
dy

,

Rzz = νt

(
1
3

Cq2

)
dū
dy

,

Rxy = νt
dū
dy

, Ryz = Rzx = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.7)

Equations (4.7) show that νt may be calculated as Rxy/(∂ ū/∂y) regardless of the choices
of Cq1 and Cq2. Figure 14 compares the calculated wall-normal profiles of Rij at several
locations away from the side wall. The Reynolds stress components calculated by the
constitutive relation with the proposed parameter pair (Cq1, Cq2) = (1.0, 0.5) are in good
agreement with the LES data at all three locations, except for the near-wall regions.
Compared to this result, the existing two constitutive relations (QCR2000 and LCR)
underestimate the magnitude of each Reynolds stress component. Even though the
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Figure 14. Wall-normal profiles of the diagonal components of Rij at (a,d,g) x/L = 1.0, (b,e,h) x/L = 1.5
and (c, f,i) x/L = 2.0, in the z/L = 0.0 plane. Symbols and lines denote the LES data and estimated value by
the constitutive relation (4.5), respectively: (a–c) proposed, (Cq1, Cq2) = (1.0, 0.5); (d–f ) QCR2000 (Spalart
2000), (Cq1, Cq2) = (0.6, 0.0); (g–i) LCR, (Cq1, Cq2) = (0.0, 0.0).

parameters are constant in space, the results here suggest that the proposed parameter
pair (Cq1, Cq2) = (1.0, 0.5) has generality to a certain extent in wall turbulence, except
for the near-wall inner layer. Note that the formulation of the proposed QCR leaves room
for setting (Cq1, Cq2) as spatial variables, although only the constant parameter pair is
employed in the following. For example, the inner-layer peaks of the Reynolds stress
components can be reproduced by increasing (Cq1, Cq2) locally. Appendix B describes
the attempt to develop a correction to reproduce the inner-layer peaks.

The analysis above suggests that Cq1 should be larger than the value adopted by
QCR2000 (i.e. 0.6). However, Spalart, Garbaruk & Strelets (2014) and Leger, Bisek
& Poggie (2016) pointed out that increasing Ccr1 of QCR2000, which is equivalent to
Cq1/2 in this study, may cause non-physical vortices. The proposed model avoids this by
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Figure 15. Wall-normal profiles of the estimated kinetic energy at (a) x/L = 1.0, (b) x/L = 1.5 and
(c) x/L = 2.0, in the z/L = 0.0 plane. Symbols and lines denote the LES data and estimation using (4.9),
respectively.

introducing Cq2 as explained in the following. Equation (3.5) shows that the generation
of the streamwise vortex depends on the difference between the Reynolds normal stress
components v′v′ − w′w′ ≡ −Ryy + Rzz. From (4.7), we obtain

− Ryy + Rzz = −νt

(
Cq1 − 1

2
Cq2

)
dū
dy

, (4.8)

for which Sabnis et al. (2021) derived an equivalent equation. Equation (4.8) suggests that
Cq2 partially cancels Cq1. Therefore, introducing Cq1 = 1.0 alone may lead to too strong
secondary vortices, and the balance between Cq1 and Cq2 is important for predicting the
secondary vortices accurately.

4.2. Modelling the TKE part
Some of the existing RANS-based turbulence models, such as the SA turbulence model
(Spalart & Allmaras 1992), do not contain the TKE part. Previous studies (Mani et al.
2013; Rumsey et al. 2020) introduced an estimation of TKE using the structure parameter
presented by Bradshaw (1967). The estimation used by Rumsey et al. (2020) is written as

K̄ = 3
2 Ckνt

√
2ΩmnΩmn, (4.9)

where Ck = 1/(3a1), and a1 = 0.155 is Bradshaw’s structure parameter (i.e. Ck = 2.15).
Figure 15 shows the wall-normal profiles of the estimated TKE at the same locations as

in figure 14. The estimation by (4.9) is in good agreement with the actual TKE in the LES
at all the locations examined here, except for the region near the wall. Furthermore, the
correction for the inner layer is presented in Appendix B, similar to the deviatoric part.

