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SIGN PROPERTIES OF GREEN'S FUNCTIONS FOR 
TWO CLASSES OF BOUNDARY VALUE PROBLEMS 

BY 

P. W. ELOE 

ABSTRACT. Let G(x,s) be the Green's function for the boundary value 
problem v"l) = 0, Ty = 0, where Ty = 0 represents boundary conditions at 
two points. The signs of G(x,s) and certain of its partial derivatives with 
respect to x are determined for two classes of boundary value problems. 
The results are also carried over to analogous classes of boundary value 
problems for difference equations. 

1. Introduction. Let [a,b] Q R. let n > 2, 2 < k < n, 1 < rp 1 <y < k, be natural 
numbers. Let a < JCJ < x2 < . . . < xk< b and consider the boundary value problem 
(BVP), 

(1.1) y{u) - 0 , 

(1.2) y _ 1 ) (Xj) = 0, 1 < / < rn 1 < . / < £ , 

where Ey= ]rj = n. We call a BVP with boundary conditions given by ( 1.2) a conjugate 
type BVP. Levin [2], [5] has shown that the Green's function, G(x,s), for the BVP, 
(1.1), (1.2), satisfies 

(1.3) G(x,s)(x-xl)
ri(x-x2r- . . . (x-xk)

rk > 0, 

on [a,b] x [a,b]. Peterson [6] has obtained (1.3) for a class of two point conjugate type 
BVP's for more general differential operators; Ridenhour [9] has recently extended 
Peterson's results to multipoint problems. 

Assume a < x\ < x2 ^ . . . < x„ < /? and permute {1, . . . , /?} to {r,, . . ., r„}. We 
call a BVP with boundary conditions given by 

(1.4) y{rJ~l) (Xj) = 0, 1 < 7 < «, 

a focal type BVP, where /? is the order of the differential equation. We say the problem 
is a right focal type BVP if r} = j , 1 < j < n. Peterson [7] has shown that the Green's 
function, G(JC,5"), for a class of two point right focal type BVP's satisfies 

f (-\Y~k d'/dx1 G(x,s) > 0, 0 < / < it, 
( L 5 ) 1 (- îy-'dVax'Gu,*) > o, it + l < / < n - l, 
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on [a,b] X [a,b], where a = x] = x2 = . . . = xk, xk + \ = xk + 2
 = • • • = .*„ = £. 

Hartman [4] obtained an analogue of (1.3) for a class of conjugate type BVP's for 
difference equations and Peterson [8] has recently obtained further results concerning 
Green's functions for difference equations. 

In this paper, we obtain analogues of (1.3) and (1.5) for two classes of two point 
BVP's. In section 2, we consider two point BVP's for ordinary differential equations; 
we obtain an analogue of ( 1.3) for a BVP where the boundary conditions are "between" 
conjugate type and right focal type conditions, and we obtain an analogue of (1.5) for 
the two point focal type BVP, (1.1), (1.4). We shall also show that an analogue of (1.3) 
or (1.5) does not exist, in general, for a multipoint focal type BVP. In section 3, we 
consider similar questions for difference equations. 

2. Boundary value problems for ordinary differential equations. Let a < b, n > 1, 
a0(x), a\(x), . . ., an-\(x) e C[a,b], and let T: C"~ ][a,b] —> M" be a continuous, 
linear map. We begin by characterizing the Green's function, G(x,s), for the BVP, 

Ly = y{n) + an-l(x)y{"-]) + . . . 4- a0(x)y = 0, 

Ty = 0. 

See [1, p. 190-193], for example. 

LEMMA 2.1. Suppose y = 0 is the only solution ofLy = 0, Ty = 0. Then there exists 
a unique function, G(x,s), defined on [a,b] X [a,b] having the following properties: 

(i) dk/dxk G(k = 0, 1, . . ., n — 2) exist and are continuous on [a,b] X [a,b]. 
dkIdxk G(k = n — 1, n) are continuous on triangles a < x < s < b and a < s < x 
< b. 

(ii) linwv+ d"-]/dx"~l G(x7s) - limv_v dn~x/dxn~x G(x,s) = 1. 

