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ADDITIVE FUNCTIONALS ON LORENTZ SPACES 

BY 

P R A T I B H A G. G H A T A G E 

ABSTRACT. If (X, |3, JUL) is a cr-finite, non-atomic measure space, 
and <f) is an increasing non-negative concave function defined on the 
positive real numbers, we give a set of necessary and sufficient 
conditions for an additive functional T on the Lorentz space N^ to 
have an integral representation with a Caratheodory kernel. In the 
special case when T is statistical we classify the functional properties 
(enjoyed by the kernels) in terms of the Lorentz norm on the space. 

1. In this note we obtain integral representation for disjointly additive 
functionals on certain Lorentz spaces in terms of Caratheodory kernels. When 
the functionals enjoy the additional property of being statistical, their kernels 
possess functional properties which are easily definable in terms of the Lorentz 
norm. Using these properties we characterize when the composition operator 
(generated by the kernel) mapping the Lorentz space into Lx is completely 
continuous. Results of this type have been obtained by Mizel [3] for Lp spaces, 
by Sundaresan [6] for Orlicz spaces and Mizel and Sundaresan [4] for Lp spaces 
of functions which take values in a Banach space. 

We start with a few definitions and establish notation useful in the following 
discussion. 

Suppose that (X, JB, /LL) is a o--finite, non-atomic positive measure space. If / 
is a measurable function, we denote its distribution function by \f. Recall that 
\f(y) = fx{x, |/(x)| > y}. If <t> is an increasing, non-negative concave function, 
defined on the positive real numbers and satisfies (f)(0) = cf>(0)+ = 0, then we 
define ||/IU =Jo<MA/(y)) dy. The Banach space N^ consists of those measur­
able functions for which H/Ĥ  is finite. For more details, we refer the reader to 
[5] and E7]. 

THEOREM 1. Suppose JUL(X)<OO? $f is a normal sublattice of N^ and T:âf-»IR 
is a functional satisfying the following properties: 

(1) If f and g are in âf and fg = 0 a.e. then T( /+ g) = T/+ Tg. 
(2) If fn-^>f (in measure) and | / n | ^ | g | for all n and some g in âf then 

Tfn — Tf 
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(3) lim/UL(E)_^0 T(/i/fE) = 0 uniformly for all f in a bounded subset of âf. 
Then there exists F in Car(X), satisfying 

(t) lim f F(f(x)9x)dii=0 
M.(E)->0 JX 

uniformly on bounded subsets of N^ and T/ = J xF(/(x) , x) du for all f in âf. 
Conversely i / F e C a r ( X ) and satisfies (t) and T/ = J xF(/(x) , x) dfx, then T 

satisfies (1), (2), and (3). 

Proof. Suppose T satisfies (1), (2), and (3). By Theorem 3.2 of [7] there 
exists Fe Car(X) for which T/ = J xF(/(x) , x) d\x, for all / in âf. It is obvious that 
F satisfies (t). 

Conversely suppose F is in Car(X) and Tf = Jx F(/(x), x) djut exists for all / in 
8? then obviously T satisfies (1). By Theorem 3.2 of [7] T satisfies (2). If F 
satisfies (t) then T satisfies (3). 

REMARKS. (1) T is norm-continuous. To see this, suppose /, /n belong to âf 
and / n - > / in the N^-norm. If gn(x) = F(/n(x), x) and g(x) = F(/(x), x) then 
each subsequence of {gn} possesses a subsequence {gnj satisfying gn(x) —> g(x) 
a.e. (This follows by a standard argument from the fact that F is continuous in 
the first variable.) And hence gn-^> g (in measure). Now by (3), i f £ > 0 3 5 > 0 
such that whenever jut(E) < 8, |JE gn(x) d/x | < e and |JE g(x) d/u, | < e. By 
EgorofFs theorem, 3 E0 such that jut(F0)< 5 a n d ||(gn ~ g) IX\E0IU —> 0 as n —» OO 

g n (x )d |LL- g(x)d|LL < (g n - g ) ( x ) djLL 
U x JX I •JX\Eo ' 

I J E 0 ' I J E 0 

+ M g„(x)dJ+ I g(x)dlL 
I JEn ' I «fen 

;3e 

for n sufficiently large. Thus T/n —> Tf 
(2) We show by an example that condition (3) of Theorem 1 does not follow 

from (1) and (2). For that purpose, consider X = [0,1] with /UL = Lebesgue 
measure, and $(f) = t1/2. We consider a subspace of N^ defined as âf = {/, / e N^ 
such that feLj. Then LJO, l j ç â f and if F(a ,x) = a3 , FeCar(X) . If Tf = 
J j / 3 dx, T satisfies (1) and (2). We show that T does not satisfy (3), nor is it 
norm-continuous. If fn = m/f[0,i/n

2> £ n = [0>lM3] and fin = n^[0,i/n
3]> w e have 

ll/nlU = l> fn*En = hn, ||hn|U = lM 1 / 2 and T(/nffeR) = T(hn) = l. Since ^ ( J ^ ) - > 0 
and Hfenll̂  —>0 this proves both of our claims. 