5. Implementation of RANS simulations

In this section, the constitutive relations presented in § 4 are validated through RANS
simulations of side-wall interference flows. The proposed constitutive relation is
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Figure 16. The RANS computational grid at spanwise and streamwise cross-sections: (a) x–z plane at
y/L = 0.0 (every 10 grid points are shown); (b) y–z planes (every 5 grid points are shown).

summarized as

−u′
iu

′
j = 2νt

[
Sij − Cq1

‖ux‖ (SikΩjk + SjkΩik) − Cq2

‖ux‖
(

SikSjk − 1
3

SmnSmnδij

)]

− νtCk
√

2ΩmnΩmn δij, (5.1)

which contains three parameter coefficients, Cq1 = 1.0, Cq2 = 0.5 and Ck = 2.15. In a
compressible flow solver, Sij is replaced by Sij − Skkδij/3, similar to the existing QCRs (e.g.
Spalart 2000; Rumsey et al. 2020). Here, we calculate νt in (5.1) using the SA turbulence
model, although the proposed QCR may be combined with any turbulence model based
on the Boussinesq approximation. For a comparison, simulations are conducted using
QCR2000 (Spalart 2000), QCR2020 (Rumsey et al. 2020) and LCR. In the following,
we denote the proposed QCR defined by (5.1) as QCR(r) and the QCRs combined with
the SA turbulence model as SA-QCR(r), and so on.

5.1. Diverging–converging side-wall interference flow

5.1.1. Computational settings
First, the same flow field as in the LES is simulated. Figure 16 shows the overview of
the computational grid for RANS simulations. Here, the grid spacing in the streamwise
direction is 0.005L. The minimum grid spacing in the wall-normal direction is the same as
in the LES, while the stretching ratio is approximately 8 %. The resulting grid dimensions
are 461 × 91 × 91. We have confirmed the grid convergence of the result as summarized
in Appendix C. The ft2 function of the SA turbulence model (Spalart & Allmaras 1992)
is set to 1.0 in x/L < 0.1 and 0.0 in x/L � 0.1 to reproduce the forced laminar–turbulent
transition.
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In the simulation, the convective term is evaluated by the SLAU scheme (Shima &
Kitamura 2011) with the third-order monotone upwind-central scheme for conservation
law (van Leer 1979). The van Albada limiter (van Albada, van Leer & Roberts 1982) is
applied only to the SA model equation. In addition, the viscous term and the diffusion
and source terms of the SA turbulence model are evaluated by the second-order central
difference. The time is integrated using the implicit method (Obayashi et al. 1988; Izuka
2006) with a local time stepping, where the maximum Courant number is approximately 7.
The spectral radius for the viscous term on the left-hand side is multiplied by (1 + Cq1 +
Cq2 + Ck) to enhance numerical stability.

5.1.2. Results
Figure 17 compares the obtained streamwise velocity distributions over the streamwise
cross-sections. The results using SA-QCR(r) predict the size of the separation bubble
similar to the LES result (figure 5a). Here, SA-QCR2000 and SA-QCR2020 overpredict
the corner-flow separation, although those results show slight improvement from the
results using SA-LCR. Figures 18 and 19 compare the streamwise and cross-sectional
velocity distributions to the LES data. The prominent bulge of the streamwise velocity
contours at x/L = 1.5 is reproduced only by SA-QCR(r). Here, the distribution of the
cross-sectional velocity (figures 19a–c) indicates two counter-rotating streamwise vortices.
Although the magnitude of the cross-sectional velocity is slightly overestimated compared
to the LES data, SA-QCR(r) well predicts the qualitative features of the in-plane flow
motions. In contrast to SA-QCR(r), SA-QCR2000 and SA-QCR2020 show different trends
of the velocity contours at x/L = 1.5 and 2.0. The in-plane velocity even has a different
sign for these two results, suggesting that the overestimated flow separation causes a strong
in-plane flow that conceals the secondary motion. Note that the results using SA-QCR2000
and SA-QCR2020 are non-symmetric about the corner. In these cases, the shape of the
separation fluctuates during the iterations, and the flow field does not fully converge (see
the residual history shown in figure 20). In contrast to these cases, the computation using
SA-QCR(r) converges to a steady state.