(iii) As a function of JC, G satisfies LG = 0 if x + s. 
(iv) As a function of x, G satisfies TG = 0 for a < s < b. Moreover, for any 

/ e C[tf,Z?], the unique solution of Ly = f(x), Ty - 0 is given by 

<!>(*) = [ G(x,s)f(s)ds. 
a 

Let n > 2, and k e {1, . . ., n - 1}. We consider the BVP, 

(2.1) y(n) = 0, 

f ylr~l)(a) = 0, 1 < r < k, 

( 2 ' 2 ) \y(s~])(b) = 0,7 + 1 < 5 < 7 + w - it, 

where j e {0, . . . ,&} . Note that if j = 0, (2.2) represents conjugate type boundary 
conditions, and if j = k, (2.2) represents right focal type boundary conditions. Our main 
result for the BVP, (2.1), (2.2), is that the Green's function, G(x,s), satisfies 

(2.3) (-\)"~k d'/dx1 G(x,s) > 0, 0 < / < 7 , 
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on [a9b] x [a,b]. 
If j = 0, (2.3) follows from (1.3), and if j = k, (2.3) follows from (1.5). We now 

assume j e {1, . . ., k — 1} and hence, k > 1. 

LEMMA 2.2. Let G(x,s) be the Green s function for the BVP, (2.1), (2.2). Then 
d/dx G(x,s) is the Green s function for the BVP, 

(2.4) /"*> = 0, 

f y(r~X)(a) = 0, 1 < r < k*, 

(2*5) \yis~])(b) = 0,7* + 1 < .s <7* + rt* - Jfc*, 

where n* — n — 7, &* — k — 1, j * — j — 1. 

PROOF. It is readily verified that d/dx G(x,s) satisfies the four properties listed in 
Lemma 2.1 which uniquely characterize the Green's function of the BVP, (2.4), (2.5). 

THEOREM 2.3. The Green s function for the BVP, (2.1), (2.2), satisfies (2.3). 

PROOF. AS noted above, Theorem 2.3 is true for j = 0 and j = k. Assume k > 1, 
y e{l, . . . , £ — 1}. By repeated applications of Lemma 2.2, we note that dJ/dxJ G(x,s) 
is the Green's function for the conjugate type BVP, 

y»-./> = o, 

(y(a) = . . . = y{k-j-n(a) = 0, 

\y(b) = ... = y{n-k-'\b) = 0. 

By (1.3), 

(2.6) (-1)"~A dV^7" G(JC,^) > 0, 

on [a,/?] X [a,/?]. If / < 7, use the boundary conditions (2.2) to obtain 

d'/dx1 G(x,s) = [ d,+ ]/dt,i] G(t,s)dt 
a 

for all x e [a,b]. Since d'/dx' G(x,s) satisfies (2.6), it follows inductively that G(x,s) 
satisfies (2.3). 

We now consider a focal type BVP. Let a < b, n> 2, k e {1, . . ., n — 1}. Let 
{r\, . . ., rk}, {s\, . . ., sn-k} be a partition of {1, . . ., A} such that rx < r2 < . . . < 
r* and S\ < s2 < . • • < s„-k. Consider the two point focal type BVP, 

(2.7) y{n) = 0, 

(2.8) }(b) = 0, 1 < 7 < n - k. 

Our main result concerning the BVP, (2.7, (2.8), is that the Green's function, G(x,s), 
satisfies 
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(2.9) (-\y dl/dxl G(x,s) > 0, 

on [a,b] x [a,b], for 0 < / < « - 1, where a/ = card {j: sf > /}. 
Note that if G(xys) is the Green's function for (2.7), (2.8), then d/dx G(x,s) is the 

Green's function for either the BVP 

y"*> = o, 

r yM>(fl) = o, 2 < i < * , 

[ y s * _ , ) ( ^ = 0, 1 < y < /z - fc, 

when ri = 1, or the BVP 

y«*> = o, 

f y^-'V) = o, 1 < / < *, 

| j ( s / "(/?) = 0, 2 < 7 < « - k, 

when 51! = 1, where n* = n — 1, rf = r,- — 1, sf = s,- — 1. If fc = 1 or n — 1, then 
we consider initial value problems at b or a, respectively. We again use Lemma 2.1 to 
see that d/dx G(x,s) is the Green's function for a focal type BVP. Proceed inductively 
and note that d"~ l /dx"~] G(x,s) is the Green's function for the first order problem 

y' = 0, y (a) = 0, when rk = n, 

or the problem 

y' = 0, y(b) = 0, when s„-k = n. 

THEOREM 2.4. The Green s function, G(x,s), for the focal type BVP, (2.7), (2.8), 
satisfies (2.9). 