(3) If X, ILL and <f> are as in the previous remark let <2/ = N^ and define 
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Tf = $lfdx for /e<2/. By [5, Theorem 5.6(b)], T is well-defined and norm-
continuous. If fn = Tnl/L0A/n2^ and En = [0,l/n2] then | | / X = 1, fn^En=fw 

jLL(En)-^0 but T(fni/fEn) = l . Thus condition (3) of Theorem 1 cannot be 
replaced by the norm-continuity of T. 

(4) We point out by an example that when JLX(X) = O°? norm-continuity of T 
is not a consequence of the other conditions. If X = (0, °°) with Lebesque 
measure JUL and <£(f)= V* let âf = N^ n Lx. Then âf is a normal sublattice of A/̂  
and T/ = J/djUL is a linear functional on âf which satisfies (2) by dominated 
convergence theorem. Also |T(/ife)| = |JE/d|u,|<|LiCE) ||/||2 by Holder's inequal­
ity. By 5.6(b) of [5], | | / | |2^II/IIN^ and hence condition (3) is satisfied. However if 
fn = (l/n)ifc0.n] then ||/n | |^ = (jnln) -> 0 but Tfn = 1. 

The original version of theorem 1 had a set of conditions given in [3, 
Theorem 1] some of which were proved superfluous in [7]. We thank the referee 
for bringing [7] to our notice. 

COROLLARY 1. If in addition to conditions (1) through (3) T is statistical, then 
there exists a continuous G :R—>R, G(0) = 0 for which Tf = j x G°fd[x for all f 
in N+. 

Proof. Suppose T is statistical i.e. /, g are equimeasurable=^ Tf= Tg. (See 
[6], p. 269). Now if a eR, f = oafa, / = aifc^ where 0 < IL(EX) = ix(E2) <oo. Then 
/ and g are equimeasurable. Hence 

F(a, x) djut = F(a, x) d\x. 

Thus if G a(0 denotes the function F(a, •) we have JEl Ga(x) d\i = j ^ Ga(x) d[k 
wherever 0 < /x (Ex) = n (E2) < °°. We claim that G« is constant a.e. If not, we 
can find intervals Ix and I2, i\ = («i, j8i), I2

 = («2» 02), 0 i < a 2 such that G " 1 ^ ) 
and G " 1 ^ ) have positive measure, /x is assumed to be non-atomic, hence we 
can find sets Ex and E2, 0<^(E1) = JUI(JE2), J B ^ G ; 1 ^ ) , £ 2 gG a

_ 1 ( / 2 ) , 
JE! G« W djx < jSijLL^i) and J^ Ga(x) djm >a2|Li(E2). In particular, 
fEl Ga(x) djx^ j ^ Ga(x) d[L. This establishes the claim. Now if G(a) = G«(x) 
then we have: G : R - » R , T/ = JxG°/d|Li, G(0) = 0 (F(0, -) = 0a.e.). Since F is 
continuous in the first variable, G is continuous. 

2. In this section we restrict ourselves to the case where c/>(x) = x1/p, p > l . 

LEMMA 1. Suppose G:IR—»IR is a continuous function satisfying G(0) = 0. 
Then (t) lim^ (E;)^0JE G°/djLt = 0 uniformly on bounded subsets of N^ if and 
only if |G(a) | /ap —> 0 as a -»oo. 

Proof. Suppose (t) is true. If an —» 00 then since JUL is non-atomic, we may 
choose measurable sets F n such that n(En) = l/a£. Let fn^anil/En, ||/n|U = 
an(im(Fn))1/p = l. JE nGo/nd juL-G(an)iUL(En)-G(an)/ap-^0 as n-^oo. Since 
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{an} was chosen arbitrarily we have: lim^.^» |G(a) | /ap = 0. Conversely suppose 
\G(a)\/ap -^0 as a->°c. Let e > 0 . Choose a0 such that for every a > a 0 , 
|G (a ) |<ea p . Let sup{|G(y)|, | y |<a 0 } = M0. Now if E is a measurable subset of 
X of positive, finite measure and if / is an arbitrary element of N^, we have: 

f | G o / | d f i = f iGo/ ld f t+f \Gof\dn 
*E •'Ej •'E2 

where 

Ex = { X , X G JE, |/(x)| < a0>, JB2 = {x, x G E, | / (X) | > a0}-

Thus 

f \Gof\dvL<Molx(E) + e\ \f(x)\pdn<M0n(E) + e\\f\E\\l 
JE JE 

where ||/||p denotes the Lp-norm of /. (By 5.9 of [5], ||/||P<||/IU V / e N j . In 
particular, j E |G° / | dlx^M0^(E)Jrs \\f\\%. Now if JUL(E)<ô = e/M0 we have, 
JE lGo/1 d<Li<e[l + ||/||S]. Hence lim^ (E )^0 JE | G O / | d^ - 0 uniformly on 
bounded subsets of N$. 