The close-up views of the cross-sectional velocity contours at x/L = 1.0 are shown in
figure 21 to validate the basic performance of the proposed QCRs for reproducing the
secondary motion. The three RANS results consistently show that the secondary motion
is distributed in a slightly wider area compared to the LES, which may be due to the
difference in the boundary layer thickness at this location. When using SA-QCR(r), the
negative peak value of the velocity is close to the LES. On the other hand, SA-QCR2000
and SA-QCR2020 slightly underpredict the magnitude of the in-plane velocity.

Figure 22 shows Cp and Cf distributions at the periodic boundary plane y/L = 0. Due
to the differences in the bubble size, the Cp and Cf distributions in 1.0 < x/L < 2.0
differ between the cases. Here, the results obtained by SA-QCR(r) show good agreement
with the LES data except for Cf in the vicinity of the transition location (x/L = 0.1)
and the recovery region (1.5 < x/L < 2.0). These slight discrepancies are assumed to
be due to the baseline SA turbulence model because all the cases consistently show the
same trend. The results using SA-QCR2000 and SA-LCR deviate from the LES data in
1.0 < x/L < 1.5, which suggests the influence of the different separation bubble size
in these two cases. Furthermore, figure 23 compares the spanwise variation of Cf at
x/L = 1.0, 1.5 and 2.0. SA-QCR(r) shows overall reasonable agreement with the LES
result at all the cross-sections in the figure. Also, although not shown here, the spanwise
distributions of Cp obtained by SA-QCR(r) show good agreement with the LES result. A
minor difference between SA-QCR(r) and the LES remains in the dimple of Cf slightly
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Figure 17. Overview of streamwise velocity ū/u∞ distributions in the RANS simulations. See figure 5 for the
reference LES result. Distributions are (a) SA-QCR(r) (proposed), (b) SA-QCR2000, (c) SA-QCR2020, (d)
SA-LCR.

away from the side wall (( y − yw) ≈ 0.04 in the x/L = 1.5 plane). This dimple is due to
the flow departing from the wall shown in figures 19(a–c), which is slightly overestimated
by SA-QCR(r).

Moreover, we examine the reproducibility of the Reynolds stress components by the
proposed QCRs. Figure 24 shows the distributions of the Reynolds stress components
computed using SA-QCR(r). As shown here, the magnitude and qualitative features of
the Reynolds stress components are in reasonable agreement with the LES data shown
in figure 8. Note that v′v′ at x/L = 1.5 (see figure 24e) appears to be different from the
LES data. This discrepancy is noticeable because v′v′ along the diagonal line y = z is
underestimated. Except for this difference, the magnitude and the overall distributions of
the Reynolds stress components are well predicted by SA-QCR(r).

5.2. Supersonic square duct flow

5.2.1. Computational settings
To investigate the robustness of the proposed QCRs to different flow conditions, we
simulate the supersonic square duct flow. The problem settings follow the definition
presented in the NASA turbulence modelling resource (TMR; see https://turbmodels.larc.
nasa.gov/). The Reynolds number based on the duct height D and the inlet velocity u∞
is 5.08 × 105, and the inlet Mach number is 3.9. In the calculation, the convection flux is
computed by flux-difference splitting (Roe 1981), and the other computational methods are
the same as in the problem in § 5.1. The computational grid is taken from the TMR and
has dimensions 961 × 161 × 161 in each direction. As a verification, we have compared
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Figure 18. Streamwise velocity ū/u∞ distributions near the corner at (a,d,g, j) x/L = 1.0, (b,e,h,k) x/L = 1.5
and (c, f,i,l) x/L = 2.0, obtained by the RANS simulations: (a–c) SA-QCR(r) (proposed), (d–f ) SA-QCR2000,
(g–i) SA-QCR2020, ( j–l) LES (reference).

the computational result using SA-QCR2000 to that provided in the NASA TMR using
FUN3D with the same turbulence model, and confirmed that the two results are almost
identical.