PROOF. First assume rk = n. Then, since d"~ l /dx"~ ' G(x,s) is the Green's function 
for the problem, y' = 0, y (a) = 0, 

{ 1, a < s < x < b, 

0, a < x < s < 6. 

Let / e {ri, . . ., r j . Using the boundary conditions, (2.8), 

d'-]/dxl~l G(x,s) = I dl/dt'G(t,s)dt. 
a 

If d'/dxl G(x,s) is of constant sign on [a,b] X [a,£], then d'~ l/dx!~ ' G(JC,^) is of 
constant sign and has the same sign. 

Similarly, let / e {s\, . . ., sm-k} and use (2.8) to obtain 

d ' - ' / dx ' - ' G(x,s) = d'/dt1 G(t,s)dt. 
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If dl/dx1 G(x,s) has constant sign, then d / _ l /dx l~ ' G(x,s) has constant sign and has 
opposite sign. Since d"~]/dx""' G(x,s) > 0 on [a,b] x [a,/?], it follows inductively 
that G(x,s) satisfies (2.9). 

Assume sn-k = n. Then d"~l/dx"~lG(x,s) is the Green's function for the problem, 
/ = 0, ;y(&) = 0. That is, 

d"-]/dx"-1 G(x7s) = 

It is shown similarly that G(xys) satisfies (2.9). 

REMARKS: i) The proofs of Theorems 2.3 and 2.4 can be used to obtain the Green's 
function, G(x,s), for the BVP, (2.1), (2.2) and the focal type BVP, (2.7), (2.8), in 
closed form. For example, 

f - x , 0 < j t < s < 1, 
H(x,s) = \ 

I -s , 0 < s < x < 1, 

is the Green's function for the focal type BVP y" = 0, y(0) = y'(\) = 0. Thus, 

fv f - J C 2 / 2 , 0 < x < s < 1, 

G,U,J) = H(t,s)dt = \ 
Jo [ s2/2-sx, 0 < s < x < 1, 

is the Green's function for the focal type BVP / " = 0, y(0) = y'(0) = y" (1) = 0; 
similarly, 

s{\ - JC) , 0 < s < x < 1, 

is the Green's function for the focal type BVP / " = 0, y(\) = y' (0) = / ' (1) = 0. 
ii) Let p,(jc), 1 < / < JZ + 1 be positive, n + \ — i times continuously differentiable 

functions on [a, b] and define quasi-derivatives Dn 0 < / < /?, by 

D0;y = p,(x)y, 

See [7], for example. Theorem 2.4 remains valid if we replace d'/dx' with correspond
ing quasi-derivatives Dh 0 < / < /t, where D0G = pi(x)G(x,.v), D,G(x,s) = pH ̂ x j 
d/dx Di-\G(x,s), 1 < / < w. The proof is similar if we note that if G(xys) is the 
Green's function for the BVP 
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D„y = 0 

f Dr.-Xy(a) = 0, 1 < / < k, 

[Dsrly(b) = 0, 1 < 7 < n - fc, 

then l/p2(x)£)IG(x, s) is the Green's function for the BVP 

D*.y = 0, 

D^jy(a) = 0, 2 < i < k, 

Dfny{b) = 0, 1 <j<n - *, 

when r ! — 1, and the BVP 

0?O> = 0, 

f D**_,;y(a) = 0, 1 < / < it, 

[ D * * - , ) ^ ) = 0 , 2 < y < n - fc, 

when 5j = 1, where n* = n— 1, r*= r, — 1,5,f= s,- — 1, Dĵ y = p2.y, Df^ = p, + 2(jc) 
(Df_,y)\ 1 < / < /i*. It follows inductively that l / p ^ j ^ - i G ^ , 5) is the Green's 
function for the first order problem, 

P„ + iU)(p, j ) ' = 0, pny(a) = 0, if r* = n, 

Pn+\(x)(pny)' = 0, Pny(b) = 0, if •?„_* = n. 

Theorem 2.3 also remains valid if we replace d'/dx' with corresponding quasi-
derivatives Dh 0 < / < n. To see this, note that Dny = 0 is disconjugate on [a,/?] See 
[2]. Also, conjugate type boundary conditions 

(D0y(a) = . . . =D*_ Iy(a) = 0, 

[D0y(b) = . . . =DII-jk_Iy(6) - 0 , 

imply conjugate type boundary conditions, 

(y(a) = ... = y{k-l)(a) = 0, 

\y(b) = . . . =yw -*- , ) (6) = 0. 