DEFINITION. If G:(R—»(R (G(0) = 0) is a continuous function with the prop­
erty that whenever / e N ^ , GofeL^ we say that the composition operator 
A:f-^G°f is bounded if whenever sup{||/||p, fe S}<°°, we have 
sup{||G°/||1,/GS}<oo for an arbitrary subset of S of N^. 

LEMMA 2. If JLL(X)<OO then A is bounded if and only if |G(a) | /ap =0(1), 
|a|—»o°. 

Proof. Suppose A is bounded. We claim that there exist real numbers k and 
a 0 such that |F(a) | /ap<fc for a > a 0 - Suppose not. Choose {an} such that 
an ~~*°° a n d iGia^l/oLn—>0°. Since JLL is non-atomic, we may choose a sequence 
En of measurable sets satisfying jx(E„) = l /a p . If fn = a^^, then H/J^ = 1 but 
l|Go/w||1 = l l G C o ^ ) ^ = \G(an)\ix(En) = \G(an)\/a

p
n^cc. This contradicts the 

fact that A is bounded and establishes our claim. We remark that this 
argument is valid even if jx(X) = o°. Conversely suppose that there exist real 
numbers k and a0 such that |G(a) | /a p<fc for a > a 0 . Let M0 = 
sup{|G(a)|, | a | ^ a 0 } . We know that l lGo/H^ Jo AGo/(y) dy. (See p. 137 of [5]). 
If y > 0 , \Gof(y) = ^{x,\G(f(x))\>y}9 if Ey ={x, | / (x ) |<a 0 , y< |G( / (x) ) |<M 0 } , 
and Fy = {x, |/(x)| > a 0 , y <\G(f(x))\ < k |/(x)|p} then 

AGo/(y)^jui(Ey) + iUL(Fy). 

But |UL(Fy)<Af(y/fc)1/p. Hence 

f f , ( F y ) d y < k p f A f(z)zp-1dz = fcp||/|B^fcp 11/16 
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On the other hand 0<fx(£ v )<0 if y > M 0 . Hence 

35 

lL(Ey)dy<\ fx(£y)rfy<M0|Lt(X). 
Jo Jo 

Thus 

i.e. 
r \a°f(y)dy<MMX) + kp\\f\\l 

l l G o / M M o ^ X H fcp l l / I I W e N*. 

In particular, A is bounded. 

LEMMA 3. Suppose fx(X) = oo. Then A is bounded if and only if 

s u p l ^ ^ ' a G H <oo. 

Proof. Suppose A is bounded. We already know that |G(a)|/ |a|p = 0(1); 
|a | —> °°. (as in the first part of the proof of Lemma 2). Now suppose that 3 {an} 
such that | a n | - ^ 0 and ^(cOl/la^—> 0°- Since n,(X) = c° we may choose 
measurable sets En satisfying fx(En) = 1/aE (-*00)- Once again if fn = c^ife^ then 
| | /»t = l but | |Go/n | |1 = |G(an)|fjt(Eh)-*oo. Since |G(a)| / |ap | is continuous on 
(0, oo) u (-oo, 0) we have: 

f|G(«)l 1 
SUP] — — ,aeIR|<oo. 

Conversely suppose | G ( a ) | ^ M | a | p Va . Then 

kGof= |x{x, y <|(Go/)(x)| ^ M l / W n ^ ^ a y / M ) 1 ^ ) . 

Hence as in the proof of Lemma 2 we have 

H G o / l l ^ X^{£j jdy^Mpi z»-%(z)dz=Mp\\f\\^Mp\ It 
In particular, A is bounded. As a simple consequence of the characterization of 
compact sets in L1? the preceding three lemmas and Theorem 9 of [2], we have 
the following two theorems. 

THEOREM 2. If /x(X)<oo then A is completely continuous if and only if 

\G(a)\ n . . 
, „, —>0 as a -»oo. 

THEOREM 3. If JLL(X) = OO then A is completely continuous if and only if 

(1) 
\G(a)\ 

av 
0 as \a\ 
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and 
(2) 

f|-G(a)| 1 
SUP] — ~ h aelR><o°. 

3. Note that if 

</>(*) = ln(l + x) then sup = lim = 1 
u > 0 U u-+0+ U 

(1.15 of [5] establishes the first equality.) By 5.9 of [5], ||/||i^||/IU whenever 
feN^ and arguments identical to the ones in all the three lemmas of the 
previous section establish the following. 

THEOREM 4. (1) If jx(X)<o° then A is completely continuous if and only if 

| G ( a ) | 

a 
• 0 as \a\ 

(2) If jui(X) = o° then A is completely continuous if and only if 

(a) 

\\G(a)\ 1 
supi L ae[R> 

U a I J 

< 0 0 

and 
(b) 

| G ( a ) | 
—>0 as \a\ 

In conclusion it might be mentioned that the more general problem of 
finding conditions on the Caratheodory function F (whose existence was 
establised in Theorem 1) which will make the composition operator A com­
pletely continuous was not discussed here. A similar problem for Orlicz spaces 
was discussed in [1]. 

I would like to acknowledge my gratitude to K. Sundaresan for many helpful 
discussions during the preparation of this paper. 
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