5.2.2. Results
Figure 25 shows the obtained velocity and Cf near the outlet (x/L = 50), where the flow
is considered to be fully developed. Here, the velocity is normalized by the duct centreline
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Figure 19. Cross-sectional velocity v̄/u∞ distributions near the corner at (a,d,g, j) x/L = 1.0, (b,e,h,k) x/L =
1.5 and (c, f,i,l) x/L = 2.0, with in-plane velocity vectors obtained by the RANS simulations: (a–c) SA-QCR(r)
(proposed), (d–f ) SA-QCR2000, (g–i) SA-QCR2020, ( j–l) LES (reference).

velocity uCL. The cross-sectional velocity v̄ obtained by SA-QCR(r) has a slightly larger
value than that from SA-QCR2000, and is close to SA-QCR2020. Figure 25 shows the
Cf distribution along the wall at x/D = 50. Near the corner (2z/D � 0.2), the results
obtained by SA-QCR(r) and SA-QCR2020 are almost identical. At the centreline, the
result obtained by SA-QCR(r) shows a slight decrease of Cf . Similar to the dimple of
Cf observed in figure 23, the slight decrease of Cf may be due to the upward flow from the
wall along 2z/D = 1.0 in figure 26.
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Figure 20. Residual of the streamwise velocity.
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Figure 21. Close-up views of the cross-sectional velocity v̄/u∞ distributions near the corner at x/L = 1.0:
(a) SA-QCR(r) (proposed), (b) SA-QCR2000, (c) SA-QCR2020, (d) LES (reference).
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Figure 22. Surface (a) Cp and (b) Cf distributions along the periodic boundary plane (y/L = 0).
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Figure 23. Spanwise variation of Cf at (a) x/L = 1.0, (b) x/L = 1.5 and (c) x/L = 2.0. Lines are as in
figure 22.
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Figure 24. Cross-sectional Reynolds stress distributions near the corner at (a,d,g) x/L = 1.0, (b,e,h) x/L = 1.5
and (c, f,i) x/L = 2.0, obtained by the RANS simulation using SA-QCR(r). Distributions are (a–c) u′u′/(u2∞),
(d–f ) v′v′/(u2∞), (g–i) u′v′/(u2∞).
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Figure 25. Plots of Cf along the wall at x/D = 50. Symbols denote the reference experimental data (Davis &
Gessner 1989). Lines are as in figure 22.
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Figure 26. Distribution of the cross-sectional velocity v̄/uCL at x/D = 50: (a) SA-QCR(r), (b)
SA-QCR2000, (c), SA-QCR2020.

Furthermore, the streamwise velocity distribution along the diagonal (y = z) and
centreline (2y/D = 1.0) are shown in figure 27. Along the diagonal line, the results
obtained by SA-QCR(r) and SA-QCR2020 show good agreement with the experimental
data, while that obtained by SA-QCR2000 deviates slightly from the other results. This
corresponds to Cf near the corner, suggesting that SA-QCR2000 underestimates the
momentum transport towards the corner. Along the centreline, all the results show a
slower streamwise velocity in the near-wall region, which may be due to the SA turbulence
model. Despite the minor difference near the centreline, the obtained results confirm that
SA-QCR(r) reproduces robustly the secondary motion at the different flow conditions.

6. Conclusions

We conducted a wall-resolved LES of a side-wall interference flow involving corner-flow
separation. The objectives of this LES are first to clarify the influence of the secondary
motion on the corner-flow separation, and second to explore turbulence modelling suitable
for the side-wall interaction flow, such as the wing–body junction of aircraft.