Thus, Levin's inequality (1.3) can be used precisely as it was used in the proof of 
Theorem 2.3 to obtain an analogue of Theorem 2.3. 

iii) An analogue of (1.3) or (1.5) does not exist, in general, for a multipoint focal 
type BVP, (1.1), (1.4). For example, consider the BVP, 

y'" = 0, 

y(0) = / ( l ) = / ' ( 2 + 8) = 0, 

8 > 0. The Green's function, G(x,s), has the following representation. For s e [0,1], 
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f s2/2, 0 < s < x < 2 + 8, 
G(x,s) = < 

[x(2s - JC)/2, 0 <x < s < 1. 

For 5 e [1,2 + 5], 

| V / 2 - J C ( , S - 1), 1 < S < J C < 2 + 8 , 

[JC(2 - JC)/2, 0 < ; t < s < 2 + 8. 

Although Grv is the Green's function for j ' = 0, y(2 + 8) = 0, and 

f 0, 0 < s < ; c < 2 + 8, 
Gxx(*,s) = \ 

[ - 1 , 0 < J C < S < 2 + 8 , 

the above techniques do not apply. Note that G(x,s) changes sign for x e [1, 2 + 8] 
at x — 2 if s > x. 

3. Boundary value problems for difference equations. Let I = {a, a + 1, . . . , / ?} 
C R, A2 > 2, and 7y: = {a, « + 1, . . . , £ + 7}, 0 < j < n. Define A°w(m) = w(m), 
A'w(m) = w(m + 1) - u(m), and A'u(m) = A(A / 1w)(m), 1 < j < «. Let fc e 
{1, . . ., n — 1} and let {ru . . ., r j , {5,, . . ., s„-k} be a partition of {1, . . ., n) such 
that r, < r2 < . . . < rA and s\ < s2 < . . . < s„-k. Consider the two point focal type 
BVP 

(3.1) Anu(m) = 0, m el, 

f Ar>-]u(a) - 0, 1 < / < k, 
(3.2) 

Asr'u{b + n - (Sj - 1)) = 0, 1 < y < w - fc. 

We shall show that the Green's function, G(m,s), for the BVP, (3.1), (3.2), satisfies 

(3.3) (-\r'A'mG(m,s)>0 

on I"1 x /, forO < / < n - 1, where cr, = cardjy: ^ > /} and A° G(m,s) = G(m,s), 
AlG(m,s) = G(m + 1, j) - G(/w„s), A;„ G(m,s) = AfAj;1 G(m,s)), 1 < 7 < w. 

THEOREM 3.1. Suppose w: /" —> M satisfies the difference inequality, A"w > 0 on /, 
and the boundary conditions (3.2). Then 

(3.4) ( - l ) a ' A'u > 0, 

on 7"_/, 0 < / < n — 1, where cr/ = cardjy: s,- > /}. 

PROOF. Let / e {r,, . . ., r j . Using the boundary conditions (3.2), 

A/',w(m) = 2 AV0, AW e/" - ( / - i ) 

If A'w(m) has constant sign on /" ', then A' ]u(m) has constant sign and has the same 
sign on /"-<'-'>. If / e { j , , . . . , s„_,}, 
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b + n-l 

^-]u(m) = - X A ' H W , rn e /"~(/~1). 
t = m 

If A1 u(m) has constant sign on/"_/, then A'~]u(m) has constant sign and has opposite 
sign on //7~(/_l). Since A"w > 0 on /, it follows inductively that u satisfies (3.4). 

COROLLARY 3.2. The Green's function, G(m, s), for the BVP, (3.1), (3.2), satisfies 
(3.3). 

PROOF. The Green's function, G(m,s), has the following characterization: for each 
s e /, v(m) = G(m, s) is the unique solution of the BVP, A/7v(m) = 8W,,, (the 
Kronecker delta), (3.2). See [3, p. 144] or [4, p. 20], for example, Since bnhS > 0 on 
/" X /, the result follows immediately from Theorem 3.1. 

REMARK. In [4], Hartman obtained an analogue of the Levin inequality (1.3) for a 
conjugate type BVP for difference equations. Analogues of Lemma 2.2 and Theorem 
2.3 can be proved for a BVP, 

A"w(m) = 0, m e /, 

Ar_1w(a) = 0, 1 < r < fc, 

ks-]u(b + n - (s - 1)) - 0,y' + / < s < j + n - k, 

where k e{\, . . ., n - 1} and j e {0, . . ., k). 
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