For the first objective, the streamwise momentum budget analysis indicated that
the secondary motion (i.e. the streamwise vortex) has direct and indirect effects on
the corner-flow separation. The direct effect is the convection of the high streamwise
momentum into the corner region. This convection causes the bulge of the streamwise
velocity distribution and reduces the size of corner-flow separation. On the other hand,
the indirect effect is enhanced turbulence production due to the increased shear. This
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Figure 27. Streamwise velocity profile at x/D = 50: (a) along y = z, and (b) along 2y/D = 1.0. Symbols and
lines are as in figure 22.

enhanced turbulence transports the momentum towards the wall, which essentially reduces
the corner-flow separation.

As indicated in the vorticity transport analysis, the secondary motion is generated
primarily by the turbulence anisotropy. Therefore, regarding the second objective, we
sought turbulence modelling based on the constitutive relation between the Reynolds stress
and velocity gradient. We introduced a QCR (called QCR(r) in this study) with three
parameters Cq1, Cq2 and Ck, which were adjusted by the LES data. The analysis revealed
that even the constant-parameter QCR represents accurately the turbulence anisotropy over
most of the computational domain. The notable feature of QCR(r) is that the formulation
does not contain variables dependent on the baseline turbulence model. Therefore, the
proposed QCR may be combined with any baseline turbulence model based on the
Boussinesq approximation.

In the RANS testing, the proposed QCR combined with the SA turbulence model,
SA-QCR(r), predicts the size of the corner-flow separation better than the existing models
(i.e. SA-QCR2000 and SA-QCR2020). Also, the Reynolds stress distributions predicted by
SA-QCR(r) show qualitatively good agreement with the LES data. The trend of the results
is also consistent in the three-dimensional supersonic duct problem, which confirms the
robustness of the proposed modelling for different Mach and Reynolds numbers. Although
the universality of the model should be investigated further in the future by comparing it to
other turbulence models (e.g. the Reynolds stress models), the proposed QCR may provide
a simple way to reproduce the turbulence anisotropy and resulting secondary motions.
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Appendix A. Statistical convergence

Here, the sufficiency of the statistical averaging length is investigated. We split the
overall statistical period into the first half (F) and last half (L), and calculate the
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Figure 28. Reynolds shear stress u′v′/(u2∞) distributions near the corner at x/L = 1.5 with different
averaging periods: (a) averaged for period F + L; (b) averaged for period L; (c) difference between the two
results.

difference between the averaged flow field for the period F + L and that for the period L.
Note that the spatial averaging procedure investigated later is applied to both results.
Figure 28 compares the Reynolds shear stress u′v′ distributions at x/L = 1.5 obtained
by averaging for these two different time periods. The results show that the difference
between these two results is considerably smaller than the magnitude of the Reynolds shear
stress. Also, we have confirmed that the other components of the Reynolds stress tensor or
mean velocity essentially do not change by changing the averaging period. Therefore, we
conclude that the averaging period F + L employed in this study is adequate, at least for
the discussions in this study.

Moreover, we investigate the effects of spatial averaging in the streamwise direction
described in § 2.4. Since high-order differential quantities tend to contain noise, we
compare the vorticity budget described in § 3.3. Figure 29 compares the terms of the
vorticity budget at x/L = 1.0 with and without the spatial averaging. As shown here,
the spatial averaging reduces the high-frequency noise but does not change the overall
distributions of each term.

Appendix B. Inner-layer correction for the near-wall turbulence

Here, we demonstrate that the near-wall distribution of Reynolds normal stress may be
reproduced more accurately by treating Cq1, Cq2 and Ck as spatial variables. Note that
the following modelling is limited to attached fully developed boundary layers, and more
intensive investigation will be needed for separated boundary layers. To model the inner
layer, we assume a 2-D simple shear flow. From (4.7) and (4.9), the Reynolds stress
components in a 2-D simple shear flow are written as

u′u′ = νt

(
Cq1 + 1

6
Cq2 + Ck

)
dū
dy

,

v′v′ = νt

(
−Cq1 + 1

6
Cq2 + Ck

)
dū
dy

,

w′w′ = νt

(
−1

3
Cq2 + Ck

)
dū
dy

,

u′v′ = −νt
dū
dy

, v′w′ = w′u′ = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B1)
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Figure 29. Effects of the spatial averaging in the streamwise direction on the streamwise vorticity budget near
the corner at x/L = 1.0. Each term is normalized by u2∞/L2: (a,d,g, j) with spatial averaging; (b,e,h,k) without
spatial averaging; (c, f,i,l) difference between the two results. Plots are for (a–c) CΩ , (d–f ) RΩ , (g–i) AΩ and
( j–l) VΩ .

Equations (B1) lead to the following relationships among the Reynolds stress components:

u′u′ = −(
Cq1 + 1

6 Cq2 + Ck
)
u′v′,

v′v′ = −(−Cq1 + 1
6 Cq2 + Ck

)
u′v′,

w′w′ = −( − 1
3 Cq2 + Ck

)
u′v′.

⎫⎪⎪⎬
⎪⎪⎭ (B2)
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It is known that u′u′, v′v′, w′w′ and u′v′ in the near-wall region are proportional to y2, y4,
y2 and y3, respectively (see Pope 2000, pp. 283–285). Therefore, Cq1 + 1

6 Cq2 + Ck and
−1

3 Cq2 + Ck must be proportional to y−1, while −Cq1 + 1
6 Cq2 + Ck is proportional to y.

To reproduce these wall-asymptotic behaviours, we assume the following function
forms:

Cq1 = Cq1,inner fb1 + Cq1,outer fb2,

Cq2 = Cq2,inner fb1 + Cq2,outer fb2,

Ck = Ck,inner fb1 + Ck,outer fb2.

⎫⎬
⎭ (B3)

The functions fb1 and fb2 are assumed to be functions of y+ since the inner-layer behaviours
of the Reynolds stress components are relatively robust for wide ranges of Mach and
Reynolds numbers. For the inner part, we consider that fb1 is proportional to y−1, such
as

fb1 = y+
inner

max( y+, ε)
, (B4)

where ε is a small constant to avoid division by zero (ε = 10−12 in this study). Here, y+
inner

is a certain height for calibrating the near-wall behaviour, for which we choose y+
inner = 10

as a representative location within the inner layer. Also, to ensure the asymptotic behaviour
v′v′ ∼ y−4, −Cq1,inner + 1

6 Cq2,inner + Ck,inner must be zero to eliminate the leading term
with y−2. By considering this condition and substituting the LES data at y+ = 10
(at (x/L, z/L) = (1.0, −0.12)) into (B1), the inner layer parameters are calculated as
(Cq1,inner, Cq2,inner, Ck,inner) = (8.5, 12.0, 6.5). Also, we found that the original blending
function fb1 defined by (B4) diminishes too slowly in the outer layer. Therefore, we modify
fb1 by introducing an additional damping function as

fb1 = y+
inner

max( y+, ε)

(
1 − ( y+)2

( y+)2 + (a+)2

)
, (B5)

where a+ = 60 is an empirically chosen parameter. The additional damping function in
(B5) works to decrease fb1 in y+ � a+, and does not change the near-wall behaviours.
Furthermore, the parameters for the outer part, Cq1,outer, Cq2,outer, Ck,outer, are equal to the
values determined in §§ 4.1 and 4.2, namely, 1.0, 0.5, 2.15. The function fb2 is determined
considering v′v′ ∝ y2, which requires fb2 ∝ y. Therefore, we introduce the function

fb2 = 1 − exp
(

− y+

b+

)
, (B6)

where b+ = 25.
Figure 30 shows the Reynolds normal stress components calculated by the above

method at (x/L, z/L) = (1.0, 0.0). Here, the proposed method reproduces accurately the
stress components, including their inner-layer peaks. The results also show that the stress
components behave as intended, i.e. u′u′ ∝ y2, v′v′ ∝ y4 and w′w′ ∝ y2.

For implementation into RANS-based turbulence models, the use of y+ ≡ uτ y/ν is
inconvenient because it requires uτ at the nearest wall. It is difficult to search the nearest
wall, especially in parallel simulation with domain splitting. To avoid the use of non-local
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Figure 30. Wall-normal profiles of the Reynolds normal stress with the inner-layer correction at (x/L, z/L) =
(1.0, 0.0). Symbols and lines denote the LES data and estimated value by the constitutive relation (5.1) with
the inner-layer correction, i.e. (B3), (B5) and (B6), respectively.

quantities, we estimate uτ locally as

uτ =
√

(ν + νt) |S|, (B7)

where |S| ≡ √
2SijSij. This estimation is based on the near-wall equilibrium assumption,

i.e. the sum of the viscous and Reynolds shear stresses is equal to the wall shear stress
τw in the near-wall region. Figure 31 compares y+ using (B7) to the actual y+. The
estimation is very accurate in the inner layer (y+ � 30) when the pressure gradient is weak
(i.e. x/L = 1.0 and x/L = 2.0), and still reasonable at x/L = 1.5. Note that |S| becomes
zero in the freestream, resulting in y+ → 0. Although this causes an unintended increase
of the parameters Cq1 and Cq2 in the freestream with |S| = 0, the increase in the parameters
essentially does not influence flows because |S| = 0 means that the viscous stress is zero.
The estimation may also become inaccurate in a boundary layer with a strong pressure
gradient, which is outside the scope of the inner-layer correction presented here. Moreover,
to retain generality in three-dimensional fields, the distance from the nearest wall d is used
instead of y. This d is readily available in most flow solvers because some turbulence
models (e.g. the SA turbulence model) require it. It may be calculated by the level-set
method (Sussman et al. 1999), which does not require direct searching of the nearest wall.
We also note that the SA turbulence model does not satisfy the asymptotic behaviour of
u′v′ ∝ y3. Therefore, to reproduce the intended wall asymptotic behaviour, we have to
replace the wall damping function fv1 of the SA model with a function satisfying fv1 ∝ y2,
such as

fv1 =
[

1 − exp
(

− y+

A+

)]2

, (B8)

where A+ = 17.
We have implemented these inner-layer corrections to RANS simulations, and

confirmed that their effects on the prediction of the corner-flow separation are minor.
This result suggests that the inner-layer flow physics may not be crucial in forming the
separation. Although not necessary for all types of flows, the inner-layer corrections shown
here indicate the potential of the proposed QCR formulation for reproducing the strong
turbulence anisotropy in the inner layer.
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Figure 31. Comparison of y+ estimated with (B7) and the actual y+. The locations are selected along the
y = 0 line of the LES geometry. The black dotted line denotes the correct estimation.
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Figure 32. Effects of the grid resolution on (a,c) streamwise, ū/u∞, and (b,d) cross-sectional, v̄/u∞, velocity
distributions. Black lines, baseline grid; coloured filled contours, refined grid. Plots are for (a,b) SA-QCR(r)
and (c,d) SA-QCR2000.

Appendix C. Grid sensitivity of the RANS simulations

To validate the grid resolution used in § 5, we examine the grid sensitivity of the results.
For this purpose, we refine the computational grid used in § 5 by doubling the number
of grid points in each direction (i.e. the grid dimensions become 921 × 181 × 181).
Figure 32 compares the streamwise and cross-sectional velocity distributions obtained
by the baseline and refined grids using SA-QCR(r) and SA-QCR2000. The results in
figure 32 show that the velocity distributions are almost grid converged, except for the
minor difference in the separation bubble size predicted by SA-QCR2000. Therefore, these
results confirm that the grid resolution employed in § 5 is sufficient for discussing the
difference between the turbulence models.